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Abstract 

Background Sexually transmitted infections (STIs) pose a significant global public health challenge. Early diagnosis 
and treatment reduce STI transmission, but rely on recognising symptoms and care-seeking behaviour of the indi-
vidual. Digital health software that distinguishes STI skin conditions could improve health-seeking behaviour. 
We developed and evaluated a deep learning model to differentiate STIs from non-STIs based on clinical images 
and symptoms.

Methods We used 4913 clinical images of genital lesions and metadata from the Melbourne Sexual Health Centre 
collected during 2010–2023. We developed two binary classification models to distinguish STIs from non-STIs: (1) 
a convolutional neural network (CNN) using images only and (2) an integrated model combining both CNN and fully 
connected neural network (FCN) using images and metadata. We evaluated the model performance by the area 
under the ROC curve (AUC) and assessed metadata contributions to the Image-only model.

Results Our study included 1583 STI and 3330 non-STI images. Common STI diagnoses were syphilis (34.6%), genital 
warts (24.5%) and herpes (19.4%), while most non-STIs (80.3%) were conditions such as dermatitis, lichen sclero-
sis and balanitis. In both STI and non-STI groups, the most frequently observed groups were 25–34 years (48.6% 
and 38.2%, respectively) and heterosexual males (60.3% and 45.9%, respectively). The Image-only model showed 
a reasonable performance with an AUC of 0.859 (SD 0.013). The Image + Metadata model achieved a significantly 
higher AUC of 0.893 (SD 0.018) compared to the Image-only model (p < 0.01). Out of 21 metadata, the integration 
of demographic and dermatological metadata led to the most significant improvement in model performance, 
increasing AUC by 6.7% compared to the baseline Image-only model.

Conclusions The Image + Metadata model outperformed the Image-only model in distinguishing STIs from other 
skin conditions. Using it as a screening tool in a clinical setting may require further development and evaluation 
with larger datasets.
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Introduction
Sexually transmitted infections (STIs) pose a major pub-
lic health challenge, with approximately one million new 
cases occurring daily worldwide [1, 2]. Australia is expe-
riencing increasing rates of common STIs, including 
chlamydia, gonorrhoea and syphilis in recent years [3]. 
STIs have significant implications for individual health, 
including an increased risk of HIV acquisition, infer-
tility, pregnancy complications and adverse birth out-
comes. The resurgence of congenital syphilis, a severe 
consequence of untreated syphilis in pregnant women, 
has been observed in Australia, with 77 confirmed cases 
reported between 2016 and 2023 [4]. STIs also impose 
substantial economic burdens. In the United States, the 
direct lifetime medical costs associated with STIs were 
estimated at nearly $16 billion in 2018 [5].

Early diagnosis and treatment are critical to reduce the 
transmission of STIs and are key to effective STI con-
trol. The presence and nature of symptoms impact the 
effectiveness of STI control as infected individuals with 
noticeable symptoms will seek health care and treatment 
earlier compared to those without symptoms [6]. Even 
among symptomatic individuals, their health literacy 
and ability to recognise symptoms that are likely to be 
an STI also influence their health-seeking behaviours [7]. 
Healthcare providers have developed digital tools, includ-
ing algorithms and symptom checker websites to pro-
mote early care-seeking [8–11]. Many machine learning 
approaches have been developed and evaluated for HIV 
and STI public health intervention, including risk assess-
ment tools, symptom checkers and classifiers for certain 
anogenital conditions. Bao et al. [12] developed machine 
learning algorithms using demographic and sexual 
behaviour data to predict HIV and STI risk among men 
who have sex with men (MSM), with promising results. 
Xu et al. [10, 13, 14] advanced these algorithms for pre-
dicting the current risk and the future risk of acquiring 
these infections within 12 months. For symptomatic indi-
viduals, Soe et al.’s study [15] showed that the CatBoost 
model performed well in differentiating STIs from non-
STI conditions, highlighting the potential of using deep 
learning algorithms to classify the anogenital skin condi-
tions. However, there is no deep learning model specifi-
cally designed to classify skin conditions associated with 
STIs based on clinical images and presenting symptoms 
in Australia.

