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Abstract 

This review seeks to address major gaps and delays between our rapidly evolving body of knowledge on type 2 dia-
betes and its translation into real-world practice. Through updated and improved best practices informed by recent 
evidence and described herein, we stand to better attain A1c targets, help preserve beta cell integrity and moder-
ate glycemic variability, minimize treatment-emergent hypoglycemia, circumvent prescribing to “treatment failure,” 
and prevent long-term complications. The first topic addressed in this review concerns updates in the 2023 and 2024 
diabetes treatment guidelines for which further elaboration can help facilitate integration into routine care. The 
second concerns advances in diabetes research that have not yet found their way into guidelines, though they are 
endorsed by strong evidence and are ready for real-world use in appropriate patients. The final theme addresses 
lingering misconceptions about the underpinnings of type 2 diabetes—fundamental fallacies that continue to be 
asserted in the textbooks and continuing medical education upon which physicians build their approaches. A cor-
rected and up-to-date understanding of the disease state is essential for practitioners to both conceptually and trans-
lationally manage initial onset through late-stage type 2 diabetes.
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Key takeaways

• Recent new guideline recommendations ready to be 
routinely incorporated into routine practice include 
the following:

◦ Complication-centric prescribing should take 
center stage. Treatment plans should no longer ‘silo’ 
hyperglycemia as a single treatment target but rather 
manage it synchronously with the patient’s comor-
bidities and risk factors.
◦ In patients with cardiorenal risk factors, long-act-
ing glucagon-like peptide-1 (GLP-1) receptor ago-
nists and sodium-glucose cotransporter-2 inhibitors 
(SGLT-2is) have been shown to provide protection 
and are recommended as preferred treatments.
◦ A novel algorithm enables treatment decision-
making for latent autoimmune diabetes in adults 
(LADA) based on glutamic acid decarboxylase 
(GADA) and C-peptide testing [1]

• Several key advances in the management of type 2 
diabetes are supported by strong evidence that make 
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these ready for use in routine care, despite remain-
ing in a‘holding pattern’ before full integration into 
guidelines. These include:

◦ The pleiotropic benefits of several antidia-
betic agents provide important new considera-
tions to treatment decision-making; and, should be 
employed in treatment selection in the clinic.
◦ Disease remission should be elevated to a pri-
mary objective of case management of type 2 diabe-
tes beyond the role it had  in past routine care. The 
inherent resilience of beta cells can be harnessed to 
help remit hyperglycemia through the use of diet 
and lifestyle modifications and/or short-term inten-
sive pharmacotherapy.

• The underpinnings of type 2 diabetes etiology and 
progression have been corrected. In particular,

◦ Early type 2 diabetes is no longer considered an 
intractable (‘inexorable’) state. Beta cells, in fact, 
remain robust and resilient through much of the 
course of the disease, and with support, can resume 
partial or complete glucoregulation.
◦ Type 2 diabetes is not a single disease across all 
patients, nor does it arise from the same defects. 
Accordingly, tailored therapy is imperative.
◦ Precision medicine veers away from management 
to treatment failure with sequential add-on therapy. 
Instead, targeted therapy can address the individual 
drivers of hyperglycemia in each patient without 
agents that are ineffective in the given patient.
◦ Target attainment is distinctly possible with cur-
rent treatments, without treatment-emergent hypo-
glycemia. Intensive glucose control is pivotal for 
preventing or offsetting diabetes-related long-term 
outcomes.
◦ With the expanding antidiabetes armamentarium, 
it is possible to reduce reliance on sulfonylureas and 
exogenous insulin, which present less desirable ben-
efit: risk profiles (including weight gain, hypoglyce-
mia, and ‘wear and tear’ on beta cells) than many 
other currently available options.

Background
Despite the recent expansion of antidiabetic agents such 
as GLP-1 receptor agonists and SGLT-2is, glycemic 
control remains suboptimal in many patients. Approxi-
mately half of all type 2 diabetic patients in the United 
States and worldwide fail to achieve the glycemic target 
of A1c ≥ 7.0% [2–4].

Ninety percent of diabetes cases are managed by pri-
mary care providers [5]. Guidelines are integral to updat-
ing best practices and are especially edifying for general 
practitioners who maintain a broad knowledge base 
across numerous medical conditions. Primary care pro-
viders are encouraged to apply the most effective treat-
ment parameters in clinical practice rather than relying 
on specialists [5]. This review seeks to highlight key 
developments in the field to both provision and empower 
generalists as well as specialists in dispensing care in line 
with the latest knowledge in the disease state ready for 
use in routine care.

The field of type 2 diabetes research has detailed 
guidelines issued by the American Diabetes Associa-
tion and the American Association of Clinical Endocri-
nology [6–20]. Many advances, however, see extensive 
delays in anatomizing research discoveries into clini-
cal approaches. This prudence helps prevent the need 
to elaborate extensively on areas pending additional 
research or to deadopt a faulty recommendation. On the 
other hand, it impedes the timeliness of advances reach-
ing patients. It also sets a deceptively slow rate of change 
in best practices, contributing to “physician habituation,” 
one contributing aspect to clinical inertia [21, 22].

In this review, we shortlisted timely leaps in the man-
agement of type 2 diabetes—advances that we believe are 
ready for “prime time.” We provide context for selected 
updates that have already been incorporated into guide-
lines—context that we feel will edify the rationale for 
readers and speed adoption into real-world use. Second, 
we detail several important developments that are yet to 
be translated to the clinic while these remain either in 
vigorous debate or in limbo despite a strong body of evi-
dence of the benefit and utility of these having benefit to 
patients.

