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Abstract 

Background Previous studies, including Mendelian randomization (MR), have demonstrated type 2 diabetes (T2D) 
and glycemic traits are associated with increased risk of metabolic dysfunction-associated steatotic liver disease 
(MASLD). However, few studies have explored the underlying pathway, such as the role of iron homeostasis.

Methods We used a two-step MR approach to investigate the associations of genetic liability to T2D, glycemic traits, 
iron biomarkers, and liver diseases. We analyzed summary statistics from various genome-wide association stud-
ies of T2D (n = 933,970), glycemic traits (n ≤ 209,605), iron biomarkers (n ≤ 246,139), MASLD (n ≤ 972,707), and related 
biomarkers (alanine aminotransferase (ALT) and proton density fat fraction (PDFF)). Our primary analysis was based 
on inverse-variance weighting, followed by several sensitivity analyses. We also conducted mediation analyses 
and explored the role of liver iron in post hoc analysis.

Results Genetic liability to T2D and elevated fasting insulin (FI) likely increased risk of liver steatosis  (ORliability to T2D: 
1.14 per doubling in the prevalence, 95% CI: 1.10, 1.19;  ORFI: 3.31 per log pmol/l, 95% CI: 1.92, 5.72) and related bio-
markers. Liability to T2D also likely increased the risk of developing liver cirrhosis. Genetically elevated ferritin, serum 
iron, and liver iron were associated with higher risk of liver steatosis  (ORferritin: 1.25 per SD, 95% CI 1.07, 1.46;  ORliver iron: 
1.15 per SD, 95% CI: 1.05, 1.26) and liver cirrhosis  (ORserum iron: 1.31, 95% CI: 1.06, 1.63;  ORliver iron: 1.34, 95% CI: 1.07, 1.68). 
Ferritin partially mediated the association between FI and liver steatosis (proportion mediated: 7%, 95% CI: 2–12%).

Conclusions Our study provides credible evidence on the causal role of T2D and elevated insulin in liver steatosis 
and cirrhosis risk and indicates ferritin may play a mediating role in this association.

Highlights 

• Ferritin possibly mediates the association of insulin resistance in liver steatosis. Targeting the reduction of ferritin may 
mitigate the risk of liver steatosis arising from elevated insulin.

*Correspondence:
Shiu Lun Au Yeung
ayslryan@hku.hk
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-024-03486-w&domain=pdf


Page 2 of 13Liang et al. BMC Medicine          (2024) 22:270 

• Liver iron is likely to be positively associated with liver steatosis and the irreversible stage, liver cirrhosis, and mediates 
the association of ferritin and liver steatosis.

• Genetically elevated HbA1c is shown to decrease the risk of liver steatosis due to its erythrocytic property. Caution 
should be applied when using HbA1c values for MASLD management.

Keywords Type 2 diabetes, Glycemic traits, Insulin, Ferritin, Liver iron, Liver steatosis, Liver cirrhosis

Background
Metabolic dysfunction-associated steatotic liver dis-
ease (MASLD), formerly known as non-alcoholic fatty 
liver disease [1], is a significant worldwide health issue 
that affects approximately 32% of the population [2]. 
Despite its widespread prevalence, effective treatments 
for MASLD remain elusive [2]. The spectrum of MASLD 
ranges from steatosis with > 5% hepatic fat accumula-
tion, and progression to steatohepatitis with ballooning, 
inflammation, fibrosis, and even liver cirrhosis [3]. The 
presence of MASLD is related to other major chronic 
diseases, notably type 2 diabetes (T2D) and insulin 
resistance, although evidence from earlier studies sug-
gests that this association may be bi-directional [4, 5]. 
Among possible mechanisms linking these two dis-
eases, ferritin (a protein in cells for iron storage which 
can be found in hepatocytes) has been proposed to play 
a role in hepatic steatosis, inflammation, and fibrosis [6]. 
Meta-analyses of observational studies have shown peo-
ple with T2D have higher ferritin, which is a risk factor 
for the severity of advanced fibrosis [7, 8]. Despite these 
postulated pathways, few studies have investigated the 
mediating role of ferritin and other iron homeostasis 
biomarkers in the associations of T2D or glycemic traits 
in MASLD. However, these studies were mainly obser-
vational, and hence are vulnerable to confounding and 
reverse causation [9, 10].

