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Abstract 

Background The prevalence of autism in Denmark has been increasing, reaching 1.65% among 10‑year‑old children, 
and similar trends are seen elsewhere. Although there are several factors associated with autism, including genetic, 
environmental, and prenatal factors, the molecular etiology of autism is largely unknown. Here, we use untargeted 
metabolomics to characterize the neonatal metabolome from dried blood spots collected shortly after birth.

Methods We analyze the metabolomic profiles of a subset of a large Danish population‑based cohort (iPSYCH2015) 
consisting of over 1400 newborns, who later are diagnosed with autism and matching controls and in two Swed‑
ish population‑based cohorts comprising over 7000 adult participants. Mass spectrometry analysis was performed 
by a timsTOF Pro operated in QTOF mode, using data‑dependent acquisition. By applying an untargeted metabo‑
lomics approach, we could reproducibly measure over 800 metabolite features.

Results We detected underlying molecular perturbations across several metabolite classes that precede autism. In 
particular, the cyclic dipeptide cyclo‑leucine‑proline (FDR‑adjusted p = 0.003) and the carnitine‑related 5‑aminovaleric 
acid betaine (5‑AVAB) (FDR‑adjusted p = 0.03), were associated with an increased probability for autism, indepen‑
dently of known prenatal and genetic risk factors. Analysis of genetic and dietary data in adults revealed that 5‑AVAB 
was associated with increased habitual dietary intake of dairy (FDR‑adjusted p < 0.05) and with variants near SLC22A4 
and SLC22A5 (p < 5.0e − 8), coding for a transmembrane carnitine transporter protein involved in controlling intracel‑
lular carnitine levels.

Conclusions Cyclo‑leucine‑proline and 5‑AVAB are associated with future diagnosis of autism in Danish neonates, 
both representing novel early biomarkers for autism. 5‑AVAB is potentially modifiable and may influence carnitine 
homeostasis.
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Background
Autism refers to a range of neurodevelopmental condi-
tions characterized by impaired social ability, impaired 
communication, and repetitive behavior. The prevalence 
of autism in Denmark has been increasing, reaching 
1.65% among 10-year-old children in 2017 [1]. Similar 
trends are seen elsewhere [2, 3]. Although there are sev-
eral factors associated with autism, including genetic 
[4] and prenatal factors [5], the molecular etiology of 
autism is largely unknown. The gut microbiome has been 
increasingly implicated in autism, as patients with autism 
commonly experience gastrointestinal issues [6] and have 
an altered gut microbiota [7, 8]. Dysbiosis of the mater-
nal gut microbiome could even contribute to altered fetal 
neurodevelopment related to autism [9]. The circulating 
metabolome reflects genetic [10], gut microbiome [11], 
and dietary intake variations [12, 13], potentially high-
lighting mediators between these exposures and autism 
risk. Detecting autism-related metabolite alterations in 
early life may facilitate an increased understanding of the 
molecular mechanisms behind autism, improve diagno-
sis, and contribute to preventive strategies.

Metabolomics has been used to characterize spe-
cific perturbations of the metabolome in children with 
autism compared to neurotypical controls, including 
amino acids [14], acylcarnitines [15], and various aro-
matic and phenolic compounds [15]. Moreover, a selec-
tion of metabolites in the folate-dependent one-carbon 
metabolism have been used to classify autism from typi-
cally developed counterparts, indicating the potential for 
metabolite-based methods to be used in autism diagnosis 
[16]. However, these studies reflect cross-sectional differ-
ences between autism cases and controls, which hampers 
the attempts to identify early pathophysiological mecha-
nisms of autism, due to the large risk of reverse causa-
tion. Metabolites that prospectively associate with autism 
development have a higher chance of highlighting early 
protective or detrimental mechanisms of autism that can 
be targeted in novel preventive strategies.

To unravel underlying disease mechanisms and find 
tools for early diagnosis of autism, we analyzed the 
metabolomic profiles of a subset of a large Danish pop-
ulation-based cohort (iPSYCH2015). The subset is a 
case–control study consisting of over 1400 newborns, 
including neonates who later were diagnosed with 
autism, and matching controls. By using untargeted 
metabolomics of neonatal dried blood spot samples 
(DBS), we aim at identifying metabolite features associ-
ated with autism, in order to better understand the dis-
ease etiology. Metabolites that were associated with 
autism were further investigated in independent cohorts 
comprising over 7000 adult individuals, in order to 
describe the genetic and dietary determinants.

Methods
Cohorts
iPSYCH cohorts
The neonatal cohort consisted of individuals who were 
included in either the population-based cohort or as a 
case in iPSYCH2015 [17], which is a case-cohort study of 
psychiatric disorders, nested within the Danish popula-
tion born between 1981 and 2008. The neonates included 
in the current case–control study were born between 
2003 and 2008. All individuals had available information 
about gestational age, age at sampling, and neonatal DBS 
available. Additionally, all samples passed quality control 
for genotyping. Cases of autism were all male and defined 
as the first diagnosis of childhood autism (ICD-10: F84.0) 
in the Danish Psychiatric Central Research Register in 
2015 or earlier, at age 1 or older. Controls were selected 
among males in the population-based cohort in iPSYCH 
and with none of the following ICD-10 diagnosis codes in 
the Danish Psychiatric Central Research Register in 2015 
or earlier, at age 1 year or older: F84.0, F84.1, F84.2, F84.3, 
F84.5, F84.8, F84.9, F90.0. Matching of controls was per-
formed based on birth date + / − 14  days, gestational 
age + / − 4 days, and age at sampling + / − 1 day (neonatal 
age at time of DBS collection). For neonates born before 
2006, autism cases were excluded if diagnosed with men-
tal retardation (F70-F79) before the 10-year birthday in 
the Danish Psychiatric Central Research Register as of 
April 2017. Family history of psychiatric disorders was 
defined as any parent having registry entries (ICD-8:290–
315, ICD10:F00-F99) before the end of 2016. Seasons 
are defined as starting from the 1st day of the month: 1st 
Dec.–28th Feb. is winter, 1st March–31st May is spring, 
1st June–31st August is summer, 1st Sept.–30th Nov. is 
autumn.

