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Abstract 

Background  A prediction model can be a useful tool to quantify the risk of a patient developing dementia 
in the next years and take risk-factor-targeted intervention. Numerous dementia prediction models have been devel-
oped, but few have been externally validated, likely limiting their clinical uptake. In our previous work, we had limited 
success in externally validating some of these existing models due to inadequate reporting. As a result, we are com-
pelled to develop and externally validate novel models to predict dementia in the general population across a net-
work of observational databases. We assess regularization methods to obtain parsimonious models that are of lower 
complexity and easier to implement.

Methods  Logistic regression models were developed across a network of five observational databases with elec-
tronic health records (EHRs) and claims data to predict 5-year dementia risk in persons aged 55–84. The regularization 
methods L1 and Broken Adaptive Ridge (BAR) as well as three candidate predictor sets to optimize prediction perfor-
mance were assessed. The predictor sets include a baseline set using only age and sex, a full set including all available 
candidate predictors, and a phenotype set which includes a limited number of clinically relevant predictors.

Results  BAR can be used for variable selection, outperforming L1 when a parsimonious model is desired. Adding 
candidate predictors for disease diagnosis and drug exposure generally improves the performance of baseline models 
using only age and sex. While a model trained on German EHR data saw an increase in AUROC from 0.74 to 0.83 
with additional predictors, a model trained on US EHR data showed only minimal improvement from 0.79 to 0.81 
AUROC. Nevertheless, the latter model developed using BAR regularization on the clinically relevant predictor set 
was ultimately chosen as best performing model as it demonstrated more consistent external validation performance 
and improved calibration.

Conclusions  We developed and externally validated patient-level models to predict dementia. Our results show 
that although dementia prediction is highly driven by demographic age, adding predictors based on condition diag-
noses and drug exposures further improves prediction performance. BAR regularization outperforms L1 regularization 
to yield the most parsimonious yet still well-performing prediction model for dementia.
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Background
Dementia is an umbrella term to describe various ill-
nesses that affect cognition and may lead to mental 
degradation [1]. All types of dementia are progressive, 
meaning that symptoms may be relatively mild at first 
but worsen with time, usually over the course of several 
years. Symptoms include problems with memory, think-
ing, problem-solving or language, changes in emotion, 
perception, or behavior. Although getting older is the 
most significant risk factor for dementia, there exist pre-
ventative strategies that may slow down dementia pro-
gression. These include physical activity, healthy eating, 
no smoking or drinking of alcohol, and staying mentally 
and socially active [2, 3]. Therefore, a prediction model 
can be a useful tool to quantify the risk of a patient devel-
oping dementia in the next years and take risk-factor-tar-
geted intervention [1].

Many patient-level prediction models for identifying 
individuals who are at risk of dementia have been devel-
oped, but only few have been externally validated [4–6]. 
In our previous work, we highlighted that the lack of 
validation can largely be attributed to inadequate model 
reporting, which likely limits clinical uptake of many 
promising models [7]. Our limited success in achieving 
satisfactory external validation performance for some of 
the existing dementia prediction models indicates the 
need for a more transparent and reproducible approach, 
leading us to develop a novel model to predict dementia. 
The Observational Health Data Science and Informatics 
(OHDSI) initiative has developed extensive infrastruc-
ture to facilitate development and validation of patient-
level prediction models using observational healthcare 
data [8, 9]. These include a standardized data structure 
and vocabularies, and an analytical framework that 
enforces established best practices for internal and exter-
nal validation.

In this study, we leverage OHDSI tools to develop and 
validate logistic regression models to predict dementia 
in the general population across a network of observa-
tional databases. Our objective is to create parsimonious 
models, achieved through the regularization methods L1 

and Broken Adaptive Ridge (BAR). Parsimonious mod-
els have the advantage of being easier to implement and 
therefore are more likely to be clinically useful. Addition-
ally, we assess three candidate predictor sets to optimize 
prediction performance.

Methods
Source of data
This study used observational healthcare data from 
administrative claims and electronic health records 
(EHR). These type of data generally do not include dedi-
cated cognition tests, genetic or imaging data, and com-
monly used variables such as education, which have 
previously been found to be predictive. However, studies 
have shown good internal validation performance when 
developing models on observational data and also found 
enhanced model applicability in real-world settings [10].