Recently, the use of artificial intelligence (AI) tools, par-
ticularly deep learning techniques such as convolutional 
neural networks (CNN), has been introduced in the 
healthcare sector. The AI approaches have shown prom-
ising results in assisting screening and diagnosis [16–18] 
and demonstrated good cost-effectiveness in implemen-
tation [19–21]. For example, studies have demonstrated 

that CNN can accurately distinguish between differ-
ent skin lesions from dermoscopic and clinical images 
[22–26]. Brinker et  al. [22] trained a CNN model on 
open-source dermoscopic images to classify melanoma 
images, demonstrating the potential of using such algo-
rithms to assist dermatologists with melanoma detection. 
Hosny et  al. [26] applied a refined residual deep convo-
lutional network (RDCNN) to classify different skin 
lesions and achieved high accuracy on six skin cancer 
image datasets. Gonzalez-Alday et al. [27] demonstrated 
that CNN could reasonably classify images of herpes, 
warts and condylomas using a small dataset (n = 261) of 
genital lesions, achieving an accuracy of 86.6%. Alsahafi 
et  al. [28] proposed an RDCNN to address the issue of 
an imbalanced dataset and demonstrated high accuracy 
for the multiclass classification of skin lesions. Hosny 
et al. [29] used a deep inherent learning approach to clas-
sify seven skin conditions from the HAM10000 dataset 
and applied explainable AI (X-AI) to assist the clinician 
with model interpretation. Other studies also showed 
the high accuracy of CNN models in identifying mpox 
skin lesions from other skin lesion images, with an area 
under the receiver operating characteristic curve (AUC) 
score exceeding 90% [30–32]. Additionally, recent studies 
showed the added value of integrating clinical metadata 
to improve the CNN model’s performance. For exam-
ple, studies by Heo et al. and Ningrum et al. showed that 
integrating clinical metadata into CNN models enhanced 
accuracy in tuberculosis detection and melanoma classi-
fication [33, 34]. Liu et al. also demonstrated the poten-
tial of a multimodal approach to differentiate 26 skin 
conditions by integrating images and clinical data [24]. 
However, most existing studies have focused on general 
skin conditions, with only one study exploring the clas-
sification of anogenital skin lesions related to STIs, using 
a relatively small dataset. Only a few studies explored the 
integration of clinical metadata with images for improv-
ing model performance, but not specifically in the con-
text of STI-related skin conditions. It highlights the need 
to evaluate the potential of a multimodal approach for 
distinguishing STIs from other skin conditions using 
larger and more diverse datasets.

This study aims to develop and evaluate a CNN model 
using clinical images to correctly determine if a lesion 
is an STI or not. In addition, we also aim to determine 
whether integrating epidemiological and clinical features 
into images improves the model performance in differen-
tiating STIs from other skin conditions.

Methods
We conducted this study at the Melbourne Sexual Health 
Centre (MSHC), which is the largest sexual health centre 
in Australia. We followed the MINimum Information for 
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Medical AI Reporting (MINIMAR) recommendations for 
reporting study population, patient demographic char-
acteristics, detailed information on model development 
and model evaluation [35].