Malmö cohorts
The Malmö Diet and Cancer Study (MDC) is a popula-
tion-based prospective cohort consisting of 28,449 indi-
viduals. The cardiovascular cohort of MDC was designed 
to study the epidemiology of carotid artery disease. 
Enrolling participants between 1991 and 1996 [18]. Cit-
rate plasma was available for 3833 among the 5405 par-
ticipants with fasted blood samples. Dietary intake data 
was available for 3714 individuals and genome-wide gen-
otyping for 3409 individuals.

Malmö Offspring Study (MOS) is an ongoing popu-
lation-based cohort study where adult (> 18  years old) 
children and grandchildren from the MDC study are 
recruited [19]. Participants were invited through letter 
and visited the research clinic where overnight fasting 
EDTA plasma samples were collected and anthropo-
metric measurements performed. Plasma samples were 
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available for 3430 participants. Dietary intake data was 
available for 1539 individuals.

Metabolomics profiling
DBS samples (3.2-mm-diameter punches) were ran-
domly distributed over nineteen 96-well plates (batches). 
A batch of DBS consisting of adult blood was created 
before sample preparation and stored at − 20 °C, referred 
to as external control (EC) samples. Both EC samples 
and plate-specific pools of neonatal samples were ana-
lyzed for quality control purposes. Sample prepara-
tion was performed by extraction in 80% methanol by 
being incubated for 45  min and subsequent centrifuga-
tion. The sample extract (supernatant) was evaporated 
under nitrogen before being reconstituted in 95% sol-
vent A (99.8% water and 0.2% formic acid) and 5% sol-
vent B (49.9% methanol, 49.9% acetonitrile and 0.2% 
formic acid). Mass spectrometry analysis was performed 
using a timsTOF Pro mass spectrometer coupled to a 
UHPLC Elute LC system, Bruker Daltonics (Billerica, 
MA, US). The analytical separation was performed on 
an Acquity HSS T3 (100  Å, 2.1  mm × 100  mm, 1.8  µm) 
column (Waters, Milford, MA, US). The analysis started 
with 99% solvent A for 1.5 min, thereafter a linear gradi-
ent to 95% solvent B during 8.5 min followed by an iso-
cratic condition at 95% mobile phase B for 2.5 min before 
going back to 99% mobile phase A and equilibration for 
2.4 min. Metabolomics preprocessing was done using the 
Ion Identity Network workflow in MZmine [20, 21] (ver-
sion 3.3.0). Before statistical analysis, metabolite features 
present in less than 25% of the samples were removed 
and features present in fewer than 75% were treated as 
binary variables (present or absent). This resulted in a 
final dataset with a total of 865 metabolite features meas-
ured, among which 452 features were continuous and 
413 were binary variables. Missing values for metabolite 
features with continuous measurements were further 
subjected to imputation using missForest [22] and sub-
sequent batch correction in WaveICA [23]. Annotation 
of metabolite features was performed using mass spec-
tral molecular networking through the GNPS Platform, 
unsupervised substructure discovery using MS2LDA, in 
silico annotation through Network Annotation Propaga-
tion, Sirius + CSI:FingerID, MolNetEnhancer and deep 
neural networks in CANOPUS. Metabolite annotation 
levels were defined according to the Metabolite Stand-
ards Initiative [24]. Metabolites were annotated at level 2 
(plausible 2D structure) and level 3 (plausible metabolite 
class). Detailed descriptions of sample preparation, mass 
spectrometry analysis, preprocessing, annotation, and 

quality control procedures can be found in the Additional 
file 1: supplementary information [20–23, 25–35].

Relative quantification of 5‑aminovaleric acid betaine 
in Malmö cohorts
Untargeted metabolomics profiles of plasma samples 
from MOS and MDC were acquired on a UPLC-QTOF 
(1290 LC, 6550 MS; Agilent Technologies, Santa Clara, 
CA) as previously described [36]. Relative abundance of 
5-aminovaleric acid betaine was retrieved by integrat-
ing the peak areas for the m/z putatively annotated as 
5-AVAB (m/z = 160.13) using Agilent Profinder B.06.00 
(Agilent Technologies). Normalization was performed 
using m/z 160.13 measurements in repeatedly injected 
identical pooled quality control (QC) samples. A low-
order nonlinear locally estimated smoothing (LOESS) 
function was fitted to the m/z 160.13 areas in the 
QC samples as a function of the injection order. The 
⍶-parameter (proportion of QC samples used for the 
correction curve) was set to 2/3. The resulting correc-
tion curve was used to normalize the analytical samples 
as described previously [37]. MS/MS data was acquired 
at 20  eV and an isolation width of 1.3  m/z. Annota-
tion of m/z 160.13 was performed using a MASST [38] 
search of the fragmentation spectra of m/z 160.13, 
where matching spectra where defined as cosine > 0.7, 
minimum matched peaks = 4, parent mass toler-
ance < 0.05 Da and ion tolerance < 0.05 Da.