Table 1 presents the five observational healthcare data-
bases that were included in this study. The databases 
were mapped to the Observational Medical Outcomes 
Partnership Common Data Model (OMOP CDM) [11]. 
The OMOP CDM provides a standardized data struc-
ture and vocabulary, which enables computer-executed 
analyses to be shared among researchers and institutions, 
facilitating external validation of prediction models.

IBM MarketScan® Medicare Supplemental Database 
(MDCR) includes data from the health services of retir-
ees in the United States with Medicare supplemental 
coverage through employer-sponsored plans. The Iqvia 
Disease Analyzer Germany (IQGER) database consists 
of mostly primary care data collected from German 
practices and medical centers for all ages. Optum’s de-
identified Clinformatics® Data Mart Database (OPSES) 
is derived from administrative health claims for mem-
bers of large commercial and Medicare Advantage health 
plans in the United States. Optum® de-identified Elec-
tronic Health Record dataset (OPEHR) represents lon-
gitudinal EHR data derived from dozens of healthcare 
provider organizations in the United States. The Inte-
grated Primary Care Information (IPCI) database is a 
Dutch database containing the complete medical record 

Table 1  Data sources that are used for model development and external validation. All data sources have been mapped to the OMOP 
CDM

Database Acronym Person count 
(in millions)

Country Data type Time period

IBM MarketScan® Medicare Supplemental Database (version 2322) MDCR 10.8 United States Claims 01/2000–10/2022

Iqvia Disease Analyzer Germany (version 2352) IQGER 32.1 Germany GP, EHR 10/2012–09/2022

Optum’s de-identified Clinformatics® Data Mart Database (version 2327) OPSES 94.8 United States Claims 05/2000–08/2022

Optum® de-identified Electronic Health Record dataset (version 2247) OPEHR 107.8 United States EHR 01/2007–03/2022

Integrated Primary Care Information (version N) IPCI 2.7 Netherlands GP 01/2006–12/2022
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of patients provided by around 350 general practitioners 
(GP) geographically spread over the Netherlands [12].

Participants
The target cohort of our study consists of individuals 
aged 55–84 with an index date between 1 January 2014 
and 31 December 2014. This allows for the 5-year fol-
low-up period to end by 31 December 2019, thus avoid-
ing potential irregularities in the data caused by the 
COVID-19 pandemic. We use the earliest recorded visit 
to a healthcare provider as the index event.

We exclude persons with prior dementia as defined by 
our outcome. Moreover, we exclude persons with disease 
records indicating subtypes of dementia, developmen-
tal mental disorder, cognitive impairment, or traumatic 
brain injury. We also exclude persons with a record of any 
drug included in the Anatomical Therapeutic Chemical 
Classification System (ATC) code N06D of anti-dementia 
drugs.

All exclusion criteria are assessed on the full medical 
history of a person prior to the index date. The detailed 
target cohort definition can be found in Additional file 1: 
Appendix A.

Population settings
Participants require 365 days of continuous observation 
time before the index date (excluding the index date) in 
which candidate predictors are assessed (Fig.  1). This 
relatively short period is consistent with other models 
in literature that were developed on observational data 
and enables persons to use the model even if they have 
not been part of a database for a long time [10, 13]. This 
limited period of 365 days, as opposed to all-time look-
back, was also found to have only small impact on dis-
crimination and calibration as all-time lookback can vary 
strongly across patients [14].

Moreover, following the recommendations of an 
empirical analysis of dealing with patients who are lost 
to follow-up, we allow patients to leave the cohort at any 
time during the time-at-risk period as long as they have at 
least 1 day time-at-risk after index [15]. The time-at-risk 

period for a patient ends after 5 years following the index 
date.

Outcome
We investigate the outcome of dementia for the first time 
in a person’s history within 5 years following the index 
date. We anticipate this amount of time will mitigate the 
risk of false negative cases caused by delayed entry of 
records into the database [16].

Dementia is defined as its concept code in the OMOP 
CDM and all hierarchical descendants of these concepts 
according to the SNOMED medical terms hierarchy. Var-
ious other concepts that are not direct descendants of the 
dementia concept are also used to define dementia, such 
as senility, organic mental disorder, diffuse Lewy body 
disease, cerebral degeneration associated with another 
disorder, amnestic disorder, or age-related cognitive 
decline.

The detailed outcome cohort definition can be found in 
Additional file 1: Appendix B.

