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Abstract 

Background  Early detection and treatment are effective methods for the management of oral squamous cell carci-
noma (OSCC), which can be facilitated by the detection of tumor-specific OSCC biomarkers. The epidermal growth 
factor receptor (EGFR) and programmed death-ligand 1 (PD-L1) are important therapeutic targets for OSCC. Multi-
spectral fluorescence molecular imaging (FMI) can facilitate the detection of tumor multitarget expression with high 
sensitivity and safety. Hence, we developed Nimotuzumab-ICG and Atezolizumab-Cy5.5 imaging probes, in combi-
nation with multispectral FMI, to sensitively and noninvasively identify EGFR and PD-L1 expression for the detection 
and comprehensive treatment of OSCC.

Methods  The expression of EGFR and PD-L1 was analyzed using bioinformatics data sources and specimens. 
Nimotuzumab-ICG and Atezolizumab-Cy5.5 imaging probes were developed and tested on preclinical OSCC cell line 
and orthotopic OSCC mouse model, fresh OSCC patients’ biopsied samples, and further clinical mouthwash trials were 
conducted in OSCC patients.

Results  EGFR and PD-L1 were specifically expressed in human OSCC cell lines and tumor xenografts. Nimotuzumab-
ICG and Atezolizumab-Cy5.5 imaging probes can specifically target to the tumor sites in an in situ human OSCC 
mouse model with good safety. The detection sensitivity and specificity of Nimotuzumab-ICG in patients were 96.4% 
and 100%, and 95.2% and 88.9% for Atezolizumab-Cy5.5.

Conclusions  EGFR and PD-L1 are highly expressed in OSCC, the combination of which is important for a precise 
prognosis of OSCC. EGFR and PD-L1 expression can be sensitively detected using the newly synthesized multispectral 
fluorescence imaging probes Nimotuzumab-ICG and Atezolizumab-Cy5.5, which can facilitate the sensitive and spe-
cific detection of OSCC and improve treatment outcomes.
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Background
Oral malignancies account for 3–5% of all malignant 
tumors. Oral squamous cell carcinoma (OSCC) is a kind 
of oral malignant tumor with high malignant degree and 
poor prognosis. In 185 countries around the world, there 
are about 476,000 new cases of OSCC and about 226,000 
deaths [1]. The overall mortality rate of oral and oro-
pharyngeal cancers has increased by 0.5% per year over 
the past 10 years [2]. After comprehensive treatment, the 
5-year survival rate remains at 50%, and the survival rate 
of patients with advanced disease decreases to 27% [3, 
4]. The poor prognosis of patients with OSCC is partially 
due to a delayed diagnosis. Early screening and timely 
treatment can effectively prevent the progression of 
OSCC, thereby increasing the survival rate of patients [5, 
6]. Currently, the diagnostic methods for OSCC mainly 
involve visual inspection and tactile examination of the 
oral cavity, head and neck lymph nodes, and traditional 
medical imaging such as computed tomography (CT) 
and magnetic resonance imaging (MRI) [7]. However, 
some OSCCs appear similar to oral ulcers or underly-
ing oral malignant diseases (OPMDs) [8, 9], leading to 
misdiagnosis. The gold standard for a definitive OSCC 
diagnosis is pathological examination, which is invasive, 
time-consuming, and involves complicated procedures 
[10–12]. Hence, there is an urgent need for new ways to 
detect tumors noninvasively and sensitively.

Near-infrared fluorescence (NIRF) imaging, through 
the injection or application of fluorescent imaging 
probes, allows tumors to be fluorescently lightened in 
the corresponding diseased areas, providing precise 
guidance for discriminating healthy and tumor tissues 
safely [13]. The most common NIR dyes used for in vivo 
NIRF tumor imaging are indocyanine green (ICG), Cy5, 
Cy5.5, Cy7 and IRDye800CW [14]. ICG is the amphiphi-
lic small-molecule NIRF dye approved by the food and 
drug administration (FDA) for the surgical treatment of 
head and neck tumors [15]. ICG was first used for NIRF 
imaging in 9 patients with head and neck squamous cell 
carcinoma (HNSCC) [16]. Bredell et al. detected cervical 
sentinel lymph nodes in the soft tissue after peritumoral 
injection of ICG in patients with oropharyngeal cancer 
[17]. However, free ICG and other NIR dyes are non-spe-
cific and cannot be used for tumor-targeted imaging. NIR 
dyes can be coupled with tumor-specific ligands such as 
antibodies, metabolic substrates, cell surface peptides, 

and growth factors to recognize tumor cells [18–21]. 
In HNC, Cetuximab-800CW was evaluated by fluores-
cence-guided imaging (FGI) for high sensitivity to tumor 
detection [22, 23]. Multispectral fluorescence imaging 
(FMI) mainly uses broad-spectrum light and can simulta-
neously detect multiple biomarkers expressed in tumors. 
Chen et al. demonstrated the feasibility of detecting mul-
tiple targets in human for the first time in Barrett’s neo-
plasia study. Multispectral FMI can facilitate precise and 
early detection of tumors [24]. Compared with target-
FMI with a single tracer, multispectral FMI can improve 
the sensitivity and specificity of tumor identification [25]. 
For localized, small-scale tumors, the extracellular matrix 
(ECM) may prevent the penetration of intravenously 
administered macromolecules, leading to missed diag-
noses of small lesions [26]. The use of micro-dose fluo-
rescent imaging probes to spray or smear the diseased 
area enables almost instant imaging [27]. For OSCC, the 
entire oral mucosa can be topically applied with targeted 
imaging probes, and suspected cancer lesions can be 
directly lightened and correspondingly detected [28–32].

