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Abstract 

Background  Current research on the neurological impact of SARS-CoV-2 primarily focuses on the elderly or severely 
ill individuals. This study aims to explore the diverse neurological consequences of SARS-CoV-2 infection, with a par-
ticular focus on mildly affected children and adolescents.

Methods  A cohort study was conducted to collect pre- and post-infection resting-state electroencephalogram (EEG) 
data from 185 participants and 181 structured questionnaires of long-term symptoms across four distinct age groups. 
The goal was to comprehensively evaluate the impact of SARS-CoV-2 infection on these different age demograph-
ics. The study analyzed EEG changes of SARS-CoV-2 by potential biomarkers across age groups using both spatial 
and temporal approaches.

Results  Spatial analysis indicated that children and adolescents exhibit smaller changes in brain network and micro-
state patterns post-infection, implying a milder cognitive impact. Sequential linear analyses showed that SARS-CoV-2 
infection is associated with a marked rise in low-complexity, synchronized neural activity within low-frequency 
EEG bands. This is evidenced by a significant increase in Hjorth activity within the theta band and Hjorth mobility 
in the delta band. Sequential nonlinear analysis indicated a significant reduction in the Hurst exponent across all age 
groups, pointing to increased chaos and complexity within the cognitive system following infection. Furthermore, lin-
ear regression analysis based on questionnaires established a significant positive relationship between the magnitude 
of changes in these neural indicators and the persistence of long-term symptoms post-infection.

Conclusions  The findings underscore the enduring neurological impacts of SARS-CoV-2 infection, marked by cog-
nitive decline and increased EEG disarray. Although children and adolescents experienced milder effects, cognitive 
decline and heightened low-frequency electrical activity were evident. These observations might contribute to under-
standing potential anxiety, insomnia, and neurodevelopmental implications.
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Background
The eruption of the SARS-CoV-2 pandemic has instigated 
a global public health crisis, posing significant threats to 
respiratory health [1–3]. Significantly, this crisis has not 
only posed a substantial menace to the respiratory sys-
tem [4, 5] but has also sparked concerns regarding its 
impact on the central nervous system [6–8]. A wealth of 
empirical research has confirmed that SARS-CoV-2 can 
induce a range of neurological issues, notably affecting 
cognitive functions [9, 10]. Amidst various methodologies 
employed for cognitive function assessment, electroen-
cephalography (EEG) techniques emerge as pivotal tools 
[11] for evaluating cognitive function and quantifying the 
detrimental effects of SARS-CoV-2 infection on cognitive 
performance [12, 13].

However, existing research predominantly focuses on 
EEG studies involving elderly and severely affected patients 
[10, 14–16]. Recent shifts in focus explore the effects on 
younger, more diverse populations. For instance, in 2024, 
researchers employed EEG to analyze sleep patterns in chil-
dren post-SARS-CoV-2 infection [17]. Although numerous 
comparative EEG studies have targeted younger demo-
graphics [18–20], these investigations often involve limited 
participant numbers and age ranges. Therefore, it is critical 
to expand EEG studies to more comprehensively assess the 
long-term cognitive impacts of SARS-CoV-2.

The primary aim of this study is to bridge the gap in 
understanding the cognitive effects of SARS-CoV-2 in 
individuals presenting mild symptoms, with a focus on 
EEG patterns across different age groups, especially in chil-
dren and adolescents. We gathered resting EEG data from 
a diverse cohort of 185 individuals who experienced mild 
symptoms related to SARS-CoV-2, both before infection 
and after full recovery. Utilizing advanced analytical tech-
niques such as source connectivity and microstate analysis, 
this study explores the subtle cognitive changes induced by 
SARS-CoV-2, analyzing both spatial and temporal aspects.

Against the backdrop of the globally reported tally of 
more than 770 million confirmed cases of SARS-CoV-2 
infection as of September 29, 2023 [21], it is of para-
mount importance to fathom the cognitive implications 
wrought by SARS-CoV-2 infection upon the substantial 
proportion of individuals who exhibit mild symptoms. 
Such an endeavor is indispensable not only for enhanced 
comprehension of the virus itself but also for the formu-
lation of healthcare strategies and support systems, with 
a specific focus on the child and adolescent demograph-
ics alongside other vulnerable segments of the popula-
tion. Our investigation serves to elucidate the intricacies 
surrounding the cognitive ramifications of SARS-CoV-2 
infection in mildly symptomatic populations across vary-
ing age groups, thereby contributing to the foundation of 

rehabilitation strategies geared towards ameliorating the 
afflictions of SARS-CoV-2 and mitigating the challenges 
posed by long COVID or post-COVID-19 syndrome [22].