Third, this review revisits outmoded dogmas about the 
basic science of type 2 diabetes—premises that continue 
to be widely reiterated in physician education but are, in 
fact, incorrect. Today’s type 2 diabetes is “not your moth-
er’s type 2 diabetes,” that is, our modern understanding 
of dysglycemia is a departure from old tenets. A correct 
understanding of beta cell function and dysglycemia is 
needed for physicians to be in command and optimally 
control diabetes and its sequelae in their clinics.

Manage hyperglycemia synchronously, rather 
than in parallel, with patient comorbidities and risk factors
Type 2 diabetes, metabolic syndrome, and cardiorenal 
compromise have been classically viewed as separate 
diagnostic entities and are managed autonomously. These 
conditions are highly interrelated, however, and should 
be regarded as coincident conditions. Moreover, these 
conditions represent overlapping targets for therapy [18]. 
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For example, renal dysfunction continues to be underdi-
agnosed in patients with diabetes [23]. Patients with type 
2 diabetes and comorbid renal dysfunction are five times 
more likely to die from cardiovascular causes before 
reaching kidney failure, highlighting the interrelated-
ness of the cardiorenal axis with dysglycemia. One study 
reported a 16-year differential in longevity for individuals 
with type 2 diabetes with or without renal compromise 
[24], stressing the importance of screening and managing 
renal dysfunction alongside hyperglycemia.

In 2023, an international expert task force issued a dic-
tate for physicians: apply early, intensive, and coordinated 
approaches across interrelated disease states [18]:

“…all too often, the risk factors for these disorders are 
not addressed promptly in clinical practice, leading 
to irreversible pathologic progression… Traditional 
approaches to treatment involving sequential ther-
apy, in which agents are added only after one has 
failed, contribute to clinical inertia and often pre-
vent goal attainment, leading to adverse outcomes…. 
in turn contributing to increased morbidity and 
mortality. In contrast, early diagnosis and prompt, 
intensive intervention, often with initial combina-
tion therapy, leads to faster goal attainment and 
improved outcomes for at-risk patients.” Handels-
man et al. [18].

Early intervention and intensive management of patients 
with diabetes, cardiorenal, and metabolic diseases) [18].

Accordingly, the first key take-away of this review is 
to incorporate change from the creation of the treat-
ment plan for the patient: looking beyond hyperglyce-
mia. Large-scale studies in type 2 diabetes patients have 
proven to be a treasure-trove for insights into the nature 
and management of the disease. Decades of data have 
elucidated the full range of hyperglycemia-related con-
ditions and long-term complications. The continuum 
of related conditions spans obvious conditions, includ-
ing obesity and metabolic syndrome, prediabetes, type 
2 diabetes, hypertension, and dyslipidemia, and includes 
nonalcoholic fatty liver disease, atherosclerotic cardio-
vascular disease, atrial fibrillation, chronic kidney dis-
ease, heart failure, and cognitive dysfunction [18]. This 
represents some seemingly disparate conditions under 
which case management has traditionally siloed or over-
looked. In addition to being an outcome of dysglycemia, 
the presence of one disease state may be a harbinger for, 
or exacerbate, another. This insight elevates the constella-
tion of comorbid conditions of hyperglycemia from a the-
oretical construct to a bona fide, practical management 
tool and objective [18]. This broadened view of dysme-
tabolism affords valuable opportunities in the clinic for 
early diagnosis—and therefore prevention—of comorbid 

conditions. This recommendation made our list because 
it readily translatable into practice and sanctioned in the 
guidelines yet relies on practitioners to make a wholesale 
revision of their approach to care, if not already adopting 
this approach. The benefit to their patients is improved 
short- and long-term outcomes.

Cardiorenal benefits of antidiabetic agents: pleiotropic 
benefits
In addition to the classic long-term outcomes (cardio-
vascular disease, peripheral artery disease, nephropathy, 
retinopathy, and neuropathy), incontrovertible evidence 
connects hyperglycemia to stroke, cognitive decline, 
gastrointestinal problems, immunocompromise, can-
cer, and even dental disease. This awareness expands our 
appreciation for the broad physiologic consequences of 
dysglycemia.

Another dividend of large studies in patients with type 
2 diabetes has been that many of our current glucose-
lowering agents possess valuable pleiotropic actions. For 
example, the PROactive Study showed that pioglitazone 
improves triglycerides, albuminuria, markers of inflam-
mation, and fatty liver and reduces the risk of stroke 
and myocardial infarction—each through mechanisms 
that appear to be distinct from its direct insulin-sen-
sitizing action [25–28]. Icosapent ethyl similarly con-
ferred cardiovascular benefits independent of its direct 
lipid-lowering effects [29, 30]. Finerenone was shown 
to pleiotropically influence tissue remodeling through 
alternative mechanisms to those of the mineralocorticoid 
receptor [31–33].

GLP-1 receptor agonists and SGLT-2is were found 
to exert striking benefits on the heart, liver, kidney, and 
even the brain [34–40]. Emerging research indicates that 
these benefits are conferred by pleiotropic mechanisms, 
that is, pathways distinct from those involved in glucose 
balance. For example, GLP-1 receptor agonists were 
found to improve myocardial blood flow in a manner 
independent of myocardial glucose uptake [41]. Interest-
ingly, receptors for GLP-1 have been found in numerous 
tissues beyond the endocrine pancreas and gastrointesti-
nal tract, including the brain, immune system, heart, and 
peripheral cardiovascular vasculature.

GLP-1 receptor agonists confer protection to the kid-
ney. To characterize the mechanisms through which 
GLP-1 receptor agonists protect against diabetic kidney 
disease, the phase 3B FLOW Trial will assess the effects 
of semaglutide treatment on kidney outcomes in par-
ticipants with type 2 diabetes and chronic kidney disease 
(NCT03819153), and this trial is expected to be com-
pleted at the end of 2024. Planned meta-analyses [42] 
and other studies are also underway. Studies investigat-
ing the protective effects of GLP-1 receptor agonists on 
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cognitive dysfunction [43, 44], nonalcoholic fatty liver 
disease (NAFLD)/nonalcoholic steatohepatitis (NASH), 
and metabolic dysfunction-associated fatty liver disease 
(MAFLD) are ongoing [45].