Data sources and collection
In this study, we used the clinical images and their cor-
responding patients’ information (metadata) acquired 
retrospectively from the files of 1648 MSHC clients. 
Informed consent was obtained from clients during the 
process of collecting images. The image dataset consisted 
of 4971 clinical images of skin lesions collected from 1 
Jan 2010 to 23 Jan 2023. The images were taken using a 
compact digital camera or mobile phone camera by cli-
nicians. The images contained (1) STI-related dermato-
logical conditions (genital warts, herpes simplex virus, 
molluscum contagiosum, mpox, syphilis and syphilis 
rash) and (2) non-STI dermatological conditions (pearly 
penile papules, balanitis, dermatosis, lichen sclerosis, 
non-syphilis related skin rashes and healthy skin). Two 
medical students (DT, CK) manually extracted 21 meta-
data, including demographic information, presenting 
symptoms and final diagnosis from the clinical notes for 
each corresponding image (Additional file  1: Table  S1). 
Two researchers (NS, PL) randomly selected and cross-
checked 20% of the dataset at the start and 10% periodi-
cally throughout the data extraction process for accuracy 
and consistency. During cross-checks, any discrepancies 
in data extraction were discussed between the medical 
students and researchers to determine the final decision.

Image selection criteria
Two experienced sexual health clinicians (CF, DL) and 
two researchers (NS, PL) checked the diagnosis of each 
image by reviewing the associated clinical notes and 
laboratory results from the clinic’s electronic health 
record (EHR)—Clinical Patient Management System 
(CPMS). Images without diagnostic consensus among 
the reviewers were excluded from our image dataset. 
We also checked all images to ensure they had no iden-
tifiable information such as faces, tattoos or birthmarks. 
We excluded 24 duplicate images and 16 low-resolution 
images from the image dataset. We also excluded 18 
images as their corresponding metadata could not be 
identified in the (EHR) system.

Data splitting
The final dataset contained 4913 de-identified images 
with corresponding metadata (1583 STIs and 3330 
non-STIs). To reduce potential bias, we implemented a 
stratified fivefold cross-validation protocol in which the 
dataset was split into training (80%) and testing (20%) 
datasets. We grouped the images by the patient’s unique 

identifiers before splitting them to ensure that simi-
lar images taken from the same patients were not split 
between the training and testing datasets. This stratified 
splitting process was repeated five times, randomly shuf-
fling the dataset before each iteration to generate varied 
allocations of data into each fold (Additional file 1: Fig. S1 
and Table S2 for fivefold split details). The training data-
set was used for training and internal validation, while 
the testing dataset was used as a hold-out dataset for 
external validation.

Data pre‑processing
We performed data pre-processing steps to prepare the 
image and metadata inputs for model training. For image 
data, we manually cropped each image to focus on the 
lesion areas and removed any distracting background 
content. This step ensured that the model’s attention 
was directed towards the relevant regions of interest. All 
cropped images were then resized to a standard dimen-
sion of 320 × 320 pixels to maintain consistent input sizes 
for the model. To achieve greater variation in the training 
dataset, we implemented data augmentation techniques. 
These included random cropping (extracting different 
sub-regions from the image), horizontal/vertical flips 
(creating mirrored versions of the image) and random 
adjustments to brightness and contrast levels. These aug-
mentation techniques during model training improve the 
model’s generalisability and reduce overfitting. The meta-
data corresponding to each image consisted of both cat-
egorical and numerical variables. For the pre-processing 
of metadata, we used one-hot encoding for the categori-
cal variables (e.g. gender, lesion site, etc.) and normalised 
the numerical variables (e.g. age and duration of lesion) 
to fall between 0 and 1.

Model training
We developed two binary classification models: a con-
volutional neural network (CNN) using images only 
and an integrated model (CNN + fully connected neural 
network (FCN)) using both images and metadata. For 
the CNN architecture, we employed a transfer learning 
approach, using a Swin-Transformer model pre-trained 
on a large image dataset [36, 37]. We fine-tuned this 
pre-trained model on our own image dataset to predict 
between STIs and non-STIs. Figure  1 shows an over-
view of Image-only and Image + Metadata models. In 
the Image-only model, the pre-processed images were 
passed through convolutional layers, which extracted 
image features. These image features were then input 
into classifier layers to generate predictions based only 
on images. In the Image + Metadata model, the image 
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features extracted by the CNN were combined with the 
metadata features extracted by the FCN. These com-
bined multimodal representations were then input 
into classifier layers to generate predictions based on 
both modalities. We implemented model training with 
PyTorch on a Tesla T4 GPU machine using Python pro-
gramming language (version 3.8.2).