Statistical analysis methods
We used the OHDSI patient-level prediction framework 
for model development and validation [8]. This frame-
work enables the development of analysis packages in 
R that can be shared across data sites mapped to the 
OMOP CDM.

Predictors
This study assesses models with three sets of candidate 
predictors to predict the health outcome of dementia.

The first set, referred to as the baseline set uses only age 
groups and sex as candidate predictors. This approach 
provides a minimalistic model which increases interpret-
ability but may not capture all the relevant information 
needed for accurate predictions [17].

The second set of predictors, the full  set, includes all 
available candidate predictors from the condition and 
drug tables in the databases, as well as age groups and 
sex. This approach aims to capture as much informa-
tion as possible, which may lead to improved predic-
tive performance. However, the full set may also include 

Fig. 1  Time windows and index date for the prediction of dementia
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irrelevant predictors that can introduce noise and 
reduce model interpretability, as well as hinder external 
validation.

To address the issues of both these predictor sets, we 
also investigate a third set of candidate predictors, the 
phenotype set, which includes a set of 49 clinically rel-
evant predictors that have been defined in the form of 
complex phenotypes (described in Additional file  1: 
Appendix C). These predictors are based on phenotypes 
defined in the OHDSI phenotype library [18]. We expect 
that this set may balance prediction performance, inter-
pretability, and ease of validation, while simultaneously 
reducing noise and redundancy.

Within the parsimonious predictor set, we develop 
additional models that use interactions between the age 
group covariate and each of the other covariates. Since 
age is expected to be among the most predictive covari-
ates for dementia, its interaction with the other covari-
ates allows us to evaluate synergistic effects that may 
enhance model performance, without the need for addi-
tional data collection. The use of covariate interactions 
also aligns with our parsimony objective, if in a comput-
erized deployment such interactions could be computed 
automatically to ensure no extra workload for healthcare 
workers.

The predictors are indicative of whether a patient’s 
medical history includes a documented diagnosis or pre-
scription, denoted by values of 1 for recorded and 0 for 
not recorded. It is important to note that instances exist 
where diagnoses or prescriptions might not always be 
documented, resulting in a recorded value of 0 to signify 
the absence of such records. Thus, missing data is treated 
as though the specific information has not been recorded, 
without resorting to any form of imputation. Preproc-
essing of data included removal of covariates with less 
than 0.1% prevalence in the target cohort and removal of 
redundant covariates. The latter concerns covariates that 
have the same value for all persons as well as one-hot-
encoded categorical variables such as age or sex.

Sample size
Sufficient data availability is a critical prerequisite for 
reliable prediction [19]. We generate learning curves 
to determine whether sufficient data is available. We 
hypothesize that since our target cohort definition is 
aimed at the general population and does not consider 
comorbidities as inclusion criteria, large cohort sizes can 
be obtained from the available data sources (Table  1). 
Previous work also indicated that sample sizes beyond 
5000 persons with the outcome have little impact on 
further improving model performance. As a result, the 
decision has been made to limit the sample size to a 
maximum of 1 million patients, if available, which should 

ensure a sufficient number of persons with the outcome 
[19]. Learning curves should approach a plateau if suffi-
cient data is available.

Prediction and regularization
The general statistical model of logistic regression has 
been originally developed and popularized as early as 
1944 [20]. Logistic regression remains a state-of-the-art 
method to develop robust clinical prediction models, 
despite the impressive advances in more complex pre-
diction approaches such as deep learning [21, 22]. We 
trained logistic regression models using two types of reg-
ularization: L1 regularization and Broken Adaptive Ridge 
(BAR).

L1 regularization, also referred to as the least absolute 
shrinkage and selection operator (LASSO), is a widely 
used method that penalizes the absolute value of the 
regression coefficients, leading to sparser models with 
only a subset of predictors having non-zero coefficients. 
BAR is a novel method that adapts the degree of regulari-
zation based on the level of multicollinearity among the 
candidate predictors, generally resulting in models with 
very few predictors [23, 24].

In addition, for L1 we employed an adaptive search 
method to automatically tune the degree of regulariza-
tion to balance between model complexity and gener-
alization performance on the internal validation set [22]. 
BAR incorporates the Bayesian information criterion 
(BIC) to determine its penalty [23].