Mendelian randomization (MR), a study design that 
relies on genetic variants randomly allocated at concep-
tion, is increasingly used to investigate etiologic ques-
tions given that it is less prone to confounding than 
conventional observational studies [11], and tends to give 
more consistent results with randomized controlled tri-
als, such as the lack of association of HDL-cholesterol in 
coronary artery disease [12]. Previous MR studies have 
revealed that genetically elevated fasting insulin (FI) and 
liability to T2D increase alanine aminotransferase (ALT) 
and MASLD risk [13–15], whereas some MR studies 
have shown higher systemic iron status and iron home-
ostasis biomarkers (e.g., ferritin, serum iron, or trans-
ferrin saturation (TSAT)) may  increase risk of MASLD 
[16, 17], but with some exceptions [18, 19]. These dis-
crepancies could be driven by a lack of statistical power, 
or possible biases including highly pleiotropic variants 
(e.g., rs1800562 in HFE) which relate to the predominant 

type of hemochromatosis [20]. A recent MR study found 
genetic liability to T2D and glycemic traits may impact 
iron homeostasis biomarkers, particularly ferritin, whilst 
the association of most iron homeostasis biomarkers 
with T2D was unlikely causal [21]. This suggests a pos-
sible mechanistic pathway in which hyperglycemia and 
elevated insulin relate to MASLD. Although, to the best 
of our knowledge, this has not been explored using an 
MR design. Therefore, we conducted a two-step MR 
study to comprehensively assess the mediating role of dif-
ferent iron homeostasis biomarkers in the associations of 
genetic liability to T2D and glycemic traits in liver stea-
tosis, liver cirrhosis and its biomarkers (ALT and mag-
netic resonance imaging (MRI)-derived proton density 
fat fraction (PDFF)) [22, 23]. We additionally included 
MRI-derived liver iron as a possible mediator to explore 
the potential differential effects compared to blood-based 
measures of iron homeostasis.

Methods
Study design
We adopted a two-step MR design using summary sta-
tistics from relevant genome-wide association studies 
(GWAS) (Fig. 1A). To estimate the overall effect, we first 
used a standard MR approach to evaluate the associa-
tions of liability to T2D and glycemic traits (exposures) 
on liver steatosis, liver cirrhosis and its biomarkers (out-
comes) (Fig.  1B). We then extracted the associations of 
liability to T2D and glycemic traits (exposures) on iron 
homeostasis biomarkers (mediators) based on our pre-
vious study (Step 1, see Additional file 1: Table S1) [21]. 
Afterwards, we assessed the associations between these 
selected mediators and the liver-related outcomes (Step 
2) (Fig.  1B). We also investigated the role of liver iron 
content in the associations of iron homeostasis biomark-
ers with the liver-related outcomes as a post hoc analysis 
(Fig.  1B). As with all MR analyses, there are three core 
assumptions, including relevance, independence, and 
exclusion restriction [23].

This study was conducted in accordance with the 
Strengthening the Reporting of Observational Studies 
in Epidemiology using MR (STROBE-MR) (Additional 
file 2: Supplementary Note) [24].
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Fig. 1 Study design of this study and diagram of this two-step Mendelian randomization analysis. A Study design of this study. B Diagram of this 
two-step Mendelian randomization. Liability to T2D, liability to type 2 diabetes; FG, fasting glucose; FI, fasting insulin; 2hGlu, 2-hour glucose; HbA1c, 
hemoglobin A1c; TIBC, total iron-binding capacity; TSAT, transferrin saturation; PDFF, proton density fat fraction; ALT, alanine aminotransferase. IVW, 
inverse-variance weighting; WM, weighted median; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier
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Data sources
Genetic instruments for T2D, glycemic traits, 
iron homeostasis biomarkers, and liver iron as exposures
We selected genetic instruments for our study based 
on specific criteria. These instruments included single 
nucleotide polymorphisms (SNPs) that demonstrated 
strong associations with our exposure of interest, with 
a significance threshold of P < 5 ×  10−8. We ensured that 
these SNPs were independent of each other, with a link-
age disequilibrium (LD) threshold of r2 < 0.001. To reduce 
potential bias from population stratification, we exclu-
sively used data from individuals of European ancestries. 
We gathered the genetic instruments for our study from 
several datasets. For T2D, we obtained data from the 
Diabetes Meta-Analysis of Trans-Ethics Associations 
Studies (DIAMANTE) Consortium, which encompassed 
80,154 cases and 853,816 controls [25]. Additionally, we 
obtained information on glycemic traits, including fast-
ing glucose (FG) measured in mmol/l (n = 209,605), 
2-hour glucose (2hGlu) measured in mmol/l (n = 64,469), 
FI in log pmol/l (n = 158,550), and hemoglobin A1c 
(HbA1c) in percentage (n = 149,006) from the Meta-
Analyses of Glucose and Insulin-related traits Consor-
tium (MAGIC) [26]. Furthermore, we incorporated data 
on four iron homeostasis biomarkers, including ferritin 
(standard deviation (SD), n = 246,139), serum iron (SD, 
n = 163,511), total iron-binding capacity (TIBC) (SD, 
n = 135,430), and TSAT (SD, n = 131,471) from a recent 
GWAS meta-analysis [27], since these biomarkers rep-
resent different aspects of iron homeostasis including 
iron stores (serum ferritin) and iron transport (serum 
iron, TIBC, TSAT) (Additional file  1: Tables S2). As 
part of post hoc analysis, we also included MRI-derived 
liver iron content data from the UK Biobank (UKB; SD, 
n = 32,858) [28]. To mitigate potential bias stemming 
from horizontal pleiotropy and distinguish the effects of 
iron in general from hereditary hemochromatosis, we 
implemented a strategy to exclude genetic instruments in 
ABO and associated with HFE-hemochromatosis (specif-
ically rs1800562 and rs1799945, if any) [20, 29]. Details of 
data sources and genetic instruments were listed in Addi-
tional file 1: Tables S3–S8.