As an antidiabetic agent, SGLT-2 inhibitors improve 
plasma glucose levels by increasing renal glucose and 
sodium excretion and lowering intraglomerular pres-
sure [46–48]. SGLT-2 inhibitors exert a wide range of 
pleiotropic actions, some of which may prove as impor-
tant future targets of therapy. SGLT-2 inhibitors reduce 
glycolysis, rebalance the coupling between glycolysis 
and oxidative phosphorylation, and attenuate adverse 
cardiac remodeling and the progression of heart failure. 
SGLT-2 inhibitors have been found to impact cardiomyo-
cyte function through the adenosine monophosphate-
activated protein kinase mammalian target of rapamycin 
complex 1 pathway [49].

SGLT-2 inhibitors also exert interesting effects on 
mitochondrial and cell viability. These agents directly 
modulate evolutionary responses to nutrient depriva-
tion through adaptive cellular reprogramming and cell 
survival (reviewed by Packer, 2023) [49]. Starvation mim-
icry has been used to show that SGLT-2 inhibitor modu-
lation of mitochondrial function and viability involves 
processes of autophagy, the clearing of reactive oxygen 
species, and the reduction of inflammation and fibrosis, 
each of which is a pathway distinct from the renal clear-
ance of glucose [49].

GLP-1 receptor agonists and SGLT-2 inhibitors have 
been shown in clinical trials to benefit the cardiorenal 
axis [35, 36, 38–42]. This finding raises the following 
question: how much earlier in the disease course of dys-
glycemia and dysmetabolism might these drugs confer 
protection for the cardiorenal axis? Should these agents 
be used as first-line treatment in potentially all patients 
with type 2 diabetes? The observation that the protective 
effects are accomplished independent of glucose-lower-
ing potential opens new possibilities: might these agents 
have utility in cardiorenal protection in normoglycemic 
patients? Tantalizing prospects await future research.

For the meantime, findings from long-term outcome 
studies have reshaped treatment sequencing in the 
guidelines. The 2023 directive authored by Handelsman 
et  al. [18] mandates factoring a patient’s comorbidities 
and risk factors, including those of the cardiorenal axis, 
along with their hyperglycemia in treatment decision-
making. As recommended in the guidelines, these authors 
reemphasize use of long-acting GLP-1 receptor agonists 
and SGLT-2 inhibitors in patients with type 2 diabetes 
and existing (or at risk for) comorbid cardiovascular or 
renal compromise. Based on the available evidence, there 
should be no delay in incorporating these recommenda-
tions into clinical practice for eligible patients.

Amend the canonical teaching of the “inexorable 
progression of type 2 diabetes”
Medical textbooks have always taught—and clinical 
practice correspondingly operates on the supposition—
that type 2 diabetes can only “inexorably progress.” The 
belief is that once a patient with diabetes requires phar-
macointervention, the disease is intractable. This long-
entrenched dogma is omnipresent across medical school 
textbooks and continuing medical education and shapes 
practitioner expectations. However, it has been flatly 
refuted by decades of research.

Let us consider this supposition from a historical con-
text. This arose in the early era of diabetes care, when 
diagnosis typically occurred late in the course of the dis-
ease. Indeed, at this point, beta cells had already largely 
“petered out” in their capacity to sense fluctuations in 
plasma glucose and correspondingly adjust plasma insu-
lin levels. That is, type 2 diabetes was observed and tested 
in its advanced stages. Indeed, before annual screen-
ing, beta cells retain as little as 10% of their capacity at 
the time of diagnosis. The first-generation therapeutic 
options of that era were “oafish” drugs such as sulfonylu-
reas, which rapidly reached treatment failure [50], argu-
ably by further taxing overextended beta cells.

In today’s standards of care, however, hyperglycemia is 
detected sooner—as early as the prediabetic state. In cur-
rent standards of care, beta cells often remain robust at 
the time of diagnosis. The inherent resilience of the beta 
cells and of the glucoregulatory apparatus, at large, are 
still available to be re-enlisted to resume normoglycemia.

It is worthwhile at this point to review defects that 
contribute to type 2 diabetes. These defects include beta 
cell dysfunction [51, 52], insulin resistance [53], and, 
less regarded but equally important, hyperinsulinemia 
[54–56]. In addition, genetic and epigenetic variables 
[57, 58] and environmental factors [59–61] each play a 
causative role. Hyperglycemia typically arises not from 
one but from multiple insults across these interrelated 
factors. Correcting any of these three variables typically 
has a domino effect on the others [62]. Peripheral insu-
lin resistance is tethered to elevated insulin secretion 
[63, 64], with each impacting glucose tolerance [65]. The 
state of beta cell function is intricately linked to the mag-
nitude and implacability of the resulting systemic insulin 
resistance.

Chronic nutrient excess has accompanied modern 
affluence. This overnutrition is out of sync with the evo-
lutionary schema of metabolism. Overnutrition induces a 
maladaptive state of sustained hyperinsulinemia in some 
individuals. This taxes the beta cells and instigates insu-
lin resistance—perpetuating all three imbalances. Beta 
cell dysfunction bidirectionally influences the extent 
of hyperinsulinemia and is quantitatively linked to the 
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development of diabetes-related complications (reviewed 
by Rachfal et al [66]) [67].