Evaluation
For internal validation, we used a train-test split based 
on individual persons. Each person appeared only once 
in the datasets because we only use their earliest visit to a 
healthcare provider. In each dataset, a random sample of 
75% of persons was used to develop the prediction mod-
els and the remaining 25% were used to internally vali-
date the models.

To evaluate the performance, we calculated the dis-
crimination of the model using the area under the 
receiver operating characteristic curve (AUROC) 
and the model calibration using the Eavg metric. The 
AUROC indicates the probability that for two ran-
domly selected patients, the patient who gets the 
outcome will be assigned a higher risk. The model 
calibration is generally presented in a plot to examine 
agreement between predicted and observed risk across 
deciles of predicted risk. Calibration assessment is then 
performed visually which provides a good impression 
of the direction and scale of miscalibration. Due to the 
scale of this analysis, we decided to use the single value 
metric Eavg which allows us to compare calibration 
across models more conveniently. Eavg is closely related 
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to Harrell’s Emax, which is the maximal absolute differ-
ence between the smoothed calibration curve and the 
diagonal line of the best fit [25, 26]. Eavg is the average 
absolute difference between observed and predicted 
probabilities [25, 26].

To perform external validation, we applied the models 
to persons matching our target cohort definition in the 
remaining data sources detailed in Table  1. We exam-
ined the external validation performance using AUROC 
and calibration on the entire external validation data set. 
In addition, to assess model performance over time, we 
validate phenotype models on more recent data from 
patients with an index date in 2015, 2016, and 2017. For 
the external validation, the models have been recalibrated 
using weak calibration.

This study was conducted and reported according to 
the Transparent Reporting of a multivariate prediction 
model for Individual Prediction or Diagnosis (TRIPOD) 
guidelines and adhered to the open science principles 
for publicly prespecifying and tracking changes to study 

objects, protocol and code as described in the book of 
OHDSI [27, 28].

Results
Participants
Implementing the exclusion and inclusion criteria with 
a requirement for 365  days of continuous observation 
time before the index date results in cohort sizes for 
MDCR, IQGER, OPSES, OPEHR, and IPCI of 1,552,867, 
1,486,152, 2,839,676, 7,924,789, and 186,820, respec-
tively. Further sampling one million patients and requir-
ing a minimum of 1 day time-at-risk after the index date 
results in final participant counts of 999,480, 946,900, 
999,439, 971,999, and 186,767, respectively, as detailed in 
Table 2.

MDCR provides the oldest population with most 
persons 65  years or older, because the database con-
sists of retirees. IPCI is the only database that provides 
fewer than one million patient records for the target 
cohort and is not further sampled. In IQGER, there 

Table 2  Characteristics of the patients at baseline across the data sources used for development and external validation

MDCR IQGER OPSES OPEHR IPCI

Number of participants 999,480 946,900 999,439 971,999 186,767

Outcomes of dementia (%) 44,800 (4.5) 37,643 (4.0) 47,764 (4.8) 37,978 (3.9) 3094 (1.7)

Median time-at-risk in days (interquartile range) 1043 (1092) 1825 (578) 1748 (1234) 1825 (607) 1825 (443)

Age in years

  55–64 (%) 20,138 (2.0) 360,689 (38.1) 407,419 (40.8) 445,429 (45.8) 81,425 (43.6)

  65–74 (%) 643,698 (64.4) 326,407 (34.5) 377,098 (37.7) 299,560 (30.8) 68,150 (36.5)

  75–84 (%) 335,644 (33.6) 259,804 (27.4) 214,922 (21.5) 227,010 (23.4) 37,192 (19.9)

Sex

  Male (%) 465,601 (46.6) 412,486 (43.6) 462,293 (46.3) 410,198 (42.2) 86,329 (46.2)

  Female (%) 533,879 (53.4) 534,014 (56.4) 537,146 (53.7) 561,801 (57.8) 100,438 (53.8)

Atrial fibrillation (%) 89,837 (9.0) 15,030 (1.6) 67,115 (6.7) 58,983 (6.1) 3708 (2.0)

Any cancer excl. prostate (%) 333,146 (33.3) 74,010 (7.8) 293,895 (29.4) 143,119 (14.7) 22,008 (11.8)

Acute kidney injury (%) 18,035 (1.8) 269 (0.0) 16,398 (1.6) 12,100 (1.2) 0

Kidney disease or end stage renal disease (%) 161,547 (16.2) 37,157 (3.9) 177,023 (17.7) 94,179 (9.7) 295 (0.2)