The epidermal growth factor receptor (EGFR) and pro-
grammed death-ligand 1 (PD-L1) are two key important 
therapeutic targets for OSCC. Targeted therapy, rep-
resented by EGFR antibody drugs, and immunother-
apy, represented by anti-PD-1/PD-L1 antibodies, have 
provided new strategies for the treatment of HNSCC. 
Cetuximab, an anti-EGFR monoclonal antibody (mAb), 
was the first FDA-approved molecular-targeted drug for 
the treatment of HNSCC [33] and has been approved 
as a first-line treatment for relapsed and/or metastatic 
HNSCC. Fluorescently labeled cetuximab can be utilized 
for targeted FMI of OSCC to evaluate the targeted rec-
ognition of anti-EGFR fluorescently labeled antibodies in 
and around the tumor after systemic administration [34]. 
de Wit JG et  al. [23] reported that Cetuximab-800CW 
can be used for the detection of positive tumor margins 
through 66 OSCC tumors and can safely locate surgical 
margins during surgery. Nimotuzumab has a lower affin-
ity than Cetuximab, and has less effect on the recognition 
and killing of normal tissue cells [35]. PD-L1 is a trans-
membrane receptor that, after binding to PD-L1/PD-L2, 
can prevent cellular immunity. PD-L1 antibody drugs can 
relieve this inhibition and enhance the cellular immune 
response against tumor cells by blocking the PD-1/
PD-L1 signaling pathway [36]. The potential for imaging 
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with Atezolizumab and its ability to predict responses 
to PD-L1 immunotherapy were initially assessed in a 
human study using zirconium-89-labeled Atezolizumab 
(anti-PD-L1) [37]. Many cancers, including OSCC, are 
molecularly heterogeneous, and the detection of multiple 
targets is needed for more accurate clinical diagnosis and 
guidance for personalized therapy.

Hence, the aims of this study is to validate EGFR and 
PD-L1 as specific biomarkers for OSCC and develop 
multispectral Nimotuzumab-ICG and Atezolizumab-
Cy5.5 fluorescence imaging probes to quantify the 
dynamic expression of dual-target EGFR and PD-L1 from 
preclinical in vitro human OSCC cell lines, in vivo OSCC 
orthotopic mouse models, to clinical OSCC patient 
tumor specimens, and topical application as mouthwash 
in OSCC patients. The new imaging strategies, quick and 
sensitive detection methods, and experimental evidence 
for the sensitive detection of OSCC biomarkers provided 
in this study will help to provide guidance for the early 
detection of OSCC, targeted therapy and immunother-
apy (Fig. 1).

Methods
Bioinformatics analysis
The data used to compare EGFR and PD-L1 expression 
in HNSCC and normal tissues are available in the gene 

expression profiling interactive analysis (GEPIA) data-
base at http://​gepia.​cancer-​pku.​cn.

Clinical model prediction based on receiver operator 
characteristic (ROC) analysis
One hundred and twelve OSCC patients treated at the 
Chinese PLA General Hospital between December 2018 
and December 2019 were retrospectively analyzed. The 
inclusion criteria were patients who underwent surgery 
for the first time at our hospital and were diagnosed with 
OSCC based on complete clinical and follow-up records. 
Exclusion criteria: (1) presence of other concomitant 
tumors; (2) presence of distant metastases; (3) history 
of preoperative antineoplastic therapy; (4) serious post-
operative complications. The follow-up period was three 
years, and the patients were re-examined every three 
months. The time of recurrence, metastasis, or death 
was defined as the cutoff time. The follow-up period 
ended on December 1, 2022. Receiver operating charac-
teristic (ROC) curve analysis was performed based on 
EGFR and PD-L1 expression. EGFR and PD-L1 expres-
sion was evaluated by two independent pathologists in 
our hospital who were blinded to the study design. EGFR 
expression was detected using immunohistochemis-
try (IHC). The negative, weak positive, moderate posi-
tive, strong positive staining were respectively defined as 

Fig. 1  Study flowchart

http://gepia.cancer-pku.cn
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—, + , +  + , +  +  + . PD-L1 expression was measured using 
PD-L1 IHC 22C3 pharmDx (Dako 22C3, Dako, Den-
mark) and ranged from 0 to 99% as determined using the 
Tumor Proportion Score (TPS).