Genome‑wide association study and genetic risk score
Genome-wide genotyping of participants from the 
MDC was conducted using the Illumina GSA Bead 
Chip (Illumina Inc, San Diego, CA). Genome-wide 
association studies (GWAS) for DBS and plasma levels 
of metabolites were performed using a linear additive 
genetic model adjusting for age, sex (adult cohort only), 
genetic principal components, and autism status (neo-
natal cohort only), using PLINK v1.9 [39]. Manhattan 
plots and locus zoom plots were generated in R, using 
packages qqman and locuszoomr packages, respec-
tively. The polygenic score (PRS) is a cross-validated 
internally trained score that was generated by splitting 
the iPSYCH sample in 50 random, non-overlapping 
samples of roughly equal size. For each of the 50 sub-
samples, a GWAS was run on the complement and the 
sumstats of that was used to train a PRS in the subsam-
ple in question. We employed the SBayesR [40] algo-
rithm as implemented in LDAK [41] following the best 
practices of LDAK. The score was subsequently stand-
ardized by subset strata. Principal components analysis 
was performed in PLINK v1.9 [39].
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Dietary intake assessment
Dietary intakes in the MDC were assessed with a 
method combining a 7-day menu book, a food fre-
quency questionnaire, and a 45-min interview [42].

In the MOS dietary intake for participants was assessed 
with a web-based 4-day food record, Riksmaten2010, 
developed by the Swedish National Food Agency [43]. 
In both cohorts, six dietary intake groups were energy-
adjusted, by dividing intakes with non-alcoholic energy 
intake.

Statistical analysis
Associations between metabolite features and autism 
were analyzed using logistic regression models. Nomi-
nally significant associations were defined as P < 0.05, 
and significant associations as false discovery rate (FDR)-
adjusted P < 0.05. The primary model was adjusted for 
gestational age, age at sampling, season of birth, and birth 
year. Significant features (FDR-adjusted p < 0.05) were 
analyzed as quartiles (5-AVAB) or the secondary model 
was additionally adjusted for family history of psychiatric 
disorders, a genetic risk score for autism, and six genetic 
principal components. The analyses were also stratified 
for age of diagnosis (age of diagnosis < 6). Enrichment for 
metabolite classes was analyzed using Fisher’s exact test. 
Associations between metabolite features and family his-
tory of psychiatric disorders were analyzed using logistic 
regression models. Corresponding analyses for metabo-
lite features and genetic risk for autism were conducted 
using linear regression. Analyses for family history of psy-
chiatric disorders were adjusted for gestational age, age at 
sampling, season of birth, and birth year, while analyses 
on genetic risk score for autism further were adjusted 
for the first six genetic principal components. Inter-cor-
relation analyses between metabolite features were con-
ducted using Partial Pearson’s correlation tests, adjusted 
for all metabolite features in each respective dataset. 

Correlations between metabolites and habitual dietary 
intakes were conducted using Partial Spearman’s corre-
lation tests, adjusted for age, sex, and body-mass index. 
Analyses using partial correlations were performed in the 
ppcor  [44] package. Phenome-wide analysis of 5-amino-
valeric acid betaine was performed using least absolute 
shrinkage selection operator (LASSO) regression. A full 
description of the LASSO method can be found in Addi-
tional File 1:supplementary material. All statistical analy-
sis was performed in R 4.2.1 and Jupyter Notebooks are 
accessible at: https:// github. com/ ssi- dk/ CD- MRG- metab 
olomi cs_ autism.

Results
Study cohort
We utilized a cohort of 1478 male Danish neonates born 
between 2003 and 2008, comprising 739 newborns who 
were diagnosed with autism before the age of 10, and 
739 typically developed individuals. Since the neonatal 
DBS metabolome is influenced by the age at sampling 
(3 to 8  days), season of birth [45], gestational age [46] 
(gestational week 34 to 42), and biobank storage time 
(15–18 years) [47], these factors were used to match each 
case of incident autism with a control neonate. Cases 
and controls were very similar in terms of gestational 
age, age at sampling, season of birth, and age of mother 
(Table 1). Family history of mental disorders were signifi-
cantly more common in incident autism cases compared 
to controls (p < 0.001). The mean age of autism diagnosis 
was 6.0 years. A total of 865 metabolites (mass spectral 
features with unique MS/MS fragmentation patterns) 
were measured and present in at least 25% of the sam-
ples in the discovery cohort. Putative annotation on the 
metabolite class level was conducted by combining mass 
spectral molecular networking (GNPS) [26], unsuper-
vised substructure discovery (MS2LDA) [27], in silico 
annotation through Network Annotation Propagation 

Table 1 Characteristics of the neonatal study cohort, presented as mean values for continuous variables (standard deviation 
within parentheses) and percentage for categorical variables (numbers within parentheses). P‑values are calculated using t‑test for 
continuous variables and chi‑square test for categorical variables