Heart failure (%) 89,876 (9.0) 24,909 (2.6) 79,433 (8.0) 47,584 (4.9) 3295 (1.8)

Diabetes mellitus type 1 (%) 13,793 (1.4) 3113 (0.3) 10,388 (1.0) 4501 (0.5) 366 (0.2)

Diabetes mellitus type 2 (%) 259,816 (26.0) 89,250 (9.4) 250,890 (25.1) 161,918 (16.7) 22,797 (12.2)

Deep vein thrombosis (%) 10,065 (1.01) 1626 (0.2) 7562 (0.8) 5351 (0.6) 402 (0.2)

Gastrointestinal bleeding (%) 23,846 (2.4) 3653 (0.4) 21,471 (2.2) 12,507 (1.3) 2196 (1.2)

Hyperlipidemia (%) 617,057 (61.7) 83,883 (8.9) 638,339 (63.9) 406,671 (41.8) 17,266 (9.24)

Hypertension (%) 658,451 (65.9) 208,131 (22.0) 602,851 (60.3) 431,709 (44.4) 55,159 (29.5)

Hypothyroidism (%) 169,752 (17.0) 25,907 (2.7) 202,814 (20.3) 113,963 (11.7) 5523 (3.0)

Obesity (%) 96,489 (9.7) 36,225 (3.8) 173,500 (17.4) 349,965 (36.0) 27,593 (14.8)

Osteoporosis (%) 118,901 (11.9) 32,121 (3.4) 129,166 (12.9) 61,805 (6.4) 6079 (3.3)

Pneumonia (%) 32,499 (3.3) 5818 (0.6) 28,113 (2.8) 18,286 (1.9) 4068 (2.2)

Rheumatoid arthritis (%) 27,072 (2.7) 12,114 (1.3) 29,539 (3.0) 17,057 (1.8) 2797 (1.5)

Osteoarthritis (%) 411,328 (41.5) 111,717 (11.8) 402,366 (40.3) 209,548 (21.6) 23,317 (12.5)

Asthma (%) 93,485 (9.4) 23,621 (2.5) 103,129 (10.3) 62,195 (6.4) 10,113 (5.4)
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were 400 persons without a record of biological sex. 
Acute kidney injury was not commonly found in GP 
data, evident from the outcome rates in IQGER and 
IPCI. With a median time-at-risk of 1043 days, MDCR 
database has shorter continuous observation time than 
the other databases, possibly due to the older popu-
lation. The outcome rate of dementia is consistent 
across all databases, except IPCI for which it is consid-
erably lower.

Sample size
We generated learning curves with subsets that included 
up to 5000 persons with the outcome. The aim was not 
to determine an exact sample size but to assess whether 
sufficient data is available. Learning curves were gener-
ated using L1 regularization for the full set of candidate 
predictors including age, sex, condition occurrences, and 
drug exposures.

Figure 2 shows that learning curves are in the plateau 
phase even for the IPCI database, which provides the 
smallest dataset with just over 2300 persons with the 
outcome in its training set. In the context of L1 regu-
larization on the full set of candidate predictors, learning 
curves suggest no substantial overfitting across data-
bases, as shown by the similar performances on training 
and test sets.

Internal and external prediction performance
Discrimination performance
Figure 3 illustrates the internal and external discrimina-
tion performance of baseline models, full models, and 
phenotype models for L1 and BAR regularization meth-
ods. Generally, models perform best on their develop-
ment databases, with external validation performance 
decreasing. Internal discrimination performance indi-
cates that the baseline models perform best on IPCI 
data and worst on MDCR, with negligible influence 
from the regularization method. Full models also per-
form best on IPCI data and worst on MDCR data. The 
MDCR model trained with L1 performs worst across the 
other databases, while the MDCR model with BAR sees 
improvements in transportability. Internal and external 
discrimination performance of the phenotype models 
is consistent with the full models. The phenotype mod-
els using covariate interactions demonstrate similar 
discrimination performance to the original phenotype 
models, as detailed in Additional file  1: Appendix D. 
Moreover, model performance of the phenotype mod-
els was assessed on more recent data from patients with 
index date in 2015, 2016, and 2017. Discrimination per-
formance remained stable, whereas calibration perfor-
mance showed a slight decline over time, as detailed in 
Additional file 1: Appendix E.