EGFR and PD‑L1 expression analysis via IHC of human 
OSCC
Analyses of EGFR and PD-L1 expression were conducted 
on biospecimens from the Department of Stomatology, 
First Medical Center, Chinese PLA General Hospital. 
All biopsy specimens were diagnosed as OSCC by the 
Department of Pathology. The biospecimens were then 
embedded and sliced continuously. Tissue sections were 
incubated with bovine albumin (BSA, GC305010; Ser-
vicebio, Wuhan, China) for 30  min and Rabbit mono-
clonal antibody to EGFR (RRID: AB_869579; Abcam, 
Cambridge, UK) and Rabbit monoclonal antibody 
to PD-L1 (RRID: AB_2687878; Abcam, Cambridge, 
UK) at 4  °C overnight. The slides were then exposed to 
HRP peroxidase-labeled Goat Anti-Rabbit IgG (RRID: 
AB_2811189; Servicebio, Wuhan, China) and incubated 
for 1  h. Subsequently, the sections were stained with 
hematoxylin and eosin (H&E) for analysis. The expres-
sion levels of EGFR and PD-L1 were quantified using 
H-scores (0–300). Images were then captured using 
a scanner (Digital Sight DS-U3, Eclipse E100, Nikon, 
Japan), and H-scores were calculated by ImageJ Fiji (NIH, 
Bethesda, MD, USA).

Cell culture
Normal human oral keratinocytes (HOK) (ScienCell 
Research Laboratories Inc., USA) cells were cultured 
in Roswell Park Memorial Institute 1640 (RPMI-1640) 
medium (Thermo Fisher Scientific) containing 10% fetal 
bovine serum (FBS) (Thermo Fisher Scientific Aus-
tralia Pty Ltd., Australia) and 1% penicillin–streptomy-
cin (Macgene Biotechnology, China). Human OSCC 
CAL27 cells (RRID: CVCL_1107; ATCC, Manassas, VA, 
USA), CAL27-Fluc cells (RRID: CVCL_1107; Cobioer 
Biosciences Co., Ltd., China) and HSC3 cells ((RRID: 
CVCL_1288; ATCC, Manassas, VA, USA) were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM) 
(Thermo Fisher Scientific (CHINA) Co., Ltd., China) 
containing 10% FBS and 1% penicillin–streptomycin. 
All cells were cultured in a Cell Culture Dish (Corning 
Inc., USA). All experiments were performed using myco-
plasma-free cells. All human cell lines were authenticated 
using STR profiling within the last three years.

EGFR and PD‑L1 expression analysis in different cells 
via western blotting and flow cytometry
HOK, CAL27, CAL27-Fluc and HSC3 cells were cul-
tured and collected. Total protein was extracted from 

cells using precooled Pierce RIPA Buffer (Thermo Fisher 
Scientific, USA) and Halt Protease Inhibitor Cocktail 
(Thermo Fisher Scientific, USA), and western blotting 
was conducted utilizing Rabbit monoclonal antibody 
to EGFR (RRID: AB_869579) and PD-L1 monoclonal 
antibody (RRID: AB_2756526; Proteintech Group, Inc., 
USA), polyclonal rabbit β-actin antibody (Cell Signaling 
Technology, USA), and secondary antibody (1:10,000, 
Jackson ImmunoResearch, USA) were used for western 
blot. All four cell types (1 × 106) were incubated with 
FITC labeled Anti-EGFR antibody (RRID:AB_298005) 
and APC Anti-PD-L1 antibody (ab206967, Abcam, Cam-
bridge, UK). After 30 min incubation, the cells were sus-
pended in Phosphate-Buffered Saline (PBS) (Thermo 
Fisher Scientific Co., Ltd., China) and analyzed using 
flow cytometry (FACSCanto™ II; BD Biosciences, USA). 
FlowJo (version10.8.1) software was used for data analy-
sis. The experiment was repeated three times, and the 
average of the results was taken.

Human OSCC orthotopic mouse model
All animal experiments were approved according to 
the guidelines of the Institutional Animal Care and Use 
Committee (Permit No: IA21-2203–24) of the Institute 
of Automation, Chinese Academy of Sciences. PBS (50 
μL) containing 5 × 106 HSC3 or CAL27-Fluc cells were 
injected into the tongues of 6-week-old male BALB/c-
nu/nu mice anesthetized with isoflurane (RWD Life Sci-
ence, China). The feeding method is to give soft food or 
softened food with feed water. HSC3 and CAL27-Fluc 
tumor xenografts were harvested 7–10 days after inocu-
lation; H&E staining was performed. Primary anti-EGFR 
antibody (RRID: AB_869579) and anti-PD-L1 antibody 
(RRID: AB_2687878) were used for immunohistochemi-
cal and immunofluorescence staining to analyze the 
expression of EGFR and PD-L1 in human OSCC tumor 
xenograft mouse models.