Cases (N = 739) Controls (N = 739) P

Age at sampling (years) 5.8 (± 1.2) 5.8 (± 1.1) 0.67

Gestational age (weeks) 40.0 (± 1.3) 40.0 (± 1.2) 0.85

Born in winter 22.7% (168) 22.7% (168) 0.99

Born in spring 24.4% (180) 25.0% (185)

Born in summer 25.7% (190) 25.4% (188)

Born in autumn 27.2% (201) 26.8% (198)

Age of mother (years) 30.8 (± 5.1) 30.8 (± 4.7) 0.96

Age of autism onset (years) 6.0 (± 2.0) ‑ ‑

Family history of mental disorder 30.0% (222) 18.7% (138)  < 0.001

https://github.com/ssi-dk/CD-MRG-metabolomics_autism
https://github.com/ssi-dk/CD-MRG-metabolomics_autism
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[30], Sirius + CSI:FingerID [48], MolNetEnhancer [32], 
and deep neural networks in CANOPUS [33]. This 
resulted in level 2 annotations for 111 (12.8%) metabolite 
features and level 3 annotations for 229 (26.5%) metabo-
lite features [24].

Metabolites from a wide range of biochemical classes are 
associated with autism
In total, 99 metabolites had nominally significant associa-
tions (p < 0.05) with development of autism, as evaluated 
using logistic regression models adjusted for gestational 
age, age at sampling, season of birth, and birth year 
(Fig. 1A) (Additional File 2: Table S1). These included 18 
metabolites that could be assigned a structural annota-
tion (level 2 annotation), additionally 15 metabolites with 
a putative metabolite class, and 66 unknown features. 
The annotated features included six acylcarnitine-related 
metabolites (5-aminovaleric acid betaine, C2:0-carnitine, 

C8:0-carnitine, C10:0-carnitine, C10:3-carnitine, and 
C16:0-carnitine), cyclic dipeptides (cyclo-leucine-proline 
and cylo-proline-valine), tryptophan metabolites (indole-
3-acetic acid and indole-carboxaldehyde), methionine 
cycle metabolites (methionine and betaine), alanine, uric 
acid, creatine, amino adipic acid, glycerophosphocholine 
and pantothenic acid.

After adjusting for multiple testing, only two of the 99 
metabolites remained significant, cyclo-Leucine-Proline 
(cLP) (FDR-adjusted p = 3.3e − 3) (Additional File 1: Fig. 
S1) and 5-aminovaleric acid betaine (5-AVAB) (FDR-
adjusted p = 0.031) (Additional File 1: Fig. S2). Being 
in the top quartile 5-AVAB was associated with a 69% 
increased probability of future autism compared to being 
in the lowest quartile (Fig. 1B). Since measurable levels of 
cLP were detected in less than 75% of the neonatal cohort 
(33%), it was treated as a binary variable in the regression 
analyses. Having measurable levels of cLP was associated 

Fig. 1 Associations between metabolites in neonatal DBS and future probability of autism spectrum disorder. Odds ratios are calculated using 
logistic regression models, adjusted for age at sampling, gestational age, birth year, and season of birth. A Associations between all measured 
metabolite features and autism, with significance threshold defined as false discovery rate adjusted p < 0.05. Odds ratios are expressed as increased 
odds of autism per standard deviation increment of metabolite level. Significant features with an annotation confidence of level 2 or higher are 
named in the figure. B Associations between 5‑aminovaleric acid betaine (5‑AVAB) (quartiles) and cyclo‑leucine‑proline (cLP) (binary) and autism. 
Odds ratios are expressed as compared to the reference category (“Absent” for cLP and quartile 1 [Q1] for 5‑AVAB). C Associations with autism 
stratified for age of diagnosis (< 6 years of age) for 5‑AVAB and cLP. Odds ratios are expressed per standard deviation increment of metabolite level
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with a 70% increased odds of developing autism in the 
future (Fig. 1B).

Given that autism is partly dependent on genetic fac-
tors, we investigated whether the neonatal metabo-
lome was associated with a genetic risk score for autism 
and with a family history of psychiatric disorders. No 
metabolites were significantly associated (FDR-adjusted 
p < 0.05) with the genetic risk score of autism, but 24 
nominally significant associations were found (Addi-
tional File 1: Fig. S3). The strength of the association 
between the genetic risk score (AUC = 0.58) and autism 
was similar as what was found for cLP (AUC = 0.55) 
and 5-AVAB (AUC = 0.55). There were eight metabo-
lites associated with family history of psychiatric dis-
orders (FDR-adjusted p < 0.05), including 5-AVAB, 
C8:1-carnitine, stachydrine, and trimethyllysine, while a 
total of 127 metabolites had nominally significant asso-
ciations (p < 0.05) (Additional File 1: Fig. S4). However, 
adjustments for family history of mental disorders and 
genetic risk score for autism only had a minor impact on 
the association between metabolites and future autism 
(Additional File 2: Table S2).

Speculating that age of diagnosis is related to the sever-
ity of autism traits and a higher likelihood of metabolic 
markers of autism being present early in life, we per-
formed analyses stratified on age of diagnosis. Overall, 
the association between the neonatal metabolome and 
autism was stronger for individuals diagnosed before 
(N = 391), compared to after (N = 348) the age of six. 