Fig. 2  Learning curves using the full set and L1 regularization for up to 5000 persons with the outcome
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Calibration performance
Figure  4 illustrates the internal and external calibration 
performance of baseline models, full models, and phe-
notype models for L1 and BAR regularization methods. 
Looking at Eavg performance, models are calibrated best 
on their development databases, with external valida-
tion performance decreasing. This is despite the effort to 
recalibrate models for external databases using the weak 
calibration method. The IPCI model appears to be the 

most poorly calibrated model across the external data 
sources. Calibration of the MDCR models in external 
data sources is better than for the baseline model trained 
on MDCR. One exception to this is the IQGER model 
for the phenotype predictor set which performs worst on 
external databases. The phenotype models using covari-
ate interactions demonstrate similar calibration perfor-
mance to the original phenotype models, as detailed in 
Additional file 1: Appendix D.

Fig. 3  Internal and external discrimination performance (AUROC) of baseline models, full models, and phenotype models for L1 
and BAR regularization

Fig. 4  Internal and external calibration performance (Eavg) of baseline models, full models, and phenotype models for L1 and BAR regularization
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Regularization and predictors
Inspecting the number of predictors (Fig.  5) in the full 
models, we can observe that the BAR model selected 
for IQGER, MDCR, OPSES, OPEHR, and IPCI a total 
of 102, 84, 64, 56, and 6 predictors, respectively. This is 
considerably less than using L1 regularization with 808, 
1172, 987, 877, and 130 predictors on the same respective 
databases. In total, there were 930, 2416, 2307, 2012, and 
1363 candidate predictors available before regularization, 
respectively.

A similar trend is observed for the phenotype models, 
where BAR models based on IQGER, MDCR, OPSES, 
OPEHR, and IPCI contained 28, 26, 28, 23, and 5 predic-
tors, respectively. This is less than using L1 regularization 
with 45, 51, 52, 50, and 30 predictors on the same respec-
tive databases. Phenotype models that incorporate covar-
iate interactions selected 29, 34, 41, 30, and 7 predictors 
for BAR and 207, 166, 192, 146, and 43 predictors for L1, 
respectively.

Despite the discrepancy in number of predictors, the 
phenotype models achieve similar performance as the 
full models (Fig.  5). The number of predictors for all 
models can be found in Additional file 1: Appendix F.

Discussion
Treatment and management of dementia is focused on 
slowing its progression and improving symptoms. A 
patient-level model that can reliably predict dementia 
can support healthcare providers to take risk-factor-tar-
geted interventions at an early stage, potentially improv-
ing the quality of life of affected individuals. Identifying 
optimal model design choices for the candidate predictor 
set, regularization method, and development data source 
to improve prediction performance, can ultimately 
contribute to a more proactive approach to dementia 
management.

Participants and data
We generated learning curves to assess sample size 
requirements. Learning curves reached a plateau across 
all databases, which suggests that adding more data will 
likely have minimal impact on improving discrimination 

performance. We conclude that model development will 
not suffer from insufficient data and is feasible  on our 
data sets. An argument could be made to sample smaller 
datasets. However, given that training times and resource 
requirements for training logistic regression models were 
found to not be computationally prohibitive, all available 
data was used [19].

Internal and external validation
Age is the strongest known risk factor for dementia, as 
reflected in the discrimination performance of the base-
line models shown in Fig. 3. Even without the additional 
candidate predictors of condition occurrences and drug 
exposures, the baseline models perform well.

Two observations can be made about the MDCR base-
line model: [1] the model performs much worse across 
the external data sources, and [2] all other models per-
form poorly on MDCR data. The reason for this is likely 
the demographic case mix of the data. MDCR is a Med-
icaid database with an older population compared to the 
other databases. This is evident in Table 2, where persons 
aged 55–65 make only up about 2% of its population. As 
a result, the age range that the MDCR model is trained 
on narrows, making persons less separable using age as 
predictor and resulting in poorer discrimination perfor-
mance. The columns with constant performance in the 
heat maps (Fig.  3) indicate the same validation perfor-
mance regardless of the model. We believe this highlights 
a limitation of using age as sole predictor, as separability 
of persons for a specific outcome can depend on a data-
base’s case mix. IQGER data seem to suffer from this 
same phenomenon, but to a smaller degree.