Diet and exercise modifications promote weight loss 
and simultaneously improve insulin resistance, cor-
rect hyperinsulinemia, and increase beta cell functional 
capacity. Diet and exercise modifications have been 
shown repeatedly to be sufficient to reestablish nor-
moglycemia in a subset of patients [67–73]. The ACT-
NOW and STOP-Diabetes trials showed that correcting 
impaired insulin secretion and insulin resistance in nor-
moglycemic people at high risk of diabetes (impaired 
glucose tolerance or prediabetes in these two studies, 
respectively) reduced progression to frank diabetes [74, 75].

The body of knowledge to date categorically overrides 
the premise that type 2 diabetes is an “inexorable” dis-
ease. Type 2 diabetes can possibly be rehabilitated, per-
haps up to the advanced stages of the disease.

In routine practice, physicians restore normoglycemia 
in many patients through good adherence to diet and life-
style modifications, especially in patients with early type 
2 diabetes. The premise that type 2 diabetes is an “inexo-
rable” disease traditionally assumed that once pharmaco-
therapy is initiated, there is no further rationale to treat 
the tractability of hyperglycemia.

The conceptual leap that we make herein is that early 
type 2 diabetes is not a one-way proposition. This restyles 
the slope of the natural history of the disease to a far 
more favorable trajectory for our patients and with ample 
opportunities to slow or stall type 2 diabetes—from pre-
diabetes through early-onset disease, and even beyond, 
as will be detailed.

Resilience of the glucoregulatory apparatus: early vs late 
diabetes
Early- and late-stage type 2 diabetes can now be reframed 
as two distinct conditions based on the extent of beta cell 
function and warrant two distinct approaches to care. 
Until the advanced stages of hyperglycemia, the first 
mandate is to attempt to resume euglycemia if the beta 
cells can support adequate insulin production and meta-
bolic gluco-stasis.

Consider the recent SARS-CoV-2 pandemic. Pan-
demic stay-at-home orders resulted in a record number 
of patients presenting with new-onset hyperglycemia, 
individuals who had been normoglycemic prior to the 
pandemic [76]. It is reasonable to assume that these indi-
viduals retain high-functioning, robust beta cells, regard-
less of their age. Diet modification and/or exercise can 
reestablish normoglycemia by easing the imposition of 
recently introduced insulin resistance and its sequelae on 
the glucoregulatory apparatus.

As a second example, treatment with antidepressants 
can lead to new-onset hyperglycemia via drug-induced 
changes in metabolic rate [77]. As in the above example, 
hyperglycemia is not associated with “petered out” beta 
cells; this patient population constitutes excellent candi-
dates for reversing type 2 diabetes through diet and exer-
cise. Gestational diabetes and glucocorticoid-induced 
diabetes are other instances of transient hyperglycemia, 
from which it can be anticipated that the glucoregulatory 
apparatus retains the ability to “right” itself.

In contrast, late-stage diabetes may correspond more 
closely to the “classical” construct of type 2 diabetes 
onset, which is represented by “exhausted” beta cells. 
Typically, beta cells in late-stage type 2 diabetes have 
been subjected to glucotoxicity and lipotoxicity for dec-
ades, which has detrimental effects on cell function, over-
all cell integrity, and cell viability [47, 51, 52].

Although more common in older patients, beta cell 
resilience is much more related to the status of the glu-
coregulatory apparatus than to patient age. Persisting dys-
glycemia, sustained hyperinsulinemia, unmitigated insulin 
resistance, and systemic glucotoxicity are highly detrimen-
tal to beta cells, damaging the cells and leading to loss of 
glucoregulation. Notably, glucolipotoxicity is detrimental 
to almost all other cell types. This damage results in a wide 
range of long-term complications associated with hyper-
glycemia and diabetes [47, 51, 52, 56]. As described above, 
the actual range of organ systems compromised by sus-
tained hyperglycemia is more numerous than that deduced 
decades ago from the United Kingdom Prospective Diabe-
tes Study (UKPDS) and other early investigations [50, 78].

The remission of type 2 diabetes in the clinic is one of 
the hottest contemporary topics and sits in the crosshairs 
of recent developments. On the one hand, the ability to 
remit hyperglycemia is within reach, in contrast to decades 
of teaching that type 2 diabetes is “inexorable.” Despite 
being routinely practiced in the first-line intervention of 
hyperglycemia through diet and exercise, it is typically 
abandoned after this initial, sometimes cursory effort.

On the other hand, accumulating evidence that GLP-1 
receptor agonists and SGLT-2is confer cardiorenal pro-
tection has given pause to promote remission. According 
to the most recent consensus statement, guideline craft-
ers have left remission in limbo, citing the need for large 
studies to first elucidate which patient types are the best 
candidates for cardiorenal prevention versus targeting 
remission of the disease. If hyperglycemia is remitted, a 
window of opportunity for the prevention of long-term 
complications may be lost.

The authors of the current review, however, urge physi-
cians to prioritize and implement remission as a priority 
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goal of therapy in advance of the years of studies needed 
to satisfy the above concerns of guideline crafters. Treat-
ing patients to remission benefits virtually all patients. 
Correcting hyperglycemia affords, in itself, protection 
against diabetes-related long-term complications. Prac-
tical clinical approaches to accomplish remission are 
described in this review.

New treatment algorithm for latent autoimmune diabetes 
in adults (LADA)
LADA presents a unique scenario within the diabetic 
state. LADA is a variant of diabetes accounting for 2–12% 
of all patients with adult-onset diabetes. Like type 1 dia-
betes, LADA is characterized by immunogenetic markers 
of beta cell destruction (albeit with slower destruction 
than is characteristic of type 1 diabetes). Akin to type 2 
diabetes, on the other hand, LADA does not require the 
use of exogenous insulin, at least in its earlier stages [1, 
79]. The clinical profile of LADA has long presented a 
quagmire for practitioners.