Genetic associations for liver steatosis, liver cirrhosis, 
and related biomarkers as outcomes
Genetic associations of liver diseases were obtained 
from relevant GWAS involving individuals of European 
descent [30]. These studies included liver steatosis, which 
involved 9491 cases and 876,210 controls, and liver cir-
rhosis, which encompassed 4809 cases and 967,898 con-
trols [30]. Biomarkers of liver diseases included ALT (SD, 
n = 344,136) [31], and PDFF (SD, n = 36,116) from UKB 
(Additional file 1: Table S9) [30]. For outcomes where the 

standard errors were not provided by authors (i.e., liver 
steatosis, liver cirrhosis, and PDFF), we calculated these 
using the corresponding betas and P values based on nor-
mal distribution.

Details of these GWAS, including the mean age, sex 
distribution, and covariates adjustment, are described 
in Additional file 1: Table S3 and Additional file 2: Sup-
plementary Note. Information pertaining to potential 
participant overlap across the GWAS is listed in Addi-
tional file 1: Table S4. These data were harmonized based 
on the reported effect allele and effect allele frequen-
cies (EAF). Palindromic variants with intermediate EAF 
(42% < EAF < 58%) were discarded to avoid ambiguity in 
the strand direction.

Statistical analyses
Main analyses
We calculated the variance (R2) of the exposures 
explained by genetic instruments and approximated the 
overall F-statistic. An F-statistic > 10 suggests that weak 
instrument bias is unlikely [32]. We used inverse-vari-
ance weighting (IVW) with multiplicative random effects 
as the main analysis, which assumes balanced pleiotropy. 
We evaluated heterogeneity of the variant-specific Wald 
ratio through I2 where a high value may imply the pres-
ence of invalid instruments [33]. We performed random-
effects meta-analysis for liver steatosis and liver cirrhosis 
as the corresponding GWAS did not provide pooled esti-
mates across the studies for these outcomes [30]. Consid-
ering the interpretation of associations with liability to 
T2D (per log odds), we used a unit of per doubling in the 
prevalence instead by multiplying the estimates by 0.693 
to improve the interpretation [34].

Sensitivity analyses
Various sensitivity analyses based on different assump-
tions were used to assess the robustness of the main find-
ings. These included MR-Egger (assuming instrument 
strength independent of direct effect, InSIDE), weighted 
median (WM, assuming that the majority of selected 
instruments are valid), and Mendelian Randomization 
Pleiotropy RESidual Sum and Outlier (MR-PRESSO, 
outlier-robust) [35]. We also performed random-effects 
meta-analysis of MR-PRESSO (if available) for liver ste-
atosis and liver cirrhosis as sensitivity analyses. The P 
value of MR-Egger intercept was used to assess overall 
horizontal pleiotropy. I2

GX statistic was used to detect the 
possibility of dilution bias of MR-Egger estimates [36]. 
Lastly, given that HbA1c is influenced by both glycemic 
and erythrocytic properties, we repeated the analyses 
regarding HbA1c by classifying the instruments accord-
ing to the reported clusters (glycemia: 16 SNPs; erythro-
cytic: 44 SNPs (iron: 3 SNPs; mature red blood cell: 23 
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SNPs; reticulocyte: 18 SNPs); and unknown: 13 SNPs) 
based on the original GWAS (see footnote of Additional 
file 1: Table S10 for details on the classification) [26].