For the full models, the addition of candidate predic-
tors of drugs and conditions can provide improved model 
performances, both internally and externally. Internal 
prediction performance improves for models that per-
formed the worst using only age group and sex (MDCR 
and IQGER), improves slightly for OPEHR and OPSES, 
and no change is observed for IPCI.

Lastly, the phenotype models perform comparably to 
the full models. This is a valuable observation, because 
the phenotype models can have at most 57 predictors 

Fig. 5  Number of predictors across databases for each model and regularization method. Each boxplot is annotated with the mean discrimination 
performance (µAUROC), internal and external, across all respective databases
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(including age groups and sex) but have shown to have 
even fewer when using regularization (Fig.  5). Incor-
porating covariate-age interactions does not further 
improve the discrimination and calibration performance 
of the phenotype models, nor does it reduce model 
complexity. Therefore, the models based on the original 
phenotype set are preferred. Calibration is an important 
performance metric, which should not be neglected. The 
Eavg is low for all models developed, which indicates good 
calibration, even across external databases. The height-
ened Eavg performance of the IPCI model in external 
data can be attributed to lower prevalence of dementia in 
IPCI data (Table 2). When applied to datasets with higher 
dementia rates, such models generally underpredict the 
outcome. Model performance remained stable for the 
phenotype models when validating on newer data (Addi-
tional file 1: Appendix E).

Regularization and predictors
Prediction models trained on high-dimensional obser-
vational data can include a large number of predictors 
[19]. While many predictors may optimize performance, 
it can be a barrier to clinical implementation. The utility 
of models for dementia prediction requires that they can 
be widely implemented in worldwide healthcare settings. 
Therefore, we investigated approaches with fewer candi-
date predictors in the form of the models trained on the 
base set and phenotype set. Moreover, we investigated 
regularization methods that perform feature selection 
such as L1 and BAR.

For the base models, no performance difference 
is observed between the two regularization methods (L1, 
BAR). Interestingly, the full models also  perform simi-
larly regardless of the type of regularization. For MDCR, 
external validation performance of the BAR model even 
improves over models regularized using L1. From Fig. 5, 
it becomes evident that BAR models are more parsimoni-
ous than L1 models, making them the first choice given 
similar performance, as fewer predictors can improve 
applicability in clinical practice.

Which is the best model?
The OPSES and OPEHR models slightly outperform the 
models from the other databases looking at the aver-
age internal and external discrimination performance 
(Additional file  1: Appendix G). Additionally, the full 
and phenotype models show equal performance. We 
can determine the best model by considering predictor 
count, where fewer is better. This makes the BAR mod-
els the most compelling candidates. The OPEHR pheno-
type model using BAR has the fewest predictors with 24, 
as compared to the OPEHR full model using BAR with 
57 predictors, the OPSES full model using BAR with 65 

predictors, and the OPSES phenotype model using BAR 
with 29 predictors. Moreover, even though calibration 
is good for all models, the OPEHR models outperform 
the OPSES models slightly on Eavg. OPEHR also provides 
more continuous observation time for patients as evident 
from the median time-at-risk of 1825 days as compared 
to OPSES with 1748 days.

Therefore, the OPEHR phenotype model trained using 
BAR is our most suitable model for dementia prediction 
and presented in Additional file 1: Appendix H. Although 
this model cannot be directly compared to existing 
dementia prediction models due to different cohort defi-
nitions and modeling parameters (time-at-risk window, 
observation window, etc.), we can still assess it in the 
context of the existing literature. We previously investi-
gated reporting of 59 existing dementia prediction mod-
els that were presented in 35 publications [7].

Well-reported models could be fully replicated and 
applied based on the statistical analysis information 
reported in the research paper. These include a model 
by Walters et  al. which achieved c-statistic of 0.84 in 
persons aged 60–79 [10]. However, external validation 
proved difficult as predictors such as social depriva-
tion or BMI measurements are generally not available 
in observational data [7]. As a result, external validation 
performance deteriorates. On MDCR, OPSES, OPEHR, 
IQGER, and IPCI, we observed AUROC performances 
of 0.69, 0.74, 0.73, 0.75, and 0.76, respectively, for this 
model [7]. The OPEHR phenotype model, although get-
ting outperformed on its development data, uses more 
commonly available predictors in observational data and 
discriminated better when evaluated on these same data-
bases. Similarly, Nori et  al. use L1 regularized logistic 
regression to train a model on OptumLabs Data Ware-
house data which achieves 0.69 AUROC [29]. External 
validation showed that this model does not transport 
well to MDCR, OPSES, OPEHR, IQGER, and IPCI, with 
AUROCs of 0.66, 0.67, 0.62, 0.67, and 0.64, respectively, 
considerably less than the performance of our phenotype 
model.