Methods
Study design
The data elucidated in this investigation emanate from 
a comprehensive longitudinal EEG study, tracking EEG 
recordings across diverse age cohorts. Initially, the scope 
of the research was not aligned with clinical objectives. 
Nevertheless, an unforeseen opportunity arose due to 
a pivotal shift in China’s public health policy after 2022. 
Consequentially, a significant proportion of the partici-
pants contracted the SARS-CoV-2 virus within a markedly 
narrow timeframe—specifically, not exceeding a 1-week 
variance—and uniformly achieved recovery within 4 
weeks. All participants in the study were clinically classi-
fied as having mild manifestations of the disease and were 
experiencing their first infection. This unique circum-
stance allowed us to capture and analyze the EEG data 
from these individuals’ pre-infection and post-recovery, 
providing an invaluable comparative perspective on the 
neurophysiological impact of SARS-CoV-2.

EEG recordings before infection were taken 1 to 2 
months before the participants tested positive for SARS-
CoV-2 via nasal or throat swab tests. Follow-up EEG 
recordings were performed 1 to 2 months after the partic-
ipants tested negative. During the data collection phases, 
participants were placed in a controlled environment—
a small, brightly-lit room devoid of any visual stimuli 
that might influence the EEG results. Participants were 
instructed to remain seated, avoid bodily or eye move-
ments, and keep their eyes open throughout the recording 
session.

Participants
This study was enhanced by administering a structured 
questionnaire to a group of 181 participants, consist-
ing of 88 males and 93 females. The data curation and 
validation process yielded 185 reliable EEG recordings 
after excluding data affected by noise or interference. 
It is essential to note that the subset of participants 
providing EEG data did not completely overlap with 
those responding to the questionnaire. The participants 
were divided into four age categories: child (under 10 
years), adolescent (10 to 20 years), young adult (20 to 
27 years), and adult (over 27 years), with group sizes of 
63, 28, 39, and 55, respectively. All subjects had prior 
exposure to long-term EEG studies, which acquainted 
them with the EEG recording procedure. Consequently, 
sequential effects were minimized in this study, though 
they could not be entirely disregarded.
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For the EEG analysis, the groups included adults 
(n = 55), young adults (n = 39), adolescents (n = 28), 
and children (n = 63). The mean age of the adult group 
was 31.64 years (SD = 5.61), comprising 58% females; 
the young adult group had a mean age of 24.36 years 
(SD = 1.48), with 77% females; the adolescent group’s 
mean age was 15.07 years (SD = 1.03), with 29% 
females; and the child group’s mean age was 7.49 years 
(SD = 1.47), with 30% females. All participants resided 
in North China, were diagnosed with mild clinical con-
ditions, and had no neurological lesions attributed to 
SARS-CoV-2 (Table 1).

EEG data preprocessing
The EEG dataset analyzed in this research encompasses 
eye-open resting-state data acquired using a saline elec-
trode device recorded at a sampling rate of 100 Hz 
(JBZH-16–1, BRAINNEWLIFE, 16-channel system). All lead 
positions are arranged according to the 10–20 standard. 
A preprocessing protocol was implemented to maintain 
data integrity. During the recording phase, a specialist 
flagged any segments where significant body movements 
caused electrode dislodgement. To mitigate the impact 
of ocular and muscular artifacts, the independent com-
ponent analysis (ICA) was employed. Additionally, direct 
current (DC) and instrumental frequency (IF) inter-
ferences were eliminated using a bandpass filter ranging 
from 0.5 to 45 Hz. These preprocessing steps were criti-
cal to ensuring the reliability and validity of the study’s 
findings.

In the analytical phase, the EEG data was segregated 
into six distinct frequency bands using a specialized fil-
ter bank, covering the full frequency spectrum: full band 
(0.5–45 Hz), delta (0.5–4 Hz), theta (4–8 Hz), alpha 
(8–12 Hz), beta (12–30 Hz), and gamma (30–45 Hz). An 
averaging reference operation was subsequently applied 
across all datasets to ensure analytical consistency and 
accuracy.

Brain network source connectivity analysis in the spatial 
domain
Source connectivity analysis is a critical technique using 
neuroimaging data for examining complex interactions 
between brain regions [23]. Its main goal is to identify 
functional or effective linkages among cerebral sources 
that reflect cognitive shifts in conditions like depression 
and schizophrenia [24, 25]. Among various functional 
connectivity metrics, coherence is a key measure, calcu-
lating the linear correlation between two signals in the 
frequency domain. However, coherence measurements 
can be affected by volumetric conduction, causing mis-
leading pseudo-coherent values [26, 27].

In response, several effective connectivity measures, 
such as the directional transfer function (DTF) and par-
tially directional coherence (PDC), have been proposed 
[28]. The direct directed transfer function (dDTF), a 
modification of the DTF method, is especially notable. 
It incorporates Granger causality principles and allows 
distinguishing between direct and indirect connections 
[29]. This study employs the dDTF method for source 
linkage analysis.