Mediation analyses
Multivariable MR (MVMR) analyses were also used to 
assess the observed association of mediators on out-
comes, adjusting for exposures to control for horizon-
tal pleiotropy [37]. The same method was also used for 
mediation analysis to assess the associations of exposures 
on outcomes adjusting for mediators to decompose the 
total effect into direct and indirect effects. The media-
tion effects were calculated by the product of coefficients 
methods, with the standard error derived using the delta 
method [38, 39].

Power calculation
Based on the significance level of 0.05 and R2 of T2D, gly-
cemic traits, iron homeostasis biomarkers, and liver iron 
(exposures) explained by the genetic instruments in the 
analyses, we estimated the effect sizes and odds ratios 
which we could detect at least 80% study power for the 
associations with iron homeostasis biomarkers, liver 
diseases, and related biomarkers (https:// sb452. shiny 
apps. io/ power/) [40], and are listed in Additional file  1: 
Table S11.

Details of these methods can be found in Additional 
file 2: Supplementary Note.

All analyses were performed using R version 4.2.2 
with R packages (“TwoSampleMR” version 0.5.6 [41], 
“MRPRESSO” version 1.0, “forestplot” version 3.1.1, and 
“msm” version 1.7).

Results
Genetic instruments of liability to T2D, glycemic traits, iron 
homeostasis biomarkers, and liver iron 
In this study, we included up to 180 SNPs for liability to 
T2D (F-statistic: 246, R2: 4.5%), 66 SNPs for FG (F-sta-
tistic: 154, R2: 4.6%), 37 SNPs for FI (F-statistic: 58, R2: 
1.3%), 13 SNPs for 2hGlu (F-statistic: 63, R2: 1.3%), 72 
SNPs for HbA1c (F-statistic: 118, R2: 5.4%), 59 SNPs for 
ferritin (F-statistic: 77, R2: 1.8%), 27 SNPs for serum iron 
(F-statistic: 161, R2: 2.6%), 31 SNPs for TIBC (F-statistic: 
162, R2:3.6%), 26 SNPs for TSAT (F-statistic: 188, R2: 
3.6%), and six SNPs for liver iron (F-statistic: 299, R2: 
5.2%). The F-statistics indicated low evidence of weak 
instrument bias (Additional file 1: Table S5).

Associations of liability to T2D and glycemic traits in liver 
steatosis, liver cirrhosis, ALT, and PDFF
Liability to T2D and impaired FI likely increased risk 
of liver steatosis (odds ratio (OR)liability to T2D: 1.14 per 

doubling in the prevalence of T2D, 95% confidence inter-
val (95% CI): 1.10 to 1.19);  ORFI: 3.31 per log pmol/l, 95% 
CI: 1.92 to 5.72) as well as ALT and PDFF (Fig. 2). Liabil-
ity to T2D also increased liver cirrhosis  (ORliability to T2D: 
1.07 per doubling in the prevalence, 95% CI: 1.03 to 1.12) 
(Fig. 2). These results were consistent with meta-analyses 
using MR-PRESSO estimates which were corrected for 
potential outliers (Additional file  3: Fig. S1). Although 
there were signs of heterogeneity based on I2 (e.g., ALT 
and PDFF), horizontal pleiotropy was not evident in most 
analyses and findings were generally consistent across 
sensitivity analyses (Fig.  2; Additional file  1: Table  S12). 
However, the inverse association of HbA1c in liver stea-
tosis (OR: 0.70 per %, 95% CI: 0.51 to 0.96) is likely driven 
by erythrocytic variants, which was also suggested by 
the HbA1c signal classification analyses (Additional 
file 3: Fig. S2; Additional file 1: Table S13). Based on MR-
PRESSO analyses, scatter plots, and the forest plot, the 
inverse association of FG with liver steatosis was likely 
driven by rs1260326 (GCKR) in UKB (Additional file  1: 
Table S6; Additional file 3: Fig. S1, S3).