Synthesis of Nimotuzumab‑ICG and Atezolizumab‑Cy5.5
ICG-NHS-ester (330  nM, dissolved in 300 μL DMSO, 
Sigma-Aldrich) was added to humanized monoclonal 
EGFR antibody (5  mg, 33  nM, Nimotuzumab, Biotech 
Pharma, China) (dye/antibody ratio was 1:20) in conju-
gation buffer (5  mL, 0.1  M PBS), and the solution was 
reacted in the dark at 25  °C with continuous oscillation 
overnight. The mixture was concentrated to 0.8 mL using 
a centrifugal filter unit (3  kDa MWCO, Amicon) and 
purified three times via centrifugation at 8,500  rpm for 
15 min. Similarly, Cy5.5-NHS-ester (330 nM, dissolved in 
300 μL 0.1 M PBS, New Research Bioscience, China) was 
added to humanized monoclonal anti-PD-L1 antibody 
(Atezolizumab, Roche Registration GmbH, Switzerland) 
in conjugation buffer (5 mL, 0.1 M PBS), and the solution 
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was reacted in the dark at 25 °C with continuous oscilla-
tion overnight. The mixture was concentrated and puri-
fied thrice using a centrifugal filter unit (3 kDa MWCO, 
Amicon). The conjugation efficiency was calculated.

In vitro cell viability experiments and spectroscopic 
analysis
Logarithmic growth-phase HOK, CAL27-Fluc, and 
HSC3 cells were seeded (5 × 103/well) in 96-well culture 
plates (Corning Inc., USA) overnight. Nimotuzumab-
ICG, Atezolizumab-Cy5.5 and the mixture were added 
into the culture plates at different concentrations (2.5, 5, 
10, 20, 40, 80, 160, and 320  μg/mL), respectively. After 
24 h incubation, cells were washed thrice with PBS and 
cultured in 10% CCK-8 medium (CA1210; Solarbio Sci-
ence and Technology Co., Ltd., China) for 30  min; the 
absorbance at 450  nm was determined using a spectro-
photometric microplate reader (Synergy HT; BioTek, 
USA).

The spectra of excitation light and absorption light of 
Nimotuzumab-ICG and Atezolizumab-Cy5.5 were tested 
by fluorescence spectrophotometer (F-7000, Hitachi, 
Japan) (The scanning speed is 1200 nm/min, the spectral 
bandwidth is 10 nm, and the sampling interval is 0.2 nm) 
and near-infrared spectrophotometer (UV-3600 Plus, 
Shimadzu, Japan), respectively.

In Vivo and Ex vivo fluorescence molecular imaging (FMI) 
and safety evaluation
CAL27-Fluc OSCC tumor-bearing mice were injected 
with Nimotuzumab-ICG (0.2  mg) and Atezolizumab-
Cy5.5 (0.2  mg), and their mixture via the caudal vein. 
The block group (normal mice) was intraperitoneally 
injected with Nimotuzumab (0.2 mg) and Atezolizumab 
(0.2 mg) 1 h before the intravenous injection of the imag-
ing probes. FMI images were captured at different time 
points (pre-, 2, 6, 12, and 48 h) using an IVIS® Spectrum/
CT (Caliper Life Sciences, USA), and the tumor to back-
ground ratio (TBR) was calculated using the region of 
interest (ROI) measurement tool with Fiji software.

After 24  h, the mice were sacrificed, and the serum 
were collected for detection of liver function indices, 
including alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) using an automatic blood bio-
chemical auto analyzer (7600; Hitachi, Tokyo, Japan). 
The tongues, hearts, livers, spleens and kidneys were 
collected for ex  vivo FMI by IVIS® SpectrumCT. H&E 
staining was performed on organs after ex vivo imaging. 
Resected fresh CAL27-Fluc tumor-bearing mouse tongue 
tumor specimens were analyzed using immunofluores-
cence (IF) staining for EGFR and PD-L1 expression.

Probe fluorescence imaging of fresh human specimens
First, 10 fresh OSCC specimens were pre-tested to 
determine the optimal incubation concentration of the 
probe, and then a formal fluorescence imaging experi-
ment on 20 OSCC specimens was followed.. A total of 
30 resected fresh human OSCC specimens were rinsed 
in 5% goat serum (SL038, Solarbio Science and Tech-
nology Co., Ltd., China) to remove debris and mixed 
and incubated with Nimotuzumab-ICG and Atezoli-
zumab-Cy5.5 at 20  °C for 3  min. Subsequently, the 
specimens were washed with PBS 3 times. A home-
made multispectral fluorescence imaging system (Key 
Lab of Molecular Imaging, CAS) was used to perform 
imaging experiments on the specimens. The device can 
achieve optical resolution of 50 μm, bandwidth of 5 nm, 
imaging field of 12.5 × 12.5 cm2, 50 fps time resolution 
(adjustable according to actual conditions), real-time 
imaging of white light image, near-infrared dual imag-
ing channels of 665  nm and 785  nm simultaneously. 
After imaging experiments, the specimens were fixed 
in 4% paraformaldehyde (P1110; Macgene Biotechnol-
ogy) for subsequent H&E, EGFR, and PD-L1 IHC and 
IF staining.