Model evaluation
We assessed the model performance on the testing 
dataset, using the area under the receiver operating 
characteristic curve (AUC) as an evaluation metric (see 
Tables S3 and S4 for details). AUC measures the mod-
el’s ability to distinguish between two classes (STIs vs 
non-STIs), ranging from 0 to 1, where 1 reflects perfect 
classification [38, 39]. We also generated the receiver 
operating characteristic curve (ROC) by plotting the 
true positive rate (TPR) against the false positive rate 
(FPR) with different probability thresholds. The TPR 
and FPR are calculated as:

Then, we selected the optimal threshold to calculate 
sensitivity, specificity and accuracy. We performed five 
repeats of fivefold cross-validation, calculating the met-
rics for each fold in each repeat. We then calculated 
the mean and standard deviation (SD) of these metrics 

TPR = True Positives/
(

True Positives+ False Negatives
)

FPR = False Positives/ False Positives+ True Negatives

across the five repeats to produce the final reported 
performance measures.

Performance comparison between image‑only and 
Image + Metadata models
We utilised a paired t-test to examine the performance 
differences (AUC scores) between Image-only and 
Image + Metadata models on the same testing dataset 
folds. This assessed the statistical significance of the dif-
ference in AUC scores between the two models—one 
trained and evaluated on images only and the other on 
images along with associated metadata.

Results
Sample characteristics
Our study included 1583 STI and 3330 non-STI lesion 
images. Among STI lesion images, the most common 
diagnoses were syphilis (34.6%), genital warts (24.5%) 
and herpes simplex virus (19.4%). Among the non-STI 
images, the majority (80.3%) were genital skin condi-
tions such as dermatitis, lichen sclerosis, balanitis and 
skin rashes, as shown in Table  1. In both STI and non-
STI groups, the most frequently observed group was 
25–34  years (48.6% and 38.2%, respectively) and het-
erosexual males (60.3% and 45.9%, respectively). For STI 
images, the most common anatomical locations were the 
male genitalia (52.0%) and anal/perianal regions (21.2%). 
For non-STI images, the male genitalia (45.0%) were also 
the most common locations, followed by female genita-
lia (20.5%). The most frequently observed duration of the 
lesion among STI images was 15–30  days (35.8%) and 
8–14 days (25.5%), compared to 15–30 days (43.2%) and 
over 30 days (18.6%) for the non-STI images. Statistically 

Fig. 1 Schematic illustrating Image-only and Image + Metadata models. The detailed list of metadata can be seen in Table S1



Page 5 of 11Soe et al. BMC Medicine          (2024) 22:296  

Table 1 Distribution of images and corresponding metadata

STIs (column%) Non‑STIs (column%) p value**

Number of images

 Included (row%) 1583 (32.2%) 3330 (67.8%) –

Diagnoses

 Genital warts 388 (24.5%) 0 (0.0%) –

 Herpes simplex virus 307 (19.4%) 0 (0.0%)

 Molluscum contagiosum 32 (2.0%) 0 (0.0%)

 Mpox 120 (7.6%) 0 (0.0%)

 Primary and secondary syphilis 547 (34.6%) 0 (0.0%)

 Rash of secondary syphilis 189 (11.9%) 0 (0.0%)

 Healthy skin (control) 0 (0.0%) 628 (18.9%)

 Pearly penile papules 0 (0.0%) 27 (0.8%)

 Other genital skin conditions* 0 (0.0%) 2675 (80.3%)

Age

 18–24 years 417 (26.3%) 503 (15.1%)  < 0.01

 25–34 years 770 (48.6%) 1273 (38.2%)