LADA makes our shortlist for this review article 
because of the introduction of a novel treatment algo-
rithm—one that may reconcile the seemingly opposing 
features of LADA in determining treatment of choice 
(Fig. 1). This algorithm by an international expert panel, 
published in 2020, supersedes, in our opinion, the guid-
ance provided by the American Diabetes Association 
(ADA)/European Association for the. Study of Diabetes 
(EASD). It can also be used to initially and subsequently 
distinguish the clinical presentation of LADA from that 
of type 2 diabetes.

The Buzzetti et al. algorithm employs a two-step deci-
sion tree. Autoantibodies that target glutamic acid decar-
boxylase (GAD) are among the autoantibodies displayed 
in patients with type 1 diabetes; these autoantibodies 
serve as immune markers with high sensitivity. Approx-
imately 75% of people with type 1 diabetes at diagnosis 
exhibit GAD autoantibodies. LADA is part of the auto-
immune diabetes spectrum, and glutamic acid decar-
boxylase (GADA) testing serves as the first step in the 
algorithm.

For patients who test positive for GADA, the treatment 
of choice is determined by the concentration of C-pep-
tide. C-peptide is used as a proxy for extent of beta cell 
function, which can vary greatly between patients with 
LADA. Low C-peptide (< 0.3 mmol/L) levels call for treat-
ment with multiple-insulin regimen recommended (as 
for type 1 diabetes). Elevated C-peptide of > 0.7  nmol/L 
suggests a modified ADA/EASD algorithm, similar to 
type 2 diabetes but allows for the potentially progressive 
nature of LADA by monitoring C-peptide to adjust treat-
ment. There should be additional C-peptide measure-
ments if there is a deterioration of glucose control; some 
of these patients will have false-positive autoantibodies 
and therefore will have true type 2 diabetes.

The interim values for C-peptide, ≥ 0.3 and ≤ 0.7 
nmol/L, should be treated with combination regimens; 
insulin in combination with other therapies should be 
considered to modulate beta-cell failure and limit dia-
betic complications. Consistent with practice guidelines, 
the presence of comorbidities is an additional factor to be 
weighed in treatment of choice (see [1]).

Fig. 1 Qualitative illustration of the spectrum of factors associated with different forms of DM, including the variable age at onset, lack of obesity, 
metabolic syndrome, genetic associations, different forms of immune changes, C-peptide secretion, and the need for insulin therapy. T1DM, type 1 
DM; T2DM, type 2 diabetes. Adapted from Schwartz et al. “The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of 
the Beta-Cell–Centric Classification Schema.” Diabetes Care 2016;39:179–186 [51]. Reuse permission granted
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The expert panel also advised that general screening be 
conducted among all patients who were newly diagnosed 
with non-insulin-requiring diabetes to identify patients 
who met the criteria for LADA.

Hyperglycemia is not a single entity but rather 
the composite of multiple, varying drivers of dysglycemia
The glucoregulatory apparatus is a complex system of 
gluco-sensing instruments, hormones, physiologic gates, 
storage depots, feedback loops, and switchbacks. This 
multiorgan, multisystem regulation is as modifiable as it 
is fine-tuned.

In the updated, reimagined understanding of type 2 
diabetes described herein—and based on state-of-the-
art science—hyperglycemia is not a single entity, as it is 
usually regarded. Rather, it exists as an aggregate of driv-
ers that contribute to the ensuing hyperglycemia. This is 
not a novel concept, as it was elucidated by these authors 
(RAD) in 2008 as the widely cited Ominous Octet. This 
roster was expanded in 2016 by these authors (SSS, 
MEH) to the Egregious Eleven, below [51] (Fig. 2). Iden-
tifying the specific drivers of hyperglycemia in a given 

patient constitutes a shift to individualized care and prac-
tically informs treatment of choice.

This differs from the current standard of care, which 
treats hyperglycemia as a single target, for which the 
treatment of choice is based on the quantitative (plasma 
glucose levels) rather than the qualitative (individual 
drivers) nature of the patient’s hyperglycemia.

The crux of our next take-away point is that hypergly-
cemia is the collective result of numerous physiologic 
levers that elevate plasma glucose. These factors contrib-
uting to hyperglycemia vary from individual to individual 
and may change in number (most likely, increase in num-
ber) as the disease progresses. Each driver of hyperglyce-
mia presents the opportunity to apply targeted therapy.

In the revised paradigm described herein, the least 
number of agents are used to target the greatest num-
ber of pathways mediating hyperglycemia [51]. In cur-
rent standards of care, treatment failure prompts one of 
several approaches to glucose-lowering therapy. The first 
option, if the combined regimen does not bring plasma 
glucose to target levels, is to abandon an agent within 
the regimen. That agent may, in actuality, target one 
of the drivers present in the patient. For example, drug 

Fig. 2 The Beta-Cell–Centric Model: The Egregious Eleven. Dysfunction of the beta cells is the final common denominator in DM. Eleven currently 
known mediating pathways of hyperglycemia are shown. Many of these contribute to beta cell dysfunction (liver, muscle, adipose tissue [shown 
in maroon to depict additional association with IR], brain, colon/biome, and immune dysregulation/inflammation [all shown in blue]), and others 
result from beta cell dysfunction through downstream effects (reduced insulin, hyperinsulinemia, decreased incretin effect, a-cell defect, stomach/
small intestine via reduced amylin, and kidney [shown in green]). Adapted from Schwartz et al. “The Time Is Right for a New Classification System for 
Diabetes: Rationale and Implications of the Beta-Cell–Centric Classification Schema.” Diabetes Care 2016;39:179–186 [51]. Reuse permission granted
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switching from pioglitazone would leave insulin resist-
ance unaddressed. As mentioned, insulin resistance is an 
almost ubiquitous driver of hyperglycemia in type 2 dia-
betes patients.

Another common adjustment is add-on therapy to the 
existing regimen. This is often done without regard to 
the mode of action(s) that align with one of the drivers 
of hyperglycemia in a given patient. Ineffective therapy 
is costly in terms of drug acquisition cost as well as the 
potential “physiologic costs” of unneeded polypharmacy.