Fluorescence imaging of OSCC in human patients
This study was approved by the Ethics Committee of the 
Chinese PLA General Hospital (No. S2021-097–01) and 
registered in the Chinese Clinical Trial Registry (Reg-
istration Number: ChiCTR2100045738). All human 
patients signed informed consent, and the patients gar-
gled 5 mL of Nimotuzumab-ICG (0.4 mg/mL) and Ate-
zolizumab-ICG (0.4  mg/mL) for approximately 30  s. 
Next, the patients gargled ultrapure water for 30 s three 
times, and the interval between Nimotuzumab-ICG and 
Atezolizumab-ICG imaging was 1  h. White-light and 
fluorescence images were obtained using a commercial-
ized Digital Precision Medicine imaging device H2800 
(DPM, Beijing, China). After surgical treatment, fresh 
specimens were obtained for the probe-spraying experi-
ment, H&E staining, EGFR, PD-L1 IHC staining, and IF 
staining. EGFR and PD-L1 expression were defined as 
—, + , +  + , +  +  + for negative, weak positive, medium 
positive, and strong positive expression.

Statistical analysis
The optimal cutoff values for the expression of EGFR and 
PD-L1 were determined from the ROC curves. Statistical 
analyses were performed using SPSS (version 21.0; IBM, 
Armonk, NY, USA) and GraphPad Prism software (ver-
sion 9; GraphPad Software Inc., San Diego, CA, USA). 
Differences between paired data were tested using the 
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Wilcoxon test. Statistical significance was set as *P < 0.05, 
** P < 0.01, ***P < 0.001, **** P < 0.0001.

Results
Validation of EGFR and PD‑L1 as specific OSCC biomarkers
According to the GEPIA dataset, the expression levels 
of EGFR and PD-L1 were significantly higher in HNSCC 
tumors than para tumor tissues (Fig. 2A). The EGFR and 
PD-L1 gene expression profiles across all HNSCC tumor 
samples (n = 519) and paired normal tissues (n = 44) were 
expressed as log2[transcripts per million (TPM) + 1]]. 
Patients with OSCC had high EGFR and PD-L1 expres-
sion. The expression of EGFR and PD-L1 is associated 
with the prognosis of patients with HNSCC. The corre-
lation between EGFR expression and disease-free sur-
vival (DFS) and overall survival (OS) in 493 patients with 
HNSCC, and PD-L1 expression, DFS, and OS in 466 
patients with HNSCC were analyzed using the GEPIA 
dataset. EGFR overexpression was significantly asso-
ciated with OS (*P = 0.045), whereas high expression 
of PD-L1 was associated with shorter DFS (*P = 0.01) 
(Fig. 2B).

The statistical data for OSCC patients (n = 112) are 
shown in Supplementary Table  1. The areas under the 
curve corresponding to high expression of EGFR and 
PD-L1 were 0.791 and 0.641, respectively, but the corre-
sponding curve area for the combined prediction is 0.836 
(95% Confidence Interval (CI): 0.744 to 0.928), suggesting 
that the combination of EGFR and PD-L1 dual-targets is 
important for the precise prognosis of OSCC (Fig. 2C).

To confirm that EGFR and PD-L1 are specific biomark-
ers for OSCC, biospecimen slides from patients with 
OSCC (n = 59) were immunohistochemically stained with 
anti-EGFR and anti-PD-L1 antibodies. The demographics 
of patients with OSCC (n = 59) are shown in Additional 
file 1: Table S1. EGFR and PD-L1 expression levels were 
distinctly higher in OSCC tumors than in para tumor 
tissues (Fig. 2D). We clearly distinguished tumor tissues 
from normal tissues by immunohistochemical stain-
ing for EGFR and PD-L1. The EGFR H-Score and PD-L1 
H-Score in OSCC and para tumor tissues were 141.2 vs. 
67.19 and 116.2 vs. 69.66, respectively (**** P < 0.0001) 
(Fig. 2E).

Detection of EGFR and PD‑L1 expression in in vitro OSCC 
cells and in vivo orthotopic OSCC tumor model
The expression of EGFR and PD-L1 was relatively higher 
in CAL27, CAL27-Fluc, and HSC3 cells than in HOK 
cells, used as control (Fig. 3A). EGFR and PD-L1 protein 
expression was significantly higher in CAL27 (~ 4.75-
fold, **** P < 0.0001, ~ 1.19-fold, * P < 0.05), CAL27-Fluc 
(~ 2.36-fold, *** P < 0.001, ~ 1.85-fold, **** P < 0.0001), 
and HSC3 (~ 2.65-fold, **** P < 0.0001, ~ 2.34-fold, **** 

P < 0.0001) cells than in HOK cells (Fig.  3B). IHC stain-
ing showed that EGFR and PD-L1 were both highly 
expressed in the tumor area in both CAL27-Fluc and 
HSC3 mouse models (Fig. 3C). EGFR and PD-L1 double 
IF staining also confirmed their high expression in the 
CAL27-Fluc mouse tumor xenografts (Fig.  3D). In gen-
eral, our experiments confirmed that EGFR and PD-L1 
were expressed at relatively higher levels in OSCC tumor 
tissues than in normal tissues.