Association of iron homeostasis biomarkers in liver 
steatosis, liver cirrhosis, ALT, and PDFF
Ferritin was positively associated with liver steatosis (OR: 
1.25 per SD, 95% CI: 1.07 to 1.46), with consistent find-
ings from sensitivity analyses (Fig.  3; Additional file  3: 
Fig. S4; Additional file 1: Table S14). Serum iron was pos-
itively associated with liver cirrhosis (OR: 1.31 per SD, 
95% CI: 1.06 to 1.63), ALT, and PDFF (Fig. 3). TSAT was 
positively associated with PDFF with directionally con-
sistent estimates with other liver markers (Fig.  3; Addi-
tional file  1: Table  S14). Heterogeneity was high across 
the analyses with variations in estimates across sensitivity 
analyses. Notably, the association concerning serum iron 
was attenuated in the MR-PRESSO analyses, likely driven 
by rs144861591 (ZFP57) (Additional file 3: Fig. S4; Addi-
tional file 1: Tables S7 and S14).

Post hoc analyses concerning liver iron
Ferritin, serum iron, and TSAT were positively asso-
ciated with liver iron, and TIBC negatively with liver 
iron (Fig. 4A). Increased liver iron was associated with 
higher risk of liver steatosis (OR: 1.15 per SD, 95% CI: 
1.05 to 1.26), liver cirrhosis (OR: 1.34 per SD, 95% CI: 
1.07 to 1.68), ALT, and PDFF (Fig.  4B–C; Additional 
file 1: Tables S15–S16). However, liability to T2D or gly-
cemic traits was not associated with liver iron, except 
for the inverse association of HbA1c in liver iron (β: 
-0.34 per percentage, 95% CI: − 0.56 to − 0.12) (Addi-
tional file  3: Fig. S5). However, the inverse association 
of HbA1c and liver steatosis via ferritin and liver iron 

https://sb452.shinyapps.io/power/
https://sb452.shinyapps.io/power/
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was likely driven by erythrocytic property (Fig. 5; Addi-
tional file 3: Fig. S2; Additional file 1: Tables S13, S17).

Findings from the mediation analyses
Given that our previous study indicated FI was associ-
ated with ferritin (Step 1, Additional file  1: Table  S1), 
and FI and ferritin were associated with liver steatosis 

(Figs. 2A and 3B), we subsequently assessed mediation 
using a two-step MR design. The corresponding media-
tion analysis showed ferritin partially mediated the 
association of FI in liver steatosis (Fig.  6A; Additional 
file 3: Fig. S6), where the proportion mediated via fer-
ritin was 7% (95% CI: 2% to 12%) (Fig. 6B). As post hoc 
analysis, we also assessed the potential mediating role 
of liver iron between ferritin and liver steatosis and 

Fig. 2 The associations of liability to type 2 diabetes and glycemic traits in liver steatosis, liver cirrhosis, alanine aminotransferase, and proton 
density fat fraction (MRI) using meta-analysis of inverse variance weighting. A The associations of liability of type 2 diabetes and glycemic traits 
in liver steatosis and liver cirrhosis. B The associations of type 2 diabetes and glycemic traits in alanine aminotransferase, and proton density fat 
fraction. Liver steatosis, log odds (n = 885,701 including 9491 cases and 876,210 controls) included UKB (5921 cases), deCODE (785 cases), FinnGen 
(651 cases), and INTERMOUNTAIN (2134 cases). Liver cirrhosis, log odds (n = 972,707 including 4809 cases and 967,898 controls) included UKB (2301 
cases), deCODE (691 cases), FinnGen (1425 cases), and INTERMOUNTAIN (392 cases). Liability to T2D, liability to type 2 diabetes; FG, fasting glucose; 
FI, fasting insulin; 2hGlu, 2-hour glucose; HbA1c, hemoglobin A1c; ALT, alanine aminotransferase; PDFF, proton density fat fraction; No. of SNPs, 
number of single nucleotide polymorphisms; IVW, inverse-variance weighting; I2, degree of heterogeneity; 95% CI, 95% confidence interval. *P 
value < 0.05, **P value < 0.01, ***P value < 0.001
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found evidence of partial mediation (proportion medi-
ated: 43%, 95% CI: 38% to 48%) (Fig. 6B).

Discussion
This is the largest MR study to investigate the associa-
tions of liability to T2D and glycemic traits in liver steato-
sis and liver cirrhosis. Our study is supported by previous 
observational and MR studies [4, 13–15, 42, 43] that 
genetic liability to T2D and FI likely increases the risk 
of liver steatosis and related biomarkers (e.g., ALT and 
PDFF), while liability to T2D appears to also increase the 
risk of liver cirrhosis. Our study also adds by showing, 
for the first time, iron homeostasis biomarkers and liver-
iron content could potentially mediate some of these 

associations, hence providing genetic evidence that tar-
geting the reduction of ferritin may mitigate the impact 
of MASLD risk  arising from elevated insulin. Based on 
this study, we also clarify the paradoxical inverse asso-
ciation of HbA1c in liver steatosis is likely driven by the 
erythrocytic property of HbA1c and informs caution 
should be applied when using HbA1c values for disease 
management.