 35–44 years 274 (17.3%) 442 (13.3%)

 ≥ 45 years 122 (7.7%) 484 (14.5%)

 Unknown 0 (0.0%) 628 (18.9%)

Gender

 Heterosexual male 955 (60.3%) 1527 (45.9%)  < 0.01

 Female 129 (8.1%) 1098 (33.0%)

 GBMSM 461 (29.1%) 598 (18.0%)

 Unknown 38 (2.4%) 107 (3.2%)

Lesions (number)

 Single 377 (23.8%) 1393 (41.8%)  < 0.01

 Multiple 1206 (76.2%) 1178 (35.4%)

 No 0 (0.0%) 759 (22.8%)

Region of body

 Anal and perianal 336 (21.2%) 388 (11.7%)  < 0.01

 Female genitalia 122 (7.7%) 681 (20.5%)

 Groin and pubis 18 (1.1%) 60 (1.8%)

 Head and neck 42 (2.7%) 191 (5.7%)

 Male genitalia 823 (52.0%) 1498 (45.0%)

 Torso 211 (13.3%) 178 (5.3%)

 Upper and lower extremities 23 (1.5%) 159 (4.8%)

 Unknown 8 (0.5%) 175 (5.3%)

Duration of presence

 1–3 days 170 (10.7%) 146 (4.4%)  < 0.01

 4–7 days 206 (13.0%) 161 (4.8%)

 8–14 days 403 (25.5%) 166 (5.0%)

 15–30 days 566 (35.8%) 1439 (43.2%)

  > 30 days 219 (13.8%) 618 (18.6%)

 Not applicable 19 (1.2%) 800 (24.0%)

Associated with pain

 Yes 688 (43.5%) 622 (18.7%)  < 0.01

 No 895 (56.5%) 2708 (81.3%)

Associated with itchiness

 Yes 325 (20.5%) 810 (24.3%)  < 0.01

 No 1258 (79.5%) 2520 (75.7%)

Associated with prodromal symptoms

 Yes 257 (16.2%) 144 (4.3%)  < 0.01

 No 1326 (83.8%) 3186 (95.7%)

* Include balanitis, dermatitis, lichen sclerosis, lichen planus, pre-cancerous lesions, non-syphilis skin rashes
** The p values were derived from paired t-tests assessing the statistical significance in data distribution between STI and non-STI groups. A p value ≤ 0.05 indicates a 
statistically significant difference between the groups
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significant differences (p values < 0.01) were observed in 
the distribution of age, gender, body region and lesion 
duration between STI and non-STI image groups.

Model training findings
During the model training process, we monitored the 
optimisation by tracking changes in AUC scores and 
loss values over each training round (epoch). A higher 
AUC score indicates better discrimination between 
STIs and non-STIs while a lower loss value indicates 
more learning by the model. The models were trained 
for 70 epochs, reaching a plateau where validation loss 
no longer declined. In the Image-only model, AUC 
climbed to around 0.900 during training and validation. 
Loss values declined over epochs, settling at 0.375 for 
training and 0.383 for validation. In comparison, the 
Image + Metadata model achieved higher AUC values 

around 0.970 during training and validation. Loss val-
ues were substantially lower at 0.172 for training and 
0.194 for validation. The details are shown in Fig. 2 and 
Additional file 1: Table S2.

Model evaluation findings
We evaluated the Image-only and Image + Metadata 
models on the testing dataset for each fold during five-
fold cross-validations. We calculated the mean and 
standard deviation of the evaluation metrics for both 
models.