In this research, we initially computed the connectivity 
data from EEG recordings taken prior to infection as 
well as from data collected post-infection and during 
recovery. These results were then subjected to statistical 
testing. Ultimately, we highlighted findings demonstrat-
ing statistically significant reductions, along with their 
respective differences, within the study.

Microstate analysis in the spatial domain
EEG microstate analysis is a key methodology in neuro-
science, providing deep insights into spontaneous brain 
activity [30]. It assumes EEG stability over short time 
periods, segments EEG signals into brief, stable scalp 
electrical topographies, and uses cluster analysis to 
reveal potential functional changes [31–33]. Microstate 
analysis is widely used in diverse neuroscience studies, 
including examinations of brain states in neuropsychi-
atric disorders and normative aging and developmental 
processes [34, 35]. This study applies the KMeans clus-
tering method for microstate analysis of EEG data and 
uses the MNE-Python toolkit for visualizing microstate 
topographic data [36]. It is important to note, however, 
that due to variations in sampling frequency and timing 
in this study compared to most other studies, the result-
ing microstate topography maps differ. Nevertheless, 
since this study focuses on comparing the relative rela-
tionship between pre- and post-intervention states, this 
discrepancy is considered justifiable.

Table 1  Basic information of the population in this study

Group Age Num of EEG Num of 
questionnaire

Adult [26, 52) 55 54

Young adult [20, 25] 39 41

Adolescent [10, 19] 28 26

Child [4, 9] 63 60
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Linear analysis in time sequence
For an in-depth analysis of temporal variation in EEG 
signals, we have chosen the Hjorth parameter and 
Kolmogorov complexity as key metrics. The Hjorth 
parameter, commonly used in EEG analysis and epilepsy 
detection studies, consists of three elements: activity 
(HA), mobility (HM), and complexity (HC) [37–39]. HA 
measures signal power, reflecting brain activity or arousal 
levels. HM quantifies mean frequency, providing insights 
into the synchronization of brain activity and dynamic 
neural processes. HC gauges frequency change in an EEG 
signal, reflecting the regularity or irregularity of brain 
activity [40].

Kolmogorov complexity, on the other hand, examines 
the shortest algorithmic length of a string [41]. In 
our analysis, it is used to characterize the minimum 
representation length of an EEG signal, with higher 
values indicating more intricate activity [42, 43]. To 
compute Kolmogorov complexity, we used a threshold 
at 0 for binarization, enabling an effective evaluation of 
complexity metrics in the EEG data.

Nonlinear analysis in time sequence
Our methodology uses nonlinear approaches to assess 
EEG signal changes pre- and post-SARS-CoV-2 infec-
tion. Sample entropy, an improvement over approximate 
entropy, measures time series complexity and pattern 
generation likelihood [44–46]. Due to its computational 
independence from data length and enhanced consistency, 
it becomes a robust measure for assessing EEG’s nonlinear 
processes [47, 48].

The Hurst index identifies the long-term memory of a 
time series, providing insight into brain activity and func-
tion [49]. It also highlights differences in EEG signals across 
brain regions, age groups, and mental states [50]. We use 
detrended fluctuation analysis (DFA) to calculate the Hurst 
index, which effectively eliminates potential spurious long-
range correlations due to the non-smoothness of temporal 
order in EEG signals, revealing intrinsic long-range correla-
tions in complex systems [51].

Statistical test methods
In this study, statistical analyses were conducted to 
ensure the robustness and validity of the findings. First 
and foremost, normality testing was performed using the 
Shapiro–Wilk normality test, a fundamental step in vali-
dating the assumptions underlying parametric statistical 
methods. Subsequently, for datasets adhering to a nor-
mal distribution (P > 0.05), a paired t-test was employed, 
a method widely acknowledged for its appropriateness 
in comparing means under normal conditions. In cases 
where the data did not conform to a normal distribution 
(P ≤ 0.05), the analysis was conducted using the Wilcoxon 

signed-rank test, a non-parametric test known for its 
effectiveness in evaluating differences between paired 
samples without relying on the assumptions of normality. 
All statistical procedures were executed with the SCIPY.
STATS toolkit for Python.

Results
Spatial biomarkers: source connectivity analysis
To evaluate the impact of SARS-CoV-2 infection on 
cognitive processes over time, we conducted a source 
connectivity analysis using EEG data, collected before 
infection and after recovery. We employed the dDTF, 
known for its effectiveness in reducing signal interference 
caused by the volumetric conductor effect in EEG studies. 
Our analysis revealed statistically significant reductions 
in connectivity, as illustrated in Fig. 1. Notably, the reduc-
tion in connectivity was particularly evident around the 
T5 region, which is closely linked to memory, language, 
and emotion processing. Previous studies have suggested 
that decreased connectivity in this region is associated 
with cognitive changes observed in conditions such as 
attention deficit hyperactivity disorder (ADHD) and mild 
cognitive impairment (MCI) [52, 53]. Our findings sug-
gest that SARS-CoV-2 infection could potentially lead to 
noticeable cognitive decline.