Previous investigations, including MR studies, have 
demonstrated that T2D and FI are associated with a 
higher MASLD risk, as well as increased levels of hepatic 
fat and ALT [4, 13–15, 42, 43], suggesting that the asso-
ciations are likely causal. Similar findings were observed 
when extended to liver cirrhosis, an advanced stage 

Fig. 3 The associations of iron homeostasis biomarkers (n ≤ 246,139) in liver steatosis, liver cirrhosis, alanine aminotransferase, and proton density 
fat fraction using meta-analysis of inverse-variance weighting. A The associations of iron homeostasis biomarkers in liver steatosis and liver cirrhosis. 
B The associations of iron homeostasis biomarkers in alanine aminotransferase, and proton density fat fraction. Liver steatosis, log odds (n = 885,701 
including 9491 cases and 876,210 controls) included UKB (5921 cases), deCODE (785 cases), FinnGen (651 cases), and INTERMOUNTAIN (2134 cases). 
Liver cirrhosis, log odds (n = 972,707 including 4809 cases and 967,898 controls) included UKB (2301 cases), deCODE (691 cases), FinnGen (1425 
cases), and INTERMOUNTAIN (392 cases). TIBC, total iron-binding capacity; TSAT, transferrin saturation; ALT, alanine aminotransferase; PDFF, proton 
density fat fraction; No. of SNPs, number of single nucleotide polymorphisms; IVW, inverse-variance weighting; I2, degree of heterogeneity; 95% CI, 
95% confidence interval. *P value < 0.05, **P value < 0.01, ***P value < 0.001
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Fig. 4 The associations of iron homeostasis biomarkers (blood-based) (n ≤ 246,139) in liver iron content (MRI) (n = 32,858, UKB) and the association 
of liver iron in liver steatosis, liver cirrhosis, alanine aminotransferase, and proton density fat fraction using Mendelian randomization. A 
The associations of iron homeostasis biomarkers in liver iron (MRI). B The associations of liver iron in liver steatosis and liver cirrhosis. C The 
associations of liver iron in alanine aminotransferase and proton density fat fraction alanine aminotransferase, and proton density fat fraction. 
Liver steatosis, log odds (n = 885,701 including 9491 cases and 876,210 controls) included UKB (5921 cases), deCODE (785 cases), FinnGen (651 
cases), and INTERMOUNTAIN (2134 cases). Liver cirrhosis, log odds (n = 972,707 including 4809 cases and 967,898 controls) included UKB (2301 
cases), deCODE (691 cases), FinnGen (1425 cases), and INTERMOUNTAIN (392 cases). TIBC, total iron-binding capacity; TSAT, transferrin saturation; 
ALT, alanine aminotransferase; PDFF, proton density fat fraction; No. of SNPs, number of single nucleotide polymorphisms; IVW, inverse-variance 
weighting; I2, degree of heterogeneity; 95% CI, 95% confidence interval. *P value < 0.05, **P value < 0.01, ***P value < 0.001

Fig. 5 Summary of associations of HbA1c and its signal classification in ferritin, liver iron content (MRI), and liver steatosis (meta-analysis). HbA1c, 
hemoglobin A1c; Glycemic, probability of the variant in glycemic class, included fasting insulin, 2-hour glucose, and fasting glucose; Reticulocyte, 
probability of the variant in reticulocyte class, included reticulocyte count, reticulocyte fraction of red cells, immature fraction of reticulocytes, high 
light scatter reticulocyte count, and high light scatter reticulocyte percentage of red cells; Mature RBC, probability of the variant in mature red blood 
cell class, included red blood cell count, mean corpuscular volume, hematocrit, mean corpuscular hemoglobin, mean corpuscular hemoglobin 
concentration, hemoglobin concentration, and red cell distribution width; Iron, probability of the variant in iron class, included ferritin, transferrin, 
serum iron, and transferrin saturation; OR, odds ratio; 95% CI, 95% confidence interval
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of steatosis. The underlying mechanisms may include 
increased insulin resistance, proxied by elevated FI, lead-
ing to elevated free fatty acids uptake by liver, and hence 
increase de novo lipogenesis, lipolysis of dysfunctional 
adipose tissue, and subsequent risk of hepatic steatosis 
[3]. These findings imply that modifying risk factors of 
T2D and insulin resistance might protect against liver 
steatosis and its progression to liver cirrhosis.