While many of the remaining models that were 
assessed achieve comparable AUROC to our model, we 
believe the lack of an external validation makes many of 
these models less suitable for clinical practice. The final 
model is presented in Additional file 1: Appendix H.

Clinical utility
A prediction model has clinical utility when it can aid 
healthcare professionals in their decision-making and 
patient management, ultimately resulting in improved 
patient outcomes. This study addresses several fac-
tors to improve clinical utility of our model that include 
improvement of performance metrics, clinical relevance 
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of predictors derived from routinely collected data, short 
1-year continuous observation time, and an external 
validation.

We avoid the use of qualitative descriptors of model 
performance for AUROC thresholds as these could be 
arbitrarily based on digit preference, and therefore the 
general recommendation is to present AUROC values 
without labels [30, 31]. However, we acknowledge there is 
room to further improve discrimination which likely will 
result in improved clinical utility [10].

Moreover, while we have made considerable strides in 
developing and validating predictive models, a significant 
challenge remains in translating these models into practi-
cal clinical applications. Currently, despite the availability 
of various informative models, their implementation into 
clinical practice has been underwhelming.

Moving forward, it will be crucial to prioritize efforts 
towards implementing these models into everyday clini-
cal practice, allowing the insights generated to effec-
tively inform and improve dementia management. Thus, 
our research does not simply end in model development 
and validation, but prompts further action to ensure our 
results translate into tangible healthcare improvements.

Limitations and future work
The benefits and challenges of using observational data 
for research are well documented. Hersh et al. highlighted 
the real-world nature and quantity, while acknowledging 
its potential limitations such as incompleteness, inaccu-
racies, or insufficient granularity [32]. While we hypoth-
esize that using observational data can enhance clinical 
utility of a model, it notably excludes established predic-
tion approaches for dementia, such as using brain MRI, 
cognitive assessment, or plasma Alzheimer biomarkers 
[33, 34]. Despite the well-established nature of logistic 
regression for clinical prediction, but considering these 
different types of data and a seeming performance ceil-
ing we observed for our prediction task, we recognize 
the need to explore alternative modeling techniques for 
dementia prediction in the future [21].

Logistic regression may also be constrained by the 
competing risk of death, an inherent challenge in lon-
gitudinal studies focusing on age-related diseases. One 
precaution we are taking is that our analysis includes 
those patients that are lost to follow-up, for example, due 
to death. This approach was found to maintain a com-
parable performance but avoids bias to the model [15]. 
However, alternative modeling techniques for dementia 
prediction that take into account competing risks, such 
as the Fine-Gray subdistribution hazard model, or mod-
els that use time-varying covariates, present a promising 

direction for future work [35]. Moreover, recent work 
in deep learning has introduced revised architectures 
for tabular data, potentially providing a way to identify 
complex patterns not seen by conventional modeling 
approaches [36, 37, 38].

Conclusion
In this study, we developed and externally validated 
patient-level models to predict dementia. We focused on 
identifying optimal model design choices for candidate 
predictor sets, regularization methods, and development 
data source to improve prediction performance, which 
can ultimately contribute to a more proactive approach 
to dementia management. Although demographic age 
is found to be a key driver for dementia prediction, we 
demonstrate that additional predictors based on condi-
tion diagnoses and drug exposures can further improve 
prediction performance to varying degrees.

During model development, BAR regularization out-
performed L1 regularization to yield the most parsimo-
nious yet still well-performing prediction models. We 
choose a final model trained on EHR databases which 
demonstrates good external validation performance 
across four other observational databases, outperforming 
previously validated models on the same data.

The low complexity of the chosen model emphasizes 
its suitability for broader application, holding promise 
to notably contribute to our understanding and manage-
ment of dementia in a healthcare setting.

However, despite having made considerable strides in 
developing and validating predictive models, a significant 
challenge remains in translating these models into clini-
cal practice.
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