Moreover, the majority of the interactions showing sig-
nificant declines were from the T-region to the F-region, 
which are areas typically associated with task execution 
and memory/decision-making, respectively. This pattern 
suggests that the infection may result in long-term deficits 
in cognitive and decision-making functions.

A key observation was that statistically significant 
reductions in connectivity were mainly intra-hemispheric 
(left in odd leads, right in even leads), indicating that the 
cognitive impact of SARS-CoV-2 might be limited in 
scope. However, the effects on higher cognitive functions 
appear more pronounced, as evidenced by significant 
decreases at higher frequencies.

Age-related differences in the impact of SARS-CoV-2 
were also apparent. Young adults showed the most sig-
nificant cognitive impact, followed by adults and adoles-
cents, while children under 10 exhibited the least effect, 
with significantly fewer link reductions compared to 
young adults. These findings suggest that the cognitive 
resilience varies with age, with the brain networks of 
young adults being notably more vulnerable to disruption 
by SARS-CoV-2. This vulnerability could be influenced 
by factors such as the stage of brain development, life-
style, or pre-existing health conditions. Adults and ado-
lescents displayed moderate resilience, while the minimal 
impact on children could indicate more robust brain net-
works or compensatory mechanisms that protect against 
connectivity loss.
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Spatial biomarkers: microstate analysis
A comprehensive clustering analysis of EEG micro-
states, conducted before and after SARS-CoV-2 infec-
tion, revealed distinct patterns. Following this, a distance 
analysis was performed on the central microstate patterns 
identified by the clustering, using Euclidean distance as 
the metric for differentiation. The results, along with the 
EEG topographies of these microstates, are presented 
in Fig. 2.

In the aggregate, the disparity in EEG microstates 
before and after infection manifested as 1.65. This 
deviation was discerned as 1.34 for the child group, 
1.55 for the adolescent group, 1.84 for the young adult 
group, and 1.66 for the adult group. This numerical 

representation is posited to encapsulate the alteration in 
microstate patterns, with a higher deviation indicative 
of a more substantial shift in cognitive patterns. Bench-
marking against the deviation value across all groups, 
it is discerned that the cognitive pattern alteration for 
the child and adolescent groups is below the population 
average. Conversely, the adult group exhibits a margin-
ally higher cognitive pattern change, while the young 
adult group demonstrates the most considerable altera-
tion, surpassing all other age cohorts.

This analysis leads us to conclude that the young 
adult group experienced the most substantial impact 
from SARS-CoV-2 infection, with the adult group also 
significantly affected. The child and adolescent groups, 

Fig. 1  This figure displays chordal plots representing brain network source connectivity analysis outcomes. The colors in the plots designate 
outgoing source leads: red for T-region, orange for O-region, pink for P-region, blue for F-region, and dark blue for FP-region. Each subplot (a to d) 
represents different age groups: child, adolescent, young adult, and adult. Subplots I to VI depict results across various frequency bands: full, delta, 
theta, alpha, beta, and gamma
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however, seemed to maintain more stable cognitive pat-
terns post-infection.

It is important to note, however, that these results 
were not compared against a control group of uninfected 
individuals. Therefore, we cannot entirely exclude the 
potential influence of external factors such as social 
pressure. Unfortunately, it is now challenging to find 
uninfected control subjects for such studies. Therefore, 
these findings should be interpreted with caution. 
Nonetheless, given the short intervals between signal 
acquisitions, significant changes in cognitive patterns 

were unlikely. The minimal change observed in the 
fastest-developing child and adolescent groups further 
supports the notion that the adult and young adult 
groups were more significantly affected.

Sequence biomarkers: linear analysis
In the analysis of EEG time sequences, our initial 
focus was on quantifying energy changes. However, 
these outcomes were omitted from the narrative due 
to the absence of statistically significant alterations in 
energy levels before and after SARS-CoV-2 infection. 

Fig. 2  This figure illustrates the changes in microstate analysis before and after SARS-CoV-2 infection. Part I displays the four microstates 
before infection (arranged by decreasing frequency from left to right), while part II shows the results following recovery. The numerical values 
between parts I and II indicate the mean Euclidean distances for the four microstates pre- and post-infection. Specifically, a represents the clustered 
outcomes for the entire population, whereas b, c, d, and e show the results for the child, adolescent, young adult, and adult groups, respectively
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This absence of discernible energy shifts implies that 
the impact of SARS-CoV-2 on EEG may not attain a 
pathological magnitude, thereby implying that cognitive 
changes resulting from SARS-CoV-2 infection may 
not reach pathological thresholds. In light of this, we 
computed HA, HM, HC, and KC parameters.