There were 40 nominally significant associations for 
early-diagnosed individuals and 13 nominally signifi-
cant metabolites for individuals diagnosed late. Also, 
two metabolites, 5-AVAB and an unknown feature (m/z 
247.13, 3.91  min) remained associated with early diag-
nosis of autism after adjustments for multiple testing 
(Additional File 2: Table  S3). The association between 
5-AVAB and autism was significantly stronger (p for 
interaction = 0.032) in autism cases diagnosed at the age 
of 6 years or earlier. For cLP the associations were simi-
lar for cases diagnosed before (p = 1.2e − 3) and after 
(p = 8.8e − 4) the age of six (Fig. 1C).

Cyclo(leucine‑proline) and autism
cLP and the structurally similar cyclo(pro-val) belong to 
the metabolite class diketopiperazines (cyclic dipeptides), 
both associated with increased probability of autism in 
the current study. Both metabolites were detected in less 
than 75% of the neonates and were thus treated as binary 
variables. For cLP, cyclo(pro-val) was the most strongly 
correlated metabolite (rho = 0.69), while the caffeine 
metabolite paraxanthine was the most negatively corre-
lated (rho =  − 0.10) (Fig. 2A). We did not find any signifi-
cant correlation between cLP and caffeine in the neonatal 
DBS (rho = 0.00 p = 0.97). Moreover, including both cLP 
and cyclo(pro-val) as covariates in the regression model 
on autism clearly attenuated the associations for both 
metabolites (Additional File 2: Table S4), indicating that 

Fig. 2 Correlations between the two metabolites significantly associated with autism and other detected metabolites. Correlation coefficients are 
partial Pearson’s correlation coefficients adjusted for all metabolite features (N = 865). Significant correlations are indicated with an * at p < 0.05. A 
Correlations between acylcarnitine‑related metabolites. B Correlations between cyclo(leucine‑proline) and other detected metabolites
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the two diketopiperazines may have a shared pathophysi-
ological relation to autism.

5‑Aminovaleric acid betaine and autism
5-AVAB is a key regulator of intracellular carnitine avail-
ability, since it influences both cellular uptake [49] and 
biosynthesis of carnitine [50]. As aforementioned, we 
also found that elevated levels of several acylcarnitines 
were associated (p < 0.05) with the later development of 
autism. Metabolite class enrichment analysis showed 
that acylcarnitines were significantly enriched among 
nominally significant associations with future autism 
(p = 0.015) and with family history of mental disorders 
(p = 0.013) (Additional File 2: Table  S5). Partial correla-
tion analysis revealed that 5-AVAB was correlated with 
several metabolites in the acylcarnitine class (Fig.  2B). 
Notably, 5-AVAB showed positive correlations with C5:0-
carnitine and free carnitine but negative correlation with 
the carnitine precursor 4-trimethylamoniumbutanoic 
acid. Adjusting the model between 5-AVAB and autism 
for the autism-associated acylcarnitines (C2:0-carnitine, 
C8:0-carnitine, C10:0-carnitine, C10:3-carnitine, and 
C16:0-carnitine), the associations were attenuated but 
remained significant (OR = 1.22, P = 1.5e − 3).

If a causal link between 5-AVAB and autism probabil-
ity can be established, it is important to examine how 
neonatal 5-AVAB levels can be modified. We have previ-
ously shown that 5-AVAB is vertically transferred from 
mother to infant, since the maternal levels, both during 
gestational week 24 and 1 week postpartum, are strongly 
correlated with the neonatal levels [51]. This suggests 
that the neonatal levels of 5-AVAB to a large extent are 
a reflection of the prenatal exposure of 5-AVAB. Under-
standing the key determinants of 5-AVAB in adults, 
should highlight potential strategies to modulate the 
maternal levels and thus the resulting prenatal exposure.

Dietary and genetic determinants of 5‑aminovaleric acid 
betaine
To investigate determinants of 5-AVAB levels in adults, 
we hypothesized that their levels could be influenced by 
dietary or genetic factors. We used plasma metabolomics, 
genome-wide genotyping, and dietary intake data from 
two Swedish population-based cohorts, MDC (N = 3833) 
and MOS (N = 3430) (Additional File 2: Table  S6). A 
feature with correct MS1 match (m/z error < 5  ppm) to 
5-AVAB (m/z 160.13) was putatively annotated in both 
cohorts by matching acquired m/z 160.13 fragmenta-
tion spectra to online databases using MASST [38]. One 
spectrum achieved a match in both MDC (cosine = 0.83, 
mass difference < 0.01 and 5 shared peaks) and MOS 
(cosine = 0.81, mass difference < 0.01 and 4 shared peaks) 
with the uploaded 5-AVAB spectrum (Additional File 

1: Fig. S5), and is thus referred to as 5-AVAB from here 
onwards. In both MDC and MOS, 5-AVAB was corre-
lated similarly with acylcarnitine-related metabolites as 
in the cohort of neonates. This includes overall positive 
correlations with short-chain acylcarnitines and free car-
nitine along with negative correlations with 4-trimethyla-
moniumbutanoic acid for MOS only (Additional File 1: 
Fig. S6–S7).