As described, current standards of care do not prior-
itize treatment(s) of choice with the specific drivers giv-
ing rise to hyperglycemia in the given patient. In contrast, 
the stratification of first-, second-, and third-line treat-
ment sequences establishes undue competition between 
classes, which should more rightly be viewed as comple-
mentary options rather than salvage therapy after manag-
ing patients to treatment failure [51, 80, 81].

Among the eleven pathways that mediate hyperglyce-
mia and are currently known (the Egregious Eleven) [51], 
therapies are available that target each driver (Fig.  3). 
Trial-and-error may be required to determine some of 
the drivers; this effort is worthwhile. The recent com-
mercialization of tirzepatide provides a new target: 

glucose-dependent insulinotropic polypeptide (GIP) [82]. 
By modulating GIP and GLP-1, tirzepatide stimulates 
the release of insulin and improves insulin sensitivity. It 
decreases the amount of glucose generated by the liver, 
slows digestion, and contributes to weight loss [83].

In the approach advocated herein, untargeted, sequen-
tial add-on therapy is replaced by treatments tailored to 
the drivers of hyperglycemia in that patient. This achieves 
“precision medicine,” the pinnacle of medical care. This 
approach helps circumvent managing patients to treat-
ment failure, which can reduce the number of drugs 
prescribed for patients and help lower the risk of hypo-
glycemia [84]. Hypoglycemia can also be avoided by 
opting for targeted therapies in lieu of insulin or sulfony-
lureas. These agents are major culprits of hypoglycemia 
and contribute to weight gain, among other concerns. 
Successful management of the specific drivers of hyper-
glycemia may forestall the use of insulin therapy. Exog-
enous insulin is associated with poorer cardiovascular 
outcomes. These authors (SSS, MEH) have reviewed a 
body of literature suggesting that cardiovascular risk 
is associated with long-term use of exogenous insulin 
rather than being a consequence of the advanced stage 
of the disease, as is presumed (reviewed in Schwartz 

Fig. 3 The use of the Egregious Eleven as a guide for patient-centric therapy. Targeted therapies for each of the current mediating pathways 
of hyperglycemia, weight reduction and CV benefits based on The Beta-Cell–Centric Model. GLP-1, glucagon-like peptide 1; QR, quick release. 
† - Weight reducing agent. * -  Potential CV benefit shown for at least one member of the class. Adapted from Schwartz et al. “The Time Is Right for a 
New Classification System for Diabetes: Rationale and Implications of the Beta-Cell–Centric Classification Schema.” Diabetes Care 2016;39:179–186 [51]. 
Reuse permission granted
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et  al. Postgrad Med 2016; Herman et  al. 2017) [85, 86]. 
There will always be a place for insulin therapy, although 
a reduced reliance on exogenous insulin is a goal due to 
its relatively unfavorable benefit–risk profile.

We regard sulfonylureas, though they are used liber-
ally, as dark horses. Sulfonylureas are associated with 
increased risk of hypoglycemia, weight gain, cardiovascu-
lar events, and mortality [87, 88]. Importantly, treatment 
failure ensues quickly with sulfonylureas, as observed in 
clinical practice and in the recently published large-scale 
GRADE Study [89]. This has led to a vast speculation that 
sulfonylureas may place an undue burden on beta cells, 
pushing these cells toward exhaustion. This supposition 
is controvertible but supported by preclinical research 
showing that sulfonylureas promote beta cell death/
apoptosis [90, 91]. It is the opinion of these authors that 
high levels of sulfonylurea-induced insulin secretion in 
already overworked beta cells should be eschewed, espe-
cially given the array of currently available “gentler,” more 
“beta cell-friendly” options.

Is there a “reset” button for early type 2 diabetes?
The most striking demonstrations of diabetes remission 
arose from bariatric surgery studies [92–99]. With Roux-
en-Y gastric bypass, in particular, remission of hyper-
glycemia has been so successful that these procedures 
have been renamed “metabolic surgery.” The wide-rang-
ing physiological benefits of metabolic surgery include 
improvements in insulin sensitivity, beta cell function, 
and incretin responses; changes in bile acid composition 
and flow; alterations in the gut microbiota; shifts in intes-
tinal glucose metabolism; and increased adipose meta-
bolic activity (reviewed in Xu 2021 [100]). The remission 
of diabetes through metabolic surgery has been more 
successful in patients with early-stage type 2 diabetes 
than in those with late-stage type 2 diabetes. This is pre-
sumably due to the retained robustness of the beta cells 
and the responsiveness of the glucoregulatory apparatus 
to “right” the various defects that give rise to dysglyce-
mia. In addition to remitting frank type 2 diabetes, met-
abolic surgery has been shown to reduce the onset of 
diabetes in normoglycemic obese individuals.

As mentioned earlier, diet and lifestyle modifications 
early in diabetes have proven adequate to shift hypergly-
cemia back to normoglycemia. This was also reproduc-
ibly demonstrated in seminal studies, including those by 
Look Ahead [68, 69, 101], DIADEM-I [70], DiRECT [71, 
72], and U-TURN [67]. A meta-analysis by Goldenberg 
and coworkers [2021] of 1357 participants across 23 tri-
als concluded that a low-carbohydrate diet for 6 months 
may be adequate to remit diabetes without adverse 
consequences.