HA parameter intricately linked to EEG energy 
changes. As shown in Fig.  3a, our statistical analysis 
unveiled a noteworthy surge in theta (50.96 percentage 

points; 95% CI, − 316.53 to 418.46 percentage points; 
P = 0.0096 < 0.01) and alpha (52.84 percentage points; 95% 
CI, − 360.17 to 465.84 percentage points; P = 0.008 < 0.01) 
bands following recovery from SARS-CoV-2 infection. 
This compellingly indicates heightened EEG activation 
in theta and alpha bands across all demographics post-
infection and recovery.

Upon this foundation, a thorough examination of the 
HM parameters in conjunction with the HC parameters 

Fig. 3  This figure presents bilateral violin plots illustrating the distribution of linear analysis sequence biomarkers across four age cohorts 
before infection and after recovery. a to d detail the outcomes associated with HA, HM, HC, and KC parameters, respectively, across all frequency 
bands: full, delta, theta, alpha, beta, and gamma. e to h focus on the theta band for each age group: child, adolescent, young adult, and adult. Each 
panel contrasts the pre-infection EEG parameters (gray area) against the post-recovery parameters (red area), with asterisks indicating statistically 
significant results
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was conducted, as depicted visually in Fig. 3b and c for 
each frequency band across all populations. The com-
parison between pre-infection EEG and post-recovery 
EEG reveals a discernible trend. Significantly, the HM 
parameters demonstrated statistically noteworthy eleva-
tions in both the delta band (3.15 percentage points; 95% 
CI, − 15.13 to 21.42 percentage points; P = 0.0001 < 0.001) 
and theta band (0.48 percentage points; 95% CI, − 2.49 to 
3.44 percentage points; P = 0.000045 < 0.001) after SARS-
CoV-2 infection. This finding implies that, following 
infection and subsequent recovery from SARS-CoV-2, 
the population displayed heightened alterations in fre-
quency within the delta and theta bands, accompanied by 
a discernible degree of synchronization in brain activity.

Conversely, the analysis of HC parameters unveiled 
notable alterations in the delta band (− 0.93 percent-
age points; 95% CI, − 13.49 to 11.64 percentage points; 
P = 0.022 < 0.05) and gamma band (− 0.98 percent-
age points; 95% CI, − 10.13 to 8.17 percentage points; 
P = 0.0027 < 0.01) before and after infection. In stark con-
trast to the observed augmentation in HM parameters, 
the HC parameters exhibited a reduction. This discrep-
ancy suggests that the EEG signal manifests a diminished 
rate of frequency change in both delta and gamma bands 
post-SARS-CoV-2 infection and recovery. Consequently, 
this distinction implies a diminished occurrence of per-
turbations and changes in the EEG signal following SARS-
CoV-2 infection and recovery, accompanied by a decrease 
in the complexity of the time domain.

Having scrutinized the enhanced EEG activity through 
parametric analysis of HM and HC, a subsequent step 
involved binarizing the EEG signals and conducting a 
comprehensive analysis of signal activity complexity 
using the KC parameters, as illustrated in Fig.  3d. The 
resultant figure unequivocally demonstrates a substantial 
elevation in the KC parameter within the delta band post-
SARS-CoV-2 infection compared to the pre-infection 
state (1.97 percentage points; 95% CI, − 11.48 to 15.42 
percentage points; P = 0.00067 < 0.001). This observed 
phenomenon implies a noteworthy increase in the length 
of the shortest algorithm describing the EEG, indicative 
of heightened pattern changes in EEG dynamics after 
infection with SARS-CoV-2 and recovery.

From the findings of the aforementioned analysis, it is 
evident that following infection with and recovery from 
SARS-CoV-2, there is a discernible augmentation in the 
extent of low-complexity activity in the EEG. However, 
the overall complexity of the EEG registers a decline 
owing to the escalated prevalence of low-complexity 
activity, consequently resulting in an elevation of the 
HM parameter and a concomitant reduction in the HC 
parameter. The upsurge in the KC parameter signifies 
an augmentation in low-complexity synchronized 

activity that was nonexistent before the viral infection, 
constituting an entirely novel pattern of neural activity. 
We posit that the SARS-CoV-2 infection precipitates 
an influx of novel low-complexity synchronized activity 
in the EEG, reminiscent to some extent of the abnormal 
discharge activity observed in epilepsy, albeit with a 
considerably diminished degree of variability.

Our investigation unveils a notable concentration 
of alterations within the theta band, compelling an 
exploration of this specific frequency range. As depicted 
in Fig.  3e to h, a discernible trend in the association 
between HM, KC, and decreasing HC across all age 
groups and leads is evident.