On the testing dataset, the Image-only model 
achieved an AUC of 0.859 (SD 0.013), indicating its 
ability to reasonably distinguish between STIs and 
non-STIs. The optimal classification threshold was 
selected from ROC analysis (Fig.  3A) to optimise the 
sensitivity at 0.950. It achieved a sensitivity of 0.953 

Fig. 2 Model performance evaluation over training epochs for Image-only model and Image + Metadata model. Higher area under the receiver 
operating characteristic curve (AUC) indicates better discrimination between STIs and non-STIs and lower loss values indicates more effective 
training
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(SD 0.004), a specificity of 0.590 (SD 0.051), a preci-
sion of 0.359 (SD 0.040) and an accuracy of 0.669 
(SD 0.043). The TPR and FPR were 0.957 and 0.443, 
respectively (a contingency table, Fig. 3B).

The Image + Metadata model achieved an AUC of 0.893 
(SD 0.018), indicating higher distinguishing ability com-
pared to the Image-only model. The ROC analysis curve 
is shown in Fig. 3C. At the optimal threshold, it achieved 
a sensitivity of 0.951 (SD 0.003), a specificity of 0.622 (SD 
0.116), a precision of 0.433 (SD 0.061) and an accuracy of 
0.692 (SD 0.093). The TPR and FPR were 0.957 and 0.324 
respectively (Fig. 3D).

While comparing the Image-only and Image + Metadata 
models, both models achieved reasonable performance 
for differentiation between STI and non-STIs, where the 
Image + Metadata model outperformed the Image-only 
model. The Image + Metadata model achieved signifi-
cantly higher AUC compared to the Image-only model 
(paired t-test, p < 0.01). The inclusion of metadata in the 
integrated model resulted in a relative improvement of 4% 
in the AUC compared to the Image-only model.

Contribution of metadata on models’ performance
To better understand the contributory value of differ-
ent metadata, we conducted the subgroup analyses by 
incrementally integrating metadata categories into the 
baseline Image-only model. The categories included 
three demographic, eight dermatological and ten geni-
tourinary metadata (Additional file  1: Table  S1). The 
inclusion of the 11 combined demographic and der-
matological metadata led to the greatest improvement 
in model performance, increasing AUC by 6.71% com-
pared to the baseline Image-only model. Individually, 
demographic and dermatological metadata contrib-
uted around 3–3.5% improvement in AUC. In contrast, 
including only genitourinary metadata did not contrib-
ute to performance improvement (details are shown in 
Table 2).

Sensitivity–specificity trade‑off across classification 
thresholds
Evaluation of the Image-only and Image + Metadata 
models across different classification thresholds showed 
a trade-off between sensitivity and specificity (Additional 
file  1: Table  S5). Reducing sensitivity from 100 to 80% 
increased specificity from 45.8 to 74.0% for the Image-
only model and 53.4 to 85.5% for the Image + Metadata 
model. Positive predictive value (PPV) also increased 
with higher specificity, rising from 32.7 to 44.7% (Image-
only) and 35.4 to 58.7% (Image + Metadata). How-
ever, negative predictive value (NPV) declined slightly 
from 100 to 93.3% (Image-only) and 98.6 to 93.7% 
(Image + Metadata) at lower sensitivities. The analysis of 

false negative cases showed the specific types of STIs that 
were misclassified at different sensitivity levels. When 
the sensitivity was fixed at 95%, both the Image-only and 
Image + Metadata models misclassified one to two cases 
of syphilis and herpes as false negatives.

Discussion
In this study, we demonstrate the first proof-of-concept 
showing that CNN models can feasibly distinguish STIs 
from other skin conditions in the clinical images, with 
and without additional patient metadata. The Image-only 
model showed a reasonable performance with an AUC 
of 0.859 in testing datasets. The integration of demo-
graphic and clinical metadata to images showed a sig-
nificant improvement with a higher AUC of 0.893. When 
the sensitivity for detecting an STI is fixed at 95%, about 
one-third of non-STIs will be incorrectly classified but 
only two syphilis and one herpes out of 68 STIs will be 
incorrectly classified as a non-STI. Further research will 
be required to determine the potential acceptability and 
usefulness of such a service in clinical or public health 
settings, particularly in settings without access to STI 
diagnostics.