By investigating six dietary intake groups in MDC 
(N = 3714), 5-AVAB correlated significantly (FDR-
adjusted p < 0.05) with increased intake of dairy 
(rho = 0.18), decreased intake of meat (rho =  − 0.09), 
and decreased intake fruit and vegetables (rho =  − 0.07). 
Among specific dairy-related intakes, increased intake 
of milk (rho = 0.22) and yogurt (rho = 0.09) were sig-
nificantly correlated (Fig.  3A). Similar correlations were 
seen for 5-AVAB in MOS (N = 1539), where dairy intake 
(rho = 0.15) was correlated with 5-AVAB (Fig. 3B). Intake 
of milk (rho = 0.12), but not other specific dairy intakes, 
was associated with 5-AVAB in both cohorts. In the 
stratified analysis, both total dairy and milk intake were 
significantly associated in men and women separately. In 
MDC, stronger correlations were observed for dairy in 
men compared to women, although no differences were 
observed in MOS (Additional File 2: Table S7).

By conducting a genome-wide association study 
(GWAS) in MDC (N = 3409), we found several genome-
wide significant (p < 5.e − 8) variants near the SLC22A5 
and SLC22A4 genes (Fig.  4A), with rs272889 being the 
most strongly associated SNP (p = 3.6E − 20) (Fig.  4B)
(Additional File 2: Table S8). Stronger associations were 
seen in men (Additional File 1: Fig. S8) compared to 
women (Additional File 1: Fig. S9) for variants near both 
SLC22A4 and SLC22A5. Both dietary intake of dairy and 
the top SNP was among the 10 most significantly cor-
related variables in a phenome-wide scan for 5-AVAB 
determinants performed using 140 clinical, dietary, 
genetic, and metabolomic variables in MDC (Additional 
File 1: Fig. S10). In the neonatal cohort, there was no 
genome-wide significant association between SNPs and 
either 5-AVAB (Additional File 1: Fig. S11) (Additional 
File 2: Table  S10) or cLP (Additional File 1: Fig. S12) 
(Additional File 2: Table S11).

Discussion
The main finding of our study is that levels of 5-AVAB 
and cLP are higher in newborns who later develop autism 
compared to neurotypical controls. We found additional 
putative associations between metabolites previously 
linked to autism in cross-sectional studies, indicating 
that these alterations may be present already at birth. 
To our knowledge, this is the first large-scale study that 
investigated the untargeted neonatal metabolome in 
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relation to autism, paving the way for the identification of 
early metabolite biomarker candidates. We suggest that 
neonatal 5-AVAB levels largely reflect the maternal lev-
els, which may be modified by dietary interventions.

Diketopiperazines, such as cLP, have been proposed 
to be involved in psychiatric disorders [52], have an 
observed ability to cross the blood–brain barrier [53], 
and are present in a variety of food and beverages [54]. 
Diet is a potential determinant of cLP, given that its level 
has been associated with increased intake of coffee [55] 
and alcohol [56] and decreased intake of starchy vegeta-
bles [56] in previous studies. However, we were not able 
to identify cLP in the Malmö adult cohorts, where data 
on nutrition was available, and can therefore only specu-
late on potential sources of cLP in our study. It is unlikely 
that maternal coffee consumption represents the major 
contribution to neonatal cLP, since caffeine was not cor-
related with cLP in the neonates. Results from GWAS 
show that genetic variants in CYP1A2 and CYP2C19 have 
been shown to be associated with cLP levels in adults 
[57]. Our finding that cLP was correlated with the caf-
feine metabolite paraxanthine, supports that neonatal 
levels of cLP could be partly regulated by CYP1A2 activ-
ity, since it is the enzyme mainly responsible for the deg-
radation of caffeine. CYP2C19 is an enzyme involved 
in the metabolism of several drugs used for psychiat-
ric disorders, including benzodiazepines and selective 
serotonin receptor inhibitors (SSRI) [58] and elevated 

expression has been associated with lower hippocampal 
volume in mice [59] and increased enzymatic capacity 
is associated with depression in humans [60]. Prenatal 
exposure to SSRIs is associated with an increased prob-
ability of autism [61], although meta-analyses indicate 
that at least some of the probability increase can be 
attributed to genetic confounding [62]. Furthermore, cLP 
could potentially originate from the gut microbiome, as it 
previously has been proposed to function as a quorum-
sensing molecule for certain bacteria, while inhibiting the 
growth of other bacteria and fungi. Thus, gut microbes 
might produce cLP to induce growth suppression among 
competing bacterial species [63].

The finding that neonatal levels of the metabolite 
5-AVAB is associated with increased risk of future devel-
opment of autism confirms the results from our previ-
ous pilot study in 37 neonates and matching controls 
[45]. Based on our finding that 5-AVAB is more strongly 
associated with autism diagnosed before the age of six, 
we speculate that neonatal levels are connected to the 
severity of autism traits. Several studies in mice have 
indicated that 5-AVAB is involved in brain development, 
both in the fetus and adult mice. For instance, fetuses of 
germ-free (GF) mice lack several microbially produced 
metabolites, including 5-AVAB, and simultaneously dis-
play a reduced thalamocortical axonogenesis compared 
to conventionally raised mice. This effect was reversed by 
injection of 5-AVAB in the GF mice, preserving normal 