For HA analysis in theta band, only the young adult 
group exhibits a simultaneous increase across the whole 
brain regions (58.71 percentage points; 95% CI, − 196.22 
to 313.64 percentage points; P = 0.012 < 0.05), as well as in 
the prefrontal, frontal, central, and parietal areas. And the 
adult cohort manifested statistically significant variations 
in prefrontal zone leads (0.85 percentage points; 95% 
CI, − 4.65 to 6.35 percentage points; P = 0.045 < 0.05) 
concerning the HM parameter. Simultaneously, the 
adolescent cohort also exhibited significant alterations 
in prefrontal zone leads (1.45 percentage points; 95% 
CI, − 4.18 to 7.08 percentage points; P = 0.029 < 0.05). 
Furthermore, the child cohort and adult cohort did 
not exhibit statistical significance. Concerning the HC 
parameters, only the adolescent cohort exhibited a 
statistically significant alteration in frontal areas (0.25 
percentage points; 95% CI, − 0.73 to 1.23 percentage 
points; P = 0.017 < 0.05). This alteration may imply the 
emergence of a greater number of novel EEG patterns 
within the occipital lobe region. Contrastingly, for the KC 
parameters, no significant changes were observed in any 
of the four age groups.

Notably, these findings substantiate the proposition 
that SARS-CoV-2 infection may impact perceptual 
awareness, with observed changes predominantly 
localized in the prefrontal and frontal region. In the 
aggregate, in terms of P values, the young adult cohort 
attained the highest significance, followed by the 
adolescent cohort, the adult cohort, and the child cohort 
in descending order. It is noteworthy that the changes 
in linear analysis sequence biomarkers attributable to 
SARS-CoV-2 infection were more conspicuous in the 
young adult and adult cohorts than in other cohorts.

Sequence biomarkers: nonlinear analysis
In the examination of nonlinearity, the initial step 
involved the computation of sample entropy, with the 
outcomes graphically depicted in Fig. 4a to d. In compar-
ison to the pre-infection state, the sample entropy of EEG 
after SARS-CoV-2 infection and recovery demonstrated 
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an ascending tendency. However, none of these altera-
tions attained statistical significance, except for the 
young adult cohort, wherein a noteworthy increase in 
the delta band was observed (2.43 percentage points; 95% 
CI, − 11.01 to 15.86 percentage points; P = 0.027 < 0.05). 
This observation signifies a discernible augmentation in 
nonlinear activity within the delta frequency band among 
young adults. Notably, this frequency band is widely 
acknowledged for its association with the underlying 

neural processes of sleep and mood regulation. Con-
sequently, the discerned escalation in the delta band 
suggests a predisposition of the young adult cohort to 
post-infection cognitive disorders related to sleep and 
mood.

The findings of the region-specific analysis for each age 
group are delineated in Fig. 4e to undertake a more gran-
ular examination of the variations within the delta fre-
quency band. Evidently, within the young adult cohort, a 

Fig. 4  This figure presents bilateral violin plots illustrating the distribution of nonlinear analysis sequence biomarkers before infection 
and after recovery across four age cohorts. a through d display the sample entropy analysis results for the child, adolescent, young adult, and adult 
groups, respectively. Each panel details the outcomes for six frequency bands: full band, delta, theta, alpha, beta, and gamma. e provides a focused 
view of the sample entropy analysis within the delta band across different cerebral leads. f depicts the results of the Hurst index analysis conducted 
via the DFA method, detailing findings across all age groups. The labels ALL, FP, F, C, P, O, and T represent full-lead averaged results, and results 
for the prefrontal, frontal, central, parietal, occipital, and temporal areas, respectively
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statistically significant elevation in sample entropy is evi-
dent in both the frontal and parietal regions. These cer-
ebral regions are integral to diverse cognitive functions, 
encompassing attention, memory, decision-making, and 
sensory integration. Consequently, this outcome posits 
a plausible influence of SARS-CoV-2 infection on atten-
tional processes within the young adult demographic. 
The discerned effects were most pronounced within the 
young adult cohort, with relatively diminished impacts 
observed in the remaining age groups, particularly 
among children and adolescents.