We compared our findings, specifically the discrimina-
tive ability measured by AUC, with other studies. Gon-
zalez-Alday et al. [27] used CNN to classify genital skin 
lesion images among herpes, warts and condyloma and 
achieved an accuracy of 0.866 but did not provide the 
AUC for direct comparison with our findings. Thieme 
et al. [30] demonstrated their CNN model can effectively 
distinguish mpox as a single disease from other skin con-
ditions (mpox or non-mpox) with a very high AUC of 
0.967. Our Image-only model achieved a lower AUC of 
0.859 in distinguishing STIs from non-STI lesions. We 
included a more diverse range of common genital lesions 
in both STI and non-STI image groups than in previ-
ous studies, which may partially explain the lower AUC 
achieved by our model compared to disease-specific 
classification performance in previous studies. Distin-
guishing among these heterogenous lesions may be more 
challenging for our CNN model compared to differenti-
ating mpox from other skin conditions.

In our study, the integration of 21 metadata, such 
as demographic information and symptoms, led to a 
2.5–6.5% improvement in AUC compared to the base-
line Image-only model. This aligns with the previous 
studies of skin lesion classification using clinical images 
and metadata. Liu et  al. [24] showed that adding four 
demographic metadata to CNN models improved per-
formance by 2.9% for the detection of tuberculosis using 
radiographic images, suggesting that the inclusion of 
more extensive metadata could improve the perfor-
mance further. Liu et al. [24] used 45 metadata, including 
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Fig. 3 Performance of Image-only and Image + Metadata models on the testing cohort. A Receiver operating characteristic (ROC) curve 
of the CNN model showing true positive rate (TPR) vs false positive rate (FPR) across 5 cross-validation folds. B Confusion matrix for the Image-only 
model at fixed 95% sensitivity summarizing correct and incorrect predictions. C ROC curve of the Image + Metadata model showing TPR vs FPR 
across 5 cross-validation folds. D Confusion matrix for the Image + Metadata model at fixed 95% sensitivity indicating fewer misclassifications 
versus the Image-only model
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demographic information and medical history to inte-
grate with the image model, improving performance by 
4–5%. Our subgroup analysis (Table 2) showed that com-
bined demographic and dermatological metadata con-
tributed the most to achieving the greatest performance 
improvement. Genitourinary metadata did not contrib-
ute significantly to performance improvement and this 
may be because positive genitourinary findings rarely 
occurred (< 10% prevalence) together with skin condi-
tions in our dataset.

While our model demonstrates potential as a screen-
ing tool, careful considerations and potential limitations 
must be addressed prior to considering its implementa-
tion in public health settings. First, maximizing sensi-
tivity is essential for effective STI screening but has the 
problem that there are more false positives. In high-
resource countries, where symptomatic patients are 
encouraged to get tested, the impact of overdiagnosis 
may be less significant [40]. Second, thoughtful inter-
pretation and communication of the model’s predictions 
to the end-user are critical to avoid unintended conse-
quences and promote health-seeking behaviour [41, 42]. 
In contrast to a sexual health clinic, where a thorough 
clinical history, examination and diagnostic testing are 
undertaken, our model could realistically just distinguish 
between a lesion that is likely to be an STI or one that 
is not. Therefore, our model’s prediction should be inter-
preted as indicating a “higher vs lower likelihood of an 
STI” rather than definitive “STI vs not STI” categorisa-
tions. Third, our data came from an STI clinic where the 
pretest probability of an STI was high because people had 
self-selected by being concerned they had an STI. If this 
was used by individuals who were not concerned about 