Among the four iron homeostasis biomarkers consid-
ered, ferritin was most likely relevant to the develop-
ment of liver steatosis, whilst serum iron likely increased 
ALT, a surrogate marker of MASLD. These findings are 
supported by previous observational and MR stud-
ies [9, 16, 17, 44, 45]. Increased ferritin may induce the 
deposition of hepatic iron in liver macrophages and stel-
late cells which results in hepatocellular damage and 
steatosis [6]. Although previous studies speculated that 
ferritin-MASLD association could be confounded by 
inflammation, this is not supported by clinical trials and 
mouse models [46, 47], and hence unlikely explains our 
findings, especially since MR design is more resistant to 
confounding compared to conventional observational 
studies [48]. Elevated serum iron levels may also promote 
oxidative stress through the production of free radicals 
in the liver through presence of excess iron [44]. Also, 

iron overload and high-iron diet are related to ferropto-
sis, an iron-dependent form of cell death caused by lipid 
peroxidation, which is a phenomenon related to MASLD 
progression [49, 50]. Hence, focusing on anti-ferroptosis 
therapy may help reverse the detrimental effects of ele-
vated insulin in MASLD mediated via ferroptosis, such 
as Malic Enzyme 1 (ME1) [51], although this requires 
further investigations using population-based stud-
ies. Furthermore, our mediation analysis adds to this 
hypothesis by suggesting that ferritin partially mediates 
the association of FI in liver steatosis and hence could 
be a possible target of intervention amongst people with 
T2D. However, the positive associations of serum iron in 
liver cirrhosis and PDFF were attenuated after remov-
ing rs144861591 which was strongly related to heredi-
tary hemochromatosis (rs1800562 in HFE, r2 = 0.98) [41]. 
Although the MR-Egger intercept analyses suggested 
weak evidence of bias from horizontal pleiotropy, we are 
uncertain whether these associations are entirely inde-
pendent of hemochromatosis, which warrants further 
research. Furthermore, the estimates were directionally 
consistent across different cohorts, which required verifi-
cation when larger MASLD GWAS become available.

From our post hoc analyses, iron homeostasis bio-
markers associated with liver iron were associated with 

Fig. 6 The associations of fasting insulin in liver steatosis with and without adjustment for ferritin, and summary of the mediating roles of ferritin 
and liver iron content in the associations of fasting insulin and liver steatosis (meta-analysis). A The associations of fasting insulin in liver steatosis 
with and without adjustment for ferritin using univariable and multivariable Mendelian randomization analysis. B Summary of the direct effects, 
indirect effects, and mediation effects of ferritin in the association of fasting insulin and steatosis, and of liver iron in the association of ferritin 
and steatosis (meta-analysis). FI, fasting insulin; HbA1c, hemoglobin A1c; MVMR, multivariable Mendelian randomization; IVW, inverse-variance 
weighting; OR, odds ratio; 95% CI, 95% confidence interval. *P value < 0.05, **P value < 0.01, ***P value < 0.001
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a higher risk of MASLD and its biomarkers, and liver 
iron partially mediated the association of ferritin and 
liver steatosis, which is consistent with previous observa-
tional and MR studies [19, 52, 53]. The strong correlation 
between iron homeostasis biomarkers and liver iron is 
somewhat expected given that the liver is the main organ 
for iron storage [54]. Although studies on liver iron and 
MASLD are generally fewer compared to those of iron 
homeostasis biomarkers, evidence exists to suggest liver 
iron content is a strong predictor of liver disease sever-
ity [55], with possible pathways including increased 
inflammation, oxidative stress, and lipid oxidation [56]. 
Although we did not observe any association of genetic 
liability to T2D or glycemic traits in liver iron (apart from 
HbA1c which is likely driven by iron and mature red 
blood cells, i.e., iron recycling from senescent red blood 
cells) [21], which is consistent with a recent longitudinal 
study [42]. However, additional studies should explore 
whether sex-specific effects exist, as suggested by a previ-
ous longitudinal investigation [42].