We conducted a comprehensive examination of 
the Hurst index to scrutinize the long-term memory 
characteristics inherent in the EEG time series. The 
outcomes of this analysis, presented in Fig.  4f through 
a full band exploration, unveil noteworthy findings. 
Specifically, within the child cohort, a substantial 
reduction in the prefrontal (− 3.44 percentage points; 95% 
CI, − 34.25 to 27.37 percentage points; P = 0.034 < 0.05) 
and parietal (− 3.2 percentage points; 95% CI, − 41.01 
to 34.61 percentage points; P = 0.028 < 0.05) regions is 
evident. Analogously, the adolescent group manifests 
a comparable noteworthy decrease in the prefrontal 
regions (− 5.03 percentage points; 95% CI, − 28.66 to 
18.59 percentage points; P = 0.036 < 0.05). The young 
adult group exhibits a simultaneous decline across the 
whole brain regions (− 3.66 percentage points; 95% 
CI, − 28.43 to 21.12 percentage points; P = 0.028 < 0.05), 
as well as in the prefrontal (− 4.68 percentage points; 95% 
CI, − 31.14 to 21.79 percentage points; P = 0.013 < 0.05), 
frontal (− 3.55 percentage points; 95% CI, − 29.1 to 22 
percentage points; P = 0.0296 < 0.05), central (− 5.78 
percentage points; 95% CI, − 36.01 to 24.46 percentage 
points; P = 0.028 < 0.05), and parietal (− 3.59 percentage 
points; 95% CI, − 38.63 to 31.45 percentage points; 
P = 0.036 < 0.05) areas. In the case of the adult group, the 
reduction in significance extends to the prefrontal (− 4.31 
percentage points; 95% CI, − 36.11 to 27.49 percentage 
points; P = 0.032 < 0.05) and parietal (− 4.38 percentage 
points; 95% CI, − 41.36 to 32.59 percentage points; 
P = 0.025 < 0.05) regions.

In interpreting the results, we observe a noticeable 
decline in the Hurst index following SARS-CoV-2 
infection and subsequent recovery. This trend suggests 
a reduction in the long-term regularity of EEG signals, 
indicative of increased randomness in brain activity. 
However, it is crucial to consider that this decrease 
in the Hurst index might not solely reflect changes 
in cognitive processes. Factors such as alterations in 
cognitive function and variations in sleep–wake states, 
which are not directly measured in this study, could also 
influence these results. Therefore, while the data suggest 

an increase in the chaotic and complex nature of the 
cognitive system, potentially leading to higher anxiety 
levels, these interpretations should be approached with 
caution. The impact appears most pronounced in the 
young adult group, followed by adults, children, and 
adolescents, as inferred from the analysis of respective 
P values. Future studies should aim to disentangle the 
effects of cognitive and sleep–wake changes from those 
directly related to viral infection to better understand the 
mechanisms underlying these observations.

Behavioral questionnaire results and regression analysis
After acquiring the EEG data, a supplementary 
questionnaire was administered to the participants 
with the primary objective of scrutinizing potential 
cognitive symptoms such as insomnia, mood disorders, 
and memory impairments. The outcomes depicted in 
Fig.  5a reveal distinctive patterns among age groups. 
During the survey process, participants reported their 
symptoms, marking “1” if they perceived the symptom 
and “0” if they did not. Significantly, the young adult 
group demonstrated the highest prevalence of cognitive 
dysfunctions, closely followed by the adult cohort. In 
contrast, the adolescent and child groups showed a lower 
probability of exhibiting cognitive-related symptoms. 
This pattern is consistent with the insights obtained from 
the comprehensive analyses conducted previously.

To enhance the robustness of the association between 
the identified potential biomarkers and symptomatology 
delineated in the preceding analysis, we operationalized 
the questionnaire responses into discrete scores. Each 
of the ten symptoms enumerated was assigned a corre-
sponding score based on participant responses, yielding 
an aggregate score with a potential range from 0 to 10. 
Subsequently, we normalized the transformation magni-
tude across the various biomarker indices to fall within 
a unified spectrum of 0 to 1 and computed their mean to 
ascertain the average biomarker alteration.

It is imperative to note that we calculated the change in 
biomarker levels as an absolute value, given that the cor-
relation between these indicators and symptomatology 
is not presupposed to be linear. The regression analysis 
outcomes, depicted in Fig. 5b to e, illustrate our findings 
across four distinct age cohorts. It is evident from these 
results that—except for the child age group, where the 
link between the linear series of biomarkers and symp-
toms did not reach statistical significance—the remain-
ing age groups exhibited a notable positive correlation. 
This correlation signifies that as the degree of deviation 
in the three categories of biomarkers escalates, there is a 
concomitant intensification of cognitive and psychiatric 
symptoms.
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Discussion
The outcomes of this study distinctly highlight the 
amplified susceptibility of young adults to cognitive 
deficits following a SARS-CoV-2 infection, a 
demographic that has traditionally not been considered 
as high risk. This is predominantly observable in the 
significant decrement in EEG source connectivity, 
particularly within the region of the temporal lobe, 
a key area for the functions of memory, language, 
and emotional processing. Such modifications could 
potentially result in cognitive deterioration, displaying 
patterns akin to those observed in cases of ADHD and 
MCI. Our findings propose a more profound impact 
of SARS-CoV-2 on young adults in comparison to 
adolescents and children. This insight can potentially 

steer the formulation of rehabilitation strategies tailored 
for long COVID patients.