an STI but were labelled as possibly having one, it may 
have significant social and relationship consequences. 
As noted by Latt et al. [43], further research is needed to 
evaluate effective communication of the model’s predic-
tions to the users to improve healthcare seeking while 
avoiding unnecessary concern, given the sensitive nature 
of sexual health. Fourth, the application of deep learn-
ing in the medical field has been controversial due to the 
black box phenomenon, where the interpretive mecha-
nisms between input and output remain unexplained 
[34]. To address this, the interpretation of the model 
should be explained using visualisation techniques such 
as Grad-CAM or SHapley Additive exPlanations (SHAP) 
to facilitate a better understanding of the decision-mak-
ing process for the end-user [44]. Finally, unlike other 
diseases, our focus on STI skin lesions raises privacy and 
security concerns due to the need to use images from 
private areas. Therefore, it is essential to assess the feasi-
bility, acceptability and preference of its use prior to the 
application of the tool.

Our study provides a novel approach to addressing a 
research gap in the sexual health domain by demonstrat-
ing the feasibility of using a multimodal deep learning 
approach to distinguish STIs from other conditions. We 
used a larger dataset of anogenital skin lesion images, 
including a wide range of STI and non-STI lesions. Addi-
tionally, we applied fivefold cross-validation to evalu-
ate the robustness of the performance of our models. 
However, our study has limitations. First, our study was 
based on retrospective data from a single sexual health 
clinic in Victoria, which may introduce a potential bias 
towards cases with more typical presentations or unusu-
ally severe cases. External validation with data from other 
clinics was not feasible in this initial study, however will 
be an important next step to validate the generalisability 
of the model to ensure the robustness and applicability of 
the findings. There was also a significant gender imbal-
ance in the dataset, with females representing only 8.1% 
of STI cases. While we employed techniques such as data 
augmentation and stratified cross-validation to mitigate 
potential bias, this gender imbalance may have impacted 
the model’s predictive accuracy, particularly for females 
with STIs. Second, while differentiating STIs from non-
STIs, there are still limitations in detecting important 
STIs such as syphilis, even with 95% sensitivity. More 
images and data are required to optimise the model’s 
performance, especially for syphilis. We only included 
a subset of the available images from our centre due to 
the intensive resources required for the manual extrac-
tion of metadata from EHR. However, the current data-
set was sufficient for the proof-of-concept application of 
deep learning in STI lesion classification. Third, the scope 
of this study was limited to binary classification between 

Table 2 Contribution of metadata on performance of Image-
only model

a Table S1 provides details on specific metadata features in each category 
(demographic, dermatological and genitourinary)
b AUC = area under the receiver operation characteristic curve
c AUC improvement (%) were calculated compared to the AUC of the Image-only 
model

Integration of  metadataa Number of 
features

AUC b AUC 
 improvementc 
(%)

No metadata 0 0.846 –

Demographic 3 0.873 3.28

Dermatological 8 0.875 3.55

Genitourinary 10 0.845  − 0.04

Demographic + dermatological 11 0.902 6.71

Demographic + genitourinary 13 0.879 3.92

Dermatological + genitourinary 18 0.885 4.7

All metadata 21 0.901 6.51
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STIs and non-STIs. Future research should address mul-
ticlass discrimination problems among diverse genital 
lesions to provide a comprehensive understanding of 
deep learning’s ability to differentiate different features 
of specific conditions. Finally, we used reduced 320 × 230 
image resolutions due to the computational constraints, 
which may have affected the model’s performance. Fur-
thermore, the images were captured from different 
sources, including digital cameras and mobile phone 
cameras, which could potentially introduce variation in 
image quality and resolution despite data pre-processing 
to standardise resolutions. Further studies should experi-
ment with the impact of using higher resolution images 
to improve the model performance potentially.

Conclusions
Our study demonstrated that CNNs could reasonably dis-
tinguish STIs from other anogenital conditions using clini-
cal images. Integrating demographic and clinical metadata 
with images further improved accuracy. These findings 
open up avenues for further research into developing AI-
assisted tools that could potentially assist public health 
measures for early detection and treatment of STs. To be 
useful as a screening tool, further development and evalu-
ation studies with larger datasets should be conducted.
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