Characterization of Nimotuzumab‑ICG 
and Atezolizumab‑Cy5.5 imaging probes
Nimotuzumab and Atezolizumab were reacted with ICG-
NHS and Cy5.5-NHS to yield Nimotuzumab-ICG and 
Atezolizumab-Cy5.5, respectively (Additional file  1: Fig. 
S1). The conjugation efficiency was 93.42% and 92.02%, 
respectively. Nimotuzumab-ICG had an excitation wave-
length of 808 nm and absorption peak at 790 nm, which 
were partially offset from those of free ICG (Excitation: 
815 nm), indicating that the dye was conjugated to Nimo-
tuzumab. The spectral characterization of Atezolizumab-
Cy5.5 also showed a shift from the excitation wavelength 
of free Cy5.5 (Excitation: 691  nm), indicating that the 
dye was linked to Atezolizumab, with excitation and 
absorption peak of Atezolizumab-Cy5.5 were 670 nm and 
679 nm, respectively (Additional file 1: Fig. S2). The cell 
viability of different human OSCC cells was not influ-
enced when the concentrations of Nimotuzumab-ICG 
and Atezolizumab-Cy5.5, were lower than 320  μg/mL. 
These results suggest that Nimotuzumab-ICG and Ate-
zolizumab-Cy5.5 were relatively biocompatible and safe 
for further in  vivo study (Additional file  1: Fig. S3).The 
in vivo toxicity of Nimotuzumab-ICG and Atezolizumab-
Cy5.5 was evaluated in healthy male BALB/c-nu/nu mice; 
The mice were euthanized 24  h post-injection of PBS, 
Nimotuzumab-ICG, Atezolizumab-Cy5.5, and Nimotu-
zumab-ICG and Atezolizumab-Cy5.5 injection (4 mg/kg). 
Serum assessment showed that the ALT and AST levels 
were within the normal range in all four groups (Addi-
tional file 1: Fig. S4). In addition, no obvious histopatho-
logical changes were observed in the major organs (heart, 
liver, kidney, or spleen) (Additional File 1: Fig. S5). Nimo-
tuzumab-ICG and Atezolizumab-Cy5.5 were further 
tested for in vivo transoral toxicity and proved to be safe 
(Additional file 1: Table S2). These results demonstrated 
that Nimotuzumab-ICG and Atezolizumab-Cy5.5 were 
well-developed and safe.

The in vivo biodistribution and tumor targeting 
of Nimotuzumab‑ICG and Atezolizumab‑Cy5.5
An orthotopic human CAL27-Fluc OSCC tumor mouse 
model was established and bioluminescence imag-
ing (BLI) was performed to locate the OSCC tumor 
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Fig. 2  Expression and analysis of EGFR and PD-L1 in HNSCC in GEPIA database and OSCC patients. A Statistical analysis of EGFR and PD-L1 
expression in HNSCC tumors and normal tissues obtained from the GEPIA database. Log2(TPM + 1) was used for the log-scale. HNSCC, Head 
and Neck Squamous Cell Carcinomas. B The correlation of EGFR and PD-L1 expression related to disease free survival (DFS) and overall survival 
(OS). C Receiver operating characteristic analysis of EGFR and PD-L1. FPR, False Positive Rate; TPR, True Positive Rate; AUC, Area Under Curve. D 
Representative EGFR and PD-L1 IHC and H&E histology obtained from OSCC biospecimens. Scale bar of overview, 2 mm. Scale bar of tumor 
and para tumor, 100 μm. (E) IHC H-scores of EGFR and PD-L1 expression in IHC samples (n = 59 patients). **** p < 0.0001
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xenograft (Additional file  1: Fig. S6). CAL27-Fluc 
oral tumor-bearing mice were divided into differ-
ent groups: Nimotuzumab-ICG, Atezolizumab-Cy5.5, 

Nimotuzumab-ICG + Atezolizumab-Cy5.5, and corre-
sponding blocking groups. The fluorescence signals of 
ICG and Cy5.5 were detected at 785  nm and 665  nm, 