The diminished connectivity in specific brain regions, 
such as electrode T5, which in temporal lobe, may 
reflect disruptions in neural networks that are crucial 
for cognitive functions [54]. This aligns with existing 
studies that link changes in brain connectivity to 
various cognitive impairments [55]. The persistence of 
connectivity reductions primarily within hemispheres 
further underscores the targeted impact of SARS-CoV-2 
on brain function. The increase in the HA parameter 
within the theta band post-infection in adults suggests 
subtle yet discernible changes in EEG activity, potentially 
reflecting alterations in cognitive states. The heightened 
complexity in EEG patterns post-recovery, particularly 

Fig. 5   a shows the outcomes of the questionnaire through a heatmap. The graph’s horizontal axis represents four distinct age groups, 
while the vertical axis denotes potential symptoms relevant to cognition. The color intensity conveys the ratio of the number of people with specific 
symptoms to the total number of people within a given age group. Red hues signify a higher rate of occurrence, whereas blue indicates a lower 
rate of the corresponding symptom manifesting in that age group. b to e represent the results of regression analyses of spatial biomarkers, linear 
biomarkers, and nonlinear biomarkers against questionnaire scores for each of the four age groups, where the equation represents the expression 
of the fitted line



Page 12 of 14Sun et al. BMC Medicine          (2024) 22:257 

in the delta band, might indicate a compensatory neural 
mechanism or an altered state of brain activity in 
response to the infection.

The observed concentration of alterations within the 
delta frequency band presents a pioneering insight, 
proposing that this band may be particularly susceptible 
to the neurological impacts of SARS-CoV-2 [56]. 
Traditionally, it is recognized that delta wave activity 
is diminished when the eyes are open. However, the 
findings of this study suggest that delta waves can also 
reflect changes in subject states to a certain degree. This 
assertion is supported by the use of ICA to eliminate 
electromyographic and oculomotor noise, potentially 
influencing the observed effects. Furthermore, the 
isolated analysis of the delta wave through filtering 
techniques underscores the sensitivity of this frequency 
band. Such findings could be pivotal for future EEG 
studies focusing on COVID-19 patients, particularly 
for elucidating alterations in brain activity. Previous 
research has associated low-frequency energy with long-
range communication across brain regions [57]. The 
modifications in low-frequency activity observed in this 
study may indicate a substantial impact of the infection 
on the nervous system. Moreover, the results concerning 
complexity and entropy imply an increase in the chaotic 
nature of the neural system post-infection. Although 
none of the participants in this study was clinically 
diagnosed with “brain fog,” the EEG changes noted bear 
resemblance to those associated with “brain fog,” hinting 
at a potential underlying neurological impact of the 
infection [58].

Results indicate a gradation in susceptibility to 
cognitive impacts post-SARS-CoV-2 infection across 
different age groups. The most substantial cognitive 
changes were observed in young adults, a demographic 
that is not typically considered at high risk for severe 
COVID-19 implications. While previous studies have 
also shown that infection has a greater impact on young 
adults [59], the results of the present study provide 
additional evidence at the electrophysiological level for 
this conclusion. Warranting further investigates the 
long-term consequences of SARS-CoV-2 in younger 
populations. Notably, children also showed significant 
changes in HC and HM parameters, but this may be 
related to their rapid neurological development.

While this study has made discoveries regarding the 
impact of the coronavirus on the nervous system, it is not 
without its limitations and shortcomings. We endeavored 
to include as broad a population as possible, yet our 
study did not encompass all age groups, particularly 
the elderly. This omission means that the effects of 
the coronavirus on the neurological systems of older 
individuals remain unknown, given that some studies 

suggest this demographic may be more susceptible to 
such impacts [60]. Furthermore, our research did not 
involve continuous longitudinal tracking of the infected 
population, omitting long-term comparative data. The 
acquisition of such longitudinal information would be 
highly valuable and meaningful for understanding the full 
spectrum of the virus’s impact over time.

Conclusions
In essence, this research furthers the existing knowledge 
on the neurological implications of SARS-CoV-2, under-
scoring the urgent requirement for a more profound 
understanding of the virus’s enduring effects on cogni-
tion. Particularly, it focuses on its impact on younger 
demographics, encompassing children and adolescents. 
The results intimate that the influence of SARS-CoV-2 is 
amplified within the younger populace. Although children 
and adolescents were relatively less affected, they exhib-
ited noteworthy neurophysiological markers of abnormal-
ity, suggesting possible risk. This study, therefore, serves 
as a groundwork for more extensive research into poten-
tial therapeutic interventions and strategies to alleviate 
these cognitive alterations.
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