Importantly, remission can also be achieved in clini-
cal practice by the use of short-term, intensive pharma-
cotherapy regimens (alternating approaches to either 
diet or surgery). As published by these authors (RAD), 
the EDICT study showed that a regimen of metformin, 
pioglitazone and exenatide achieved glycemic control, 
improved insulin sensitivity (threefold), and increased 
beta cell function (30-fold) in recently diagnosed patients 
with type 2 diabetes [102–104]. In contrast, the EDICT 
study revealed that “conventional therapy” (metformin 
followed by add-on therapy with sulfonylurea and glar-
gine insulin), while also achieving glycemic control in 
the EDICT study, did not simultaneously aid insulin sen-
sitivity or substantially improve beta cell function. This 
finding supports the notion that intentional combination 
regimens reset the glucoregulatory apparatus by correct-
ing each of the core defects of type 2 diabetes. In com-
bination, metformin, pioglitazone, and exenatide address 
the core defects of insulin resistance, beta cell dysfunc-
tion, hyperinsulinemia, and hyperglucagonemia.

These authors (BC) have also explored hyperinsuline-
mia as a primary defect in type 2 diabetes [105] (Fig. 4). 
According to the results from Roux-en-Y gastric bypass, 
the restoration of normoglycemia was accompanied by 
the normalization of hyperinsulinemia [105, 106]. Inter-
estingly, corrections in insulin output were achieved 
without changes in insulin resistance.

Some studies have demonstrated the ability to reset 
the glucoregulatory apparatus in advanced-stage type 
2 diabetes patients. The Qatar Study evaluated poorly 
controlled patients with an A1c of 10% and a duration 
of disease of 10 years or more. Combination therapy 
with pioglitazone and exenatide achieved an A1c tar-
get of 7.0% in 86% of these subjects, compared to only 
44% in a comparative group treated with insulin therapy 
(P < 0.0001) [107]. Again, the use of agents targeting the 
core defects of diabetes is key. Compared with treatment 
with exogenous insulin, treatment with pioglitazone/
exenatide was found to bolster beta-cell function, with 
2.5-fold greater insulin secretion.

Specifically, diet modification, metabolic surgery, and 
pharmacotherapy studies have each demonstrated “reset” 
the body’s glucose machinery. This remission is typically 
accompanied by improvements in beta cell functional 
capacity [108–112], reversing the origin of hyperglyce-
mia. These authors [SSS, MEH] consider the beta cell as 
the final common denominator of hyperglycemia [52, 66].

We shortlisted type 2 diabetes remission in this review 
article, as it represents a highly controversial yet timely 
area. The medical community has waffled for nearly a 
decade on the vernacular for this reversal of fortune. In 
2023, a consensus was reached to use the terminology 
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“remission” (not “cure” or “reversal”) to best suit this out-
come. An expert panel defined remission as a “return of 
HbA1c to < 6.5% (< 48 mmol/mol) that occurs spontane-
ously or following an intervention and that persists for at 
least 3 months in the absence of usual glucose-lowering 
pharmacotherapy” [113]. Proceeding from that point, the 
questions become more provocative. Can we truly char-
acterize the return to normoglycemia as full “remission” 
when unalterable defects, such as genetic factors, may 
not be remittable? Can remission of hyperglycemia be 
considered a categorical “win” for patients after glucoli-
potoxicity has caused permanent organ damage?

According to the consensus report by Riddle and col-
leagues [113], those authors feel that open questions 
call for more research to determine who are candidate 
patients for remission. Critically, however, they stipulate 
that their consensus statement “is not intended to pro-
vide guidance regarding how or when glycemic control 
qualifying as a remission should be sought. It also does 
not aim to clarify the role of preventive pharmacotherapy 
after a remission is identified.” [113].

These authors express concern, however, that the Rid-
dle et  al. consensus report inadvertently thwarted open 
discussions, appreciation, and adoption of remission in 
clinical practice. The literature on the issue of remission 
has fallen rather quiet from the time of its publication 
in October 2021 to the time of writing of this review in 
2024.

These authors believe that the wealth of evidence dem-
onstrates that the glucoregulatory apparatus can reset 
itself in many patients. These authors (SSS; RAD) have 
successfully and routinely reverted frank type 2 diabetes 
in their respective private practices in patients present-
ing with low as well as high A1c values. Readers can find 
detailed strategies to accomplish this from the clinics of 
two of these authors in Miller et  al. 2019 [114] and in 
Lavynenko et al. 2022 [104].

Accordingly, the first goal of management in routine 
practice is to reestablish normoglycemia. Remission 
should have a prominent place in patient treatment plans. 
It should be approached with diet and lifestyle modifica-
tions, with which all physicians have seen success, and, 
if needed, through the use of established protocols for 
short-term, intensive pharmacotherapy.

Continuous glucose monitoring in type 2 diabetes: current 
status on this very “open” question
The adoption of continuous glucose monitoring (CGM) 
devices has been slow. This is despite American Diabe-
tes Association recommendations for use in individuals 
with diabetes using multiple daily injections, continuous 
subcutaneous insulin infusion, and other forms of insu-
lin therapy [115]. CGM is also recommended for indi-
viduals whose glucose levels are not at goal, who have 
frequent hypoglycemia and/or hypoglycemia unaware-
ness, who are taking other medications that cause low 

Fig. 4 Potential mechanisms for hyperinsulinemia as a major defect in metabolic disease. Chronic hyperinsulinemia of any potential etiology 
is associated with chronic hyperglucagonemia, which may lead to increased hepatic glucose output. Nutrient excess and hyperlipidemia contribute 
to adipose tissue expansion and dysfunction with eventual ectopic lipid deposition, which is associated with reduced muscle glucose disposal. 
Reprinted from Thomas et al. 2019 [105]. Reuse permission granted
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blood glucose, who have kidney disease, or who have 
varying and/or intensive physical activity patterns. The 
American Association of Clinical Endocrinology Clinical 
Practice (AACE) guidelines have recommended the use 
of CGM in all patients with diabetes since 2021 [116].