The inverse association of FG in liver steatosis was 
inconsistent with the findings of liability to T2D, insulin, 
and glycemic signal class of HbA1c. Although these gly-
cemic traits are well-characterized risk factors for T2D, 
recent studies indicated that they may have distinct rela-
tions with metabolomic signatures and CVD risk [57, 58]. 
However, our sensitivity analysis suggested this paradoxi-
cal finding could be driven by rs1260326 (GCKR), which 
encodes glucokinase regulatory protein (GKRP) (a pri-
marily liver-specific protein) and is linked to decreased 
blood glucose by altering GKRP’s function of suppress-
ing glucokinase activity and enhancing hepatic glycoly-
sis, and concurrently increase total hepatic triglycerides 
[59], resulting in the risk allele of rs1260326 (T) decreas-
ing the risk of T2D but increasing liver steatosis [30], 
and impacting the overall analyses. Although any effects 
observed for this GCKR risk variant could be arguably 
the downstream effects of glucose level variation (i.e., 
vertical pleiotropy and hence valid), given its high rel-
evance in glucose metabolism, the increased circulating 
lipids could also arguably as an effect independent of glu-
cose (i.e., horizontal pleiotropy and hence invalid) [60, 
61]. As the overall inverse association is also most appar-
ent in UKB, this may also be a reflection of selection bias 
distorting genetic associations in this cohort [62]. Given 
these issues, the paradoxical findings of glucose with liver 
steatosis should be interpreted with caution. Similarly, 
the unexpected inverse association of HbA1c and liver 
steatosis, although observed in a previous study [63], 
may be a reflection of the complex properties of HbA1c. 
The level of HbA1c is impacted by hyperglycemia and 
iron deficiency, where an earlier study showed iron defi-
ciency can shift the distribution of HbA1c [64]. This is 

supported by the lack of association of HbA1c with liver 
steatosis when we restricted our analyses to only glyce-
mia-related instruments (Fig.  5) and is more consistent 
with the glucose analyses without GCKR variant. These 
findings illustrated the challenges of using HbA1c solely 
as a reflection of hyperglycemia and are largely relevant 
to diabetes management.

Despite using an MR study design which is less prone 
to confounding than conventional observational stud-
ies, limitations remain. First, MR has stringent, unverifi-
able assumptions. Whilst confounding is less likely given 
genetics are randomly allocated at conception and with 
the use of GWAS which controls for population stratifi-
cation, the possibility of exclusion restriction violation 
cannot be ruled out completely. Nevertheless, we applied 
different statistical methods with various assumptions 
that yielded comparable results. We also did not include 
variants which could be highly pleiotropic, such as the 
variants harboring HFE-hemochromatosis (rs1800562/
rs1799945) and ABO gene region as per our previous 
study [21]. Although there was participant overlap in 
some of the GWAS used, which may bias our estimates 
towards the observational association in instances where 
weak instruments are used, this is unlikely given the large 
F-statistics used. Second, although we mainly focused on 
the overall analyses which combined different cohorts to 
maximize statistical power, these individual cohorts did 
not always give consistent associations (e.g., the associa-
tions of FI in liver cirrhosis, Fig. 2A). These discrepancies 
may have been driven by multiple factors such as par-
ticipant selection criteria, or statistical power, and varia-
tion in genetic architecture in the underlying populations 
[65]. Third, we did not explore potential sex differences 
given the lack of sex-specific GWAS summary statistics 
whereas early studies suggested possible sex-specific 
associations of glycemic traits in liver iron and liver fat 
[42]. Additional studies with individual-level data (e.g., 
UK Biobank) might be helpful to address this limitation. 
Fourth, the effect sizes of liver steatosis and cirrhosis may 
be underestimated as the case definition in the MASLD 
GWAS is only based on ICD-10 diagnostic codes and 
hence may have missed patients who were symptomless 
and hence not being diagnosed in clinical settings [30], 
and UKB participants are more healthy and hence are 
vulnerable to selection bias [66]. However, our findings 
were directionally consistent with previous MR studies 
of liability to T2D, glycemic traits, and iron biomarkers 
in MASLD using GWAS with liver biopsy specimens 
definition [14, 16, 17, 19, 67]. Lastly, we only included 
studies of European ancestry. Whether the observed 
associations extend to other ethnic groups warrants fur-
ther investigation.
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Conclusions
Our study highlights the role of T2D and FI in liver stea-
tosis and cirrhosis etiology, and provides mechanistic 
insights into the mediating role of ferritin in the posi-
tive  association of FI with liver steatosis. Whether tar-
geting the reduction of ferritin in those with increased 
insulin would reduce the risk of MASLD requires further 
bespoke investigation.
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