Fig. 3  Detection of EGFR and PD-L1 Expression in in vitro OSCC cells and in vivo orthotopic OSCC tumor model. A FACS analysis of HOK, CAL27, 
CAL27-fLUC, and HSC3 cells for detection of EGFR and PD-L1 expression. B Western blotting analysis of EGFR and PD-L1 expression in HOK, 
CAL27, CAL27-fLUC, and HSC3 cell lines. *P < 0.05, ***P < 0.001, ****P < 0.0001. C H&E, EGFR and PD-L1 IHC staining of OSCC tumor xenograft. Scale 
bar, 200 μm. D White light, H&E, immunofluorescence staining (IF) obtained from CAL27-fLUC tumor xenografts. H&E Scale bar, 1,000 μm. Both 
PD-L1 and EGFR are over-expressed in the cell membrane and stained in green and red, respectively; the nucleus is stained in blue. Scale bar, 500 
and 20 μm
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respectively (Fig.  4A). The fluorescence signal in the 
Nimotuzumab-ICG group was detected at 2 h post-injec-
tion, peaked at 12 h post-injection, gradually decreased, 
and remained detected 48  h post-injection. The fluo-
rescence signal of the Atezolizumab-Cy5.5 group was 
detected at 2  h post-injection and peaked at 12  h post-
injection. After the simultaneous injection of Nimotu-
zumab-ICG and Atezolizumab-Cy5.5, both fluorescence 
signals were detected at 2  h and peaked at 12  h post-
injection. The FMI TBR of the target group was higher 
than that of the corresponding block group at the cor-
responding time points. The difference in the TBR was 
more significant at 12 h than other time points. (Fig. 4B). 
After 48 h of in vivo observation, the tumors and major 
organs were dissected for ex vivo FMI. The fluorescence 
signal of the tumor region in the targeted group was 
higher than that in the blocking group. The fluorescence 
signals of Nimotuzumab-ICG and Atezolizumab-Cy5.5 
were stronger in the liver and certain signals in the kid-
ney, indicating that the imaging probes were mainly 
metabolized through the liver and some through kidney. 
Animal study suggested that Nimotuzumab-ICG and 
Atezolizumab-Cy5.5 dual-targeting imaging probes pos-
sessed good OSCC tumor-targeting capability and safety, 
making them suitable for further clinical application and 
translation.

Identification of EGFR and PD‑L1 expression on OSCC 
patients’ fresh biopsied samples using Nimotuzumab‑ICG 
and Atezolizumab‑Cy5.5 imaging probes
For the identification of multitarget expression, a home-
made multispectral fluorescence imaging system was 
developed and used to conduct imaging experiments 
on patient specimens, and white light and multispectral 
fluorescence images were obtained. Figure  5A shows 
the working model diagram and prototype of the mul-
tispectral fluorescence imaging system. Fresh OSCC 
specimens from 10 patients were topically treated with 
Nimotuzumab-ICG and Atezolizumab-Cy5.5 with dif-
ferent concentrations. The optimal incubation concen-
tration of Nimotuzumab-ICG and Atezolizumab-Cy5.5 
was found to be 0.4  mg/mL (Additional file  1: Fig. S7) 
for 3 min (Additional file 1: Fig. S8). The obvious fluores-
cence signals of Nimotuzumab-ICG and Atezolizumab-
Cy5.5 from the OSCC tumor region could be specifically 

detected, while adjacent normal areas did not show fluo-
rescence signals (Fig.  5B). Quantitative analysis showed 
that Nimotuzumab-ICG imaging discriminated between 
tumor and para tumor. Under 785 nm NIR, the TBR of 
the tumor was higher than para tumor (30.05 ± 1.87 
vs 20.27 ± 2.35, ** P < 0.01). In addition, under 
665  nm + 785  nm NIR, the TBR of tumors was higher 
than that of para tumor (27.59 ± 1.33 vs 16.81 ± 1.39, *** 
P < 0.001). Similarly, Atezolizumab-Cy5.5 could clearly 
distinguish tumors from parathyroid tumors. Under 
665  nm NIR and 665  nm + 785  nm NIR, the TBR of 
tumor and para tumor were (23.18 ± 2.52 vs 14.07 ± 1.51, 
** P < 0.01) and (20.15 ± 1.55 vs 11.32 ± 1.02, ** P < 0.01), 
respectively. This observation was further confirmed 
by H&E, EGFR, and PD-L1 immunohistochemical and 
immunofluorescence staining of patient’s specimens. The 
expression levels of EGFR and PD-L1 in OSCC tumor tis-
sues were also observed based on the fluorescence inten-
sity produced by excitation light irradiation at 665  nm 
and 785  nm. The higher the fluorescence intensity, the 
higher were the biomarker expression levels (Fig.  5C). 
Therefore, we further performed multiplexed fluores-
cence imaging of EGFR and PD-L1 in 30 fresh OSCC 
patients’ specimens. FMI results, immunohistochemical 
staining, and immunofluorescence staining showed that 
the sensitivity and specificity of Nimotuzumab-ICG were 
96.4% (95%CI: 79.8% ~ 99.8%) (27/28) and 100% (95%CI: 
19.8% ~ 100%) (2/2), respectively. The sensitivity and 
specificity of Atezolizumab-Cy5.5 were 95.2% (95%CI: 
74.1% ~ 99.7%) (20/21) and 88.9% (95%CI: 50.7% ~ 99.4%) 
(8/9), respectively. The high imaging sensitivity and spec-
ificity of the imaging probes with high safety indicate the 
feasibility of topical application in human patients with 
OSCC in situ.