Fig. 3 Associations between plasma levels of 5‑AVAB and dietary intakes in the Malmö Diet and Cancer Study (N = 3714) and the Malmö Offspring 
Study (N = 1539). The heatmap shows partial Spearman’s correlations (adjusted for age, sex, and body mass index) between eleven dietary intake 
groups and 5‑AVAB. Significance was defined as FDR‑adjusted p < 0.05
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Fig. 4 Associations between single nucleotide polymorphisms (SNPs) and plasma levels of 5‑amino valeric acid betaine (5‑AVAB) in the Malmö Diet 
and Cancer Study (MDC) (N = 3409). A Locus zoom plot, indicating associations between SNPs near SLC22A5. B Manhattan plot of the genome‑wide 
association study of plasma levels of 5‑AVAB. Genome‑wide significance threshold is indicated at p < 5.0e − 8. Genome‑wide significant SNPs are 
colored in blue and are located in the SLC22A5 and SLC22A4 genes
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thalamocortical axonogenesis [64]. Given that early 
brain growth is often faster in children who later develop 
autism [65], one could speculate that high fetal brain lev-
els of 5-AVAB may contribute to stimulating brain over-
growth. On the other hand, levels of 5-AVAB have been 
shown to be increased in the blood and brain of older 
adults and have negative effects on learning and memory 
[66]. Overall, these findings indicate that 5-AVAB may 
be involved in brain development, although the detailed 
functions are largely unknown.

Speculating that 5-AVAB is related to brain develop-
ment, it is crucial to investigate how neonatal 5-AVAB 
levels can be modulated. We have previously shown that 
5-AVAB may be directly transferred from the mother to 
the neonate, as the maternal plasma levels of 5-AVAB are 
strongly correlated with the neonatal levels of DBS [51]. 
Thus, it is possible that the neonatal 5-AVAB levels could 
be considered a proxy for the prenatal exposure to the 
maternal 5-AVAB.

The current and previous studies indicate that 5-AVAB 
in adults originates from endogenous production, dietary 
intake, and the gut microbiome, which is briefly dis-
cussed below. Endogenous production of 5-AVAB from 
the carnitine precursor trimethyllysine (TML) has been 
reported [67, 68] and has been proposed to occur via 
oxidative deamination followed by decarboxylation [69]. 
The exact production pathway and to what extent the 
total pool of circulating 5-AVAB originates from endog-
enous production is however not known. More evidence 
for an endogenous production of 5-AVAB comes from a 
recent study investigating the effects of predicted loss-of-
function variants in the X-chromosome gene TMLHE70. 
TMLHE codes for the enzyme trimethyllysine dioxyge-
nase, responsible for catalyzing the conversion of TML 
to hydroxytrimethyllysine, the first step in the carni-
tine biosynthesis. Predicted loss-of-function variants 
in TMLHE associate with increased levels of TML and 
5-AVAB and with decreased levels of hydroxytrimethyl-
lysine and 4-trimethylammoniobutanoic, both down-
stream of TMLHE in the carnitine biosynthesis pathway. 
As expected, the effects of the loss-of-function variants 
are significantly larger in men compared to women [70].

Although endogenous production is likely an impor-
tant source of circulating 5-AVAB, there is mounting evi-
dence that the gut microbiome also is a major contributor 
[49, 50]. These include several reports of lack of 5-AVAB 
in germ-free mice [49, 64], strong associations between 
microbial species in the human gut and levels of 5-AVAB 
in the brain [66] and plasma [11], and correlations with 
gut microbial diversity [11]. Moreover, levels of 5-AVAB 
in mice fetuses are distinctly diminished when maternal 
microbiota is lacking [71]. When maternal microbiota is 
present, 5-AVAB appears to localize to a wide variety of 

tissues, including the brain [71]. The relative contribu-
tion of the endogenous and the gut microbial production 
of 5-AVAB are not known and interspecies differences 
may exist. For instance, substantial differences in the 
biosynthesis of carnitine, where carnitine is produced 
from TML much more efficiently in mice compared to 
humans [72], may increase the bioavailability of TML 
for the production of 5-AVAB in humans. Although the 
gut microbiota is likely an important source of human 
circulating 5-AVAB, the exact microbial pathways to 
produce 5-AVAB are unknown. In recent years, the gut 
microbiome has increasingly been implicated in autism, 
as children with autism experience an increased preva-
lence of gastrointestinal issues [6] and have an altered 
gut microbiome [7, 8] compared to typically developing 
children. Maternal gut health has also been linked to the 
probability of autism in the offspring [9], suggesting that 
the maternal gut microbiome may influence health out-
comes for the offspring. In this context, we propose that 
5-AVAB may be a mediator in the gut-brain axis.

Dietary intake could be an alternative source of 
5-AVAB and previous studies have shown that plasma 
5-AVAB is correlated with increased intake of whole-
grain [73] and milk [74, 75], which we further support 
by showing associations between habitual intake of total 
dairy, milk, and yogurt with increased plasma 5-AVAB in 
two large middle-age Swedish cohorts.

We found that plasma 5-AVAB in the adult was 
genome-wide associated with variants near the SLC22A4 
and SLC22A5 genes, coding for a transmembrane trans-
porter for carnitines and 5-AVAB, supporting results 
from previous GWAS [76, 77]. Our findings also indi-
cated that the associations with variants near SLC22A5 
and SLC22A4 were stronger in men compared to women. 
Similar associations were not seen in neonates, indicat-
ing that other factors are more important in determining 
the neonatal level of 5-AVAB. It is however noteworthy 
that the neonatal GWAS was performed in a significantly 
smaller population, which limits the ability to rule out 
genetic determinants. Overall, our findings indicate that 
5-AVAB levels are influenced by both genetic and dietary 
factors, in addition to the well-established link with the 
gut microbiome. If any of the above causal links between 
prenatal exposure to high 5-AVAB and autism develop-
ment can be proven, 5-AVAB may represent an early and 
modifiable biomarker of autism.