CGM is a valuable tool for the diagnosis or treatment 
of hyperglycemia [117–120]. The benefits of CGM should 
be fully appreciated, especially in cases where hyper-
glycemia management is suboptimal. CGM can detect 
recurrent hypoglycemic episodes, including nocturnal or 
“silent” hypoglycemia, and can reveal glycemic variabil-
ity, which in itself is now understood to be problematic. 
CGM can detect severe fluctuations on an hourly basis, 
which cannot be captured using A1c measurements.

CGM can also inform and influence lifestyle decisions. 
Even when used as a short-term tool, CGM can identify 
remediable causes of highly refractory hyperglycemia, 
such as the timing or content of the patient’s diet, exer-
cise regimens, sleep patterns, or travel [116]. With aware-
ness of the effects on plasma glucose, patients can adjust 
their daily schedules to minimize fluctuations.

The slow uptake of CGM is partly due to cost consid-
erations, although private health insurance plans are 
increasingly covering CGM. Medicare covers CGM 
through its durable medical equipment for patients 
receiving exogenous insulin (fortunately, Medicare has 
removed the onerous prior requirement of extensive 
blood glucose log data). Dexcom and Abbott have each 
marketed an over-the-counter CGM device.

Conclusions
Up to 40% of refractory dysglycemia cases may, in fact, 
be beyond the reach of our approaches and interventions 
[60, 61, 121], including patient adherence. Environmen-
tal exposure, genetics, and the gut microbiota are three 
such examples. Environmental exposure occurs at all life 
stages, beginning with gestation, during which glucose 
regulation is programmed by maternal metabolic sta-
tus [122]. This has been found to influence glucoregula-
tion not only in offspring but also in the next generation. 
Genetics and epigenetics are important contributors to 
hyperglycemia and remain largely beyond our interven-
tions [51, 61, 66, 123, 124]. The role of the gut microbi-
ota in type 2 diabetes is well documented and an area of 
intense current research [51, 60, 125]. This relationship is 
bidirectional, highly complex, and still unresolved.

This still leaves a great deal that we can impact thera-
peutically. To achieve this optimally, an excavation of past 
dogmas—belief systems that are out of sync with modern 
understanding of the defects, progression, and revert-
ability of type 2 diabetes—is necessary. Management of 
hyperglycemia should be more directed by the resilience 
of beta cells than by A1c elevation. Gluco-homeostasis 

may be restored in many patients by simply “resetting” 
insulin resistance, thereby easing the burden on beta 
cells. Diet and lifestyle may prove adequate to accomplish 
this; short-term, intensive pharmacotherapy, as described 
herein, is a powerful approach to revert hyperglycemia.

When long-term pharmacotherapy is used, preci-
sion medicine should be practiced. The specific drivers 
of hyperglycemia at work in a given patient govern the 
choice of treatment(s). This represents a departure from 
treating all type 2 diabetes as a single, uniform condition 
from the laundry list of available agents. Targeted ther-
apy limits the retention of ineffective therapies, which 
reduces adverse events, the physiologic burden of polyp-
harmacy, and excess drug costs.

The UKPDS and other early seminal trials placed an 
emphasis on tight glucose control in real-world practice. 
This inadvertence created a conundrum for physicians 
to achieve target A1c levels without teetering towards 
hypoglycemic episodes. It ultimately dissuaded achieving 
glucose targets. Hypoglycemia is less of a concern with 
today’s range of antidiabetic agents. Physicians are now 
encouraged to practice “intensive glucose control,” i.e., 
attaining A1c values as close to 7.0% as possible while 
avoiding glucose variability. It is now understood that 
small, “silent” excursions of plasma glucose levels, includ-
ing hypoglycemia, are as detrimental as major hypogly-
cemic episodes. CGM is a new tool for assessing and 
managing glycemic variability. The approaches to care 
outlined in this review can help physicians reach A1c 
goals without these attendant risks [84, 126, 127].

Large-scale clinical studies in patients with type 2 dia-
betes have provided a wealth of information. These trials 
helped identify the individual defects leading to hypergly-
cemia and develop drugs for these targets. These studies 
also highlighted the full complement of diabetes-related 
complications, including far-reaching outcomes such as 
inflammation, cancer, and Alzheimer’s disease. “Compli-
cation-centric prescribing” is now the new gold standard 
in treatment guidelines and strongly encourages phy-
sicians to stay pace with the various modes of action of 
agents, including GLP-1 receptor agonists, SGLT-2 inhib-
itors, and pioglitazone, as our understanding of the pleio-
tropic benefits of our glucose-lowering agents is evolving 
quickly. These trials clarified that longevity is associated 
with good gluco-stasis control, in part by its direct influ-
ence on the cardiorenal axis.

In one retrospective cohort study including ~ 100,000 
patients, among patients with newly diagnosed type 2 
diabetes, 22% remained under poor glycemic control over 
2 years. A delay in intensive therapy of as little as one 
year in conjunction with poor glycemic control signifi-
cantly increased the risk of myocardial infarction, health 
failure, stroke and composite cardiovascular events [22]. 
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Critically, however, this study also revealed that 26% of 
patients never received intensive therapy.

Many patients are yet to benefit from the advances and 
approaches that we now have at our disposal, despite our 
impressive range of pharmacological tools. The lengthy 
process of incorporating evidence into guideline rec-
ommendations is one contributing factor. Another is 
outdated medical education that tethers physicians to 
fundamentally erroneous notions about the diabetic state. 
This contributes to clinical inertia through “physician 
habituation” to mainstream concepts and approaches 
that have fallen behind state-of-the-art research and care 
[4, 21, 22]. Fortunately, this problem is “treatable.” This 
review highlights selected advances and counterpoints 
(including several that are ahead of the guidelines) that 
are geared toward provisioning physicians to dispense 
up-to-date and optimal management of type 2 diabetes to 
their patients ahead of the sometimes sluggish incorpora-
tion into treatment guidelines.
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