The most well-described function of 5-AVAB is its abil-
ity to influence lipid metabolism via regulating the cellu-
lar uptake of carnitine and acylcarnitines. Cellular uptake 
of 5-AVAB is dependent on the carnitine transport pro-
tein SLC22A5, whereby it can compete with free carni-
tine and acylcarnitines for uptake into tissues [49, 67, 
78] and across the blood–brain barrier [79]. Moreover, 
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5-AVAB has been shown to regulate the endogenous 
synthesis of carnitine in mice by competitive inhibition 
of ℽ-butyrobetaine hydroxylase, the enzyme catalyzing 
the rate-limiting step in the carnitine biosynthesis path-
way, the hydroxylation of 4-trimethylammoniobutanoic 
acid (ℽ-butyrobetaine) to carnitine [50]. Thus, 5-AVAB 
regulates carnitine homeostasis by decreasing carnitine 
biosynthesis and lowering cellular uptake, which in con-
cert may decrease fatty acid oxidation [49, 50] and lead 
to mitochondrial dysfunction [50], due to intracellular 
carnitine deficiency. Our study also indicates an intri-
cate relation between 5-AVAB and acylcarnitines, where 
levels of 5-AVAB were correlated with higher circulating 
carnitine and short-chain acylcarnitines but lower lev-
els of 4-trimethylammoniobutanoic acid. Deletions in 
TMLHE are relatively common (1/350 males), cause car-
riers to be auxotrophic for carnitine, and have also been 
linked to an increased probability of developing autism 
in boys [80, 81]. Several previous cross-sectional metab-
olomics studies show that children with autism have 
altered circulating levels of acylcarnitines [15, 82, 83] and 
free carnitine [15]. Carnitine supplementation in children 
with autism has resulted in improved behavioral scores 
[84], but larger studies are needed to confirm their effi-
cacy. The directionality of the associations has not been 
completely consistent and one study indicates that the 
acylcarnitines in children with autism differ depending 
on the fatty acid side chain, where short-chain acylcarni-
tines generally were more abundant in autism compared 
to controls and vice versa for long-chain acylcarnitines 
[15]. In our study, this is reflected in correlations between 
acylcarnitines and 5-AVAB, with a gradient in correla-
tions going from positive for short-chain to negative for 
long-chain features. However, the distinction between 
long- and short-chain features was not seen in the asso-
ciation with future autism. This leads us to propose two 
potential mechanisms linking 5-AVAB to autism. The 
results from the current studies are consistent with the 
theory of brain carnitine deficiency as a causal factor for 
autism and that 5-AVAB may act as a regulator of intra-
cellular uptake of carnitine. An alternative hypothesis, 
where there is a causal link between 5-AVAB and autism, 
independent of carnitine, should also be further investi-
gated. This could also explain the links between TMLHE 
deletions in males and autism, since TMLHE deficiency 
also results in increased TML and 5-AVAB levels.

Finally, several of the nominally significant metabolites 
have previously been linked to autism. Altered products 
of gut bacterial tryptophan metabolism have previously 
been reported in children with autism [85]. In our study, 
this was reflected by increased levels of indole-3-acetic 
acid and indole-3-carboxaldehyde. Uric acid has been 
reported to be elevated in the urine of children with 

autism [86]. The methionine cycle, including methionine 
and betaine, has been suggested to be altered in autism, 
but conflicting findings make its involvement in autism 
etiology unclear [87].

We acknowledge several limitations with our study. 
Although the described autism-associated alterations 
in the neonatal metabolome are present shortly after 
birth and precede autism diagnosis by several years, our 
study is observational and should be interpreted within 
that context. It is thus not possible to infer causal rela-
tionships between metabolites and the development of 
autism. Similarly, the associations shown by the GWAS 
do not prove a causative link between the gene near asso-
ciated variants and 5-AVAB. However, our findings gen-
erate hypotheses for mechanisms linking the neonatal 
metabolites to autism, which should be further investi-
gated in future studies, preferably using targeted metabo-
lomics. Exclusion of co-occurring mental disorders was 
performed for neonates born between 2003 and 2005, 
but not for later births. A broader coverage of the metab-
olome could have been achieved by using a combination 
of different extraction solvents, chromatographic separa-
tion, and ionization mode. Since the sample material was 
limited, we aimed at using a single method with as broad 
coverage of annotated semi-polar metabolites as possible. 
We were unable to measure cLP in the independent mid-
dle-aged cohort, which limits our potential to investigate 
its genetic and dietary determinants. Moreover, the neo-
natal cohort lacks information about socioeconomic sta-
tus and maternal parity, which are potential confounders 
in the association between the neonatal metabolome and 
autism. Finally, the neonatal cohort consisted of males 
only, which hinders us from drawing conclusions about 
the general population.

Conclusions
Cyclo-leucine-proline and 5-AVAB are associated with 
future diagnosis of autism in Danish neonates, both rep-
resenting novel early biomarkers for autism. 5-AVAB 
is potentially modifiable and may influence carnitine 
homeostasis.
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