Fluorescence imaging of Nimotuzumab‑ICG 
and Atezolizumab‑ICG in OSCC patients in situ
Nimotuzumab-ICG and Atezolizumab-ICG were topi-
cally applied as mouthwashes to 8 OSCC patients with 
OSCC. The fluorescence imaging of EGFR and PD-L1 
dual targets was mainly performed using the Digital Pre-
cision Medicine imaging device H2800 (DPM, Beijing, 
China), which possesses an endoscopic detector that can 
be applied to patients’ mouths. Quantitative analysis after 
gargling with Nimotuzumab-ICG (0.4  mg/ml) showed 

Fig. 4  Biodistribution of Nimotuzumab-ICG and Atezolizumab-Cy5.5 in an orthotopic OSCC mouse model. A In vivo FMI of an OSCC orthotopic 
mouse model injected with Nimotuzumab-ICG, Atezolizumab-Cy5.5, or a combination of both, respectively. The blocking group represents 
the pre-administration of corresponding antibody drugs Ex vivo FMI of the tongue with OSCC tumor and major organs 48 h post-injection. B TBR 
analysis of in vivo FMI signal intensity in different groups at different time points. The TBR was significantly different at 12 h postinjection. FMI, 
fluorescence molecular imaging; TBR, tumor to background ratio. *P < 0.05, **P < 0.01

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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that EGFR expression was specifically highly expressed in 
tumor tissues but not in normal mucosa tissues (Fig. 6A, 
top, 23.9 ± 1.17 vs 3.01 ± 0.24, **** P < 0.0001). After surgi-
cal treatment, tissue specimens were subjected to ex vivo 
fluorescence imaging, H&E staining, and immunohis-
tochemical staining. Quantitative analysis showed that 

the TBR in the tumor was higher than that in the para 
tumor (Fig. 6A, bottom, 48.02 ± 4.65 vs 19.27 ± 1.973, *** 
P < 0.001). Similarly, after gargling with Atezolizumab-
ICG (0.4  mg/ml), quantitative analysis showed that the 
TBR in the tumor was higher than that in the para tumor 
in both in situ and ex vivo experiments. The TBR of the 

Fig. 5  Nimotuzumab-ICG and Atezolizumab-Cy5.5 imaging probes were used to detect fresh OSCC biopsy samples. A The working model diagram 
and prototype of the home-made multispectral fluorescence imaging system. B Representative NIR and NIR overlay image of Nimotuzumab-ICG 
and Atezolizumab-Cy5.5 staining of fresh OSCC biospecimen from patients. Orange and white arrows correspond to the position and orientation 
of the cross-sectional fluorescence intensity profiles of the NIR and NIR overlay regions, respectively. Quantitative analysis showed 
that the fluorescence intensity in the tumor area and the para tumor area. NIR, Near-infrared. C White light, H&E, EGFR IHC, PD-L1 IHC, and IF staining 
of fresh biospecimen from OSCC patients. Scale bar, 1,000 μm and 100 μm
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tumor and para tumor were 23.4 ± 2.19 vs 5.34 ± 0.61, (*** 
P < 0.001) and 27.47 ± 2.43 vs 17.06 ± 1.52 (** P < 0.01), 
respectively (Fig.  6B). The fluorescence imaging data of 
8 cases of OSCC are summarized in Additional file  1: 
Table S3. The ex vivo FMI, HE, and IHC data were almost 
consistent with in  vivo FMI observations, showing that 
specific tumor areas can be fluorescently illuminated by 
the targeted imaging probes.

Interestingly, a patient had buccal mucosal SCC on the 
left side and buccal mucosal lichen planus on the right 
side of the mouth. After gargling with Nimotuzumab-
ICG and Atezolizumab-ICG imaging probes, fluores-
cence signal was observed in the left buccal mucosa, 
whereas no trace of fluorescence signal was observed in 
the right buccal mucosa (Fig. 6C). The data validated the 
specificity of the Nimotuzumab-ICG and Atezolizumab-
ICG probes for the detection of OSCC. These in  vivo 
observations were further verified via subsequent IHC 
and IF experiments (Fig. 6D).

Discussion
Sensitive detection of tumor-specific biomarkers can 
facilitate the early and accurate detection of OSCC and 
provide guidance for precision therapy. At present, a 
number of studies have demonstrated the feasibility of 
OSCC fluorescence guided localization and guidance 
of surgical margin resection. Early diagnosis of OSCC 
was achieved through oral spray fluorescence recogni-
tion imaging [29, 30]. EGFR and PD-L1 are key targets 
in OSCC. Herein, we developed Nimotuzumab-ICG 
and Atezolizumab-Cy5.5 imaging probes combined with 
multispectral FMI to facilitate the noninvasive detec-
tion of EGFR and PD-L1 with high sensitivity, specificity 
and safety. We further translated our dual-target imag-
ing strategy from preclinical OSCC bearing animal stud-
ies to clinical patients with OSCC, which showed great 
potential for the comprehensive management of OSCC 
for early detection and image-guided therapy, including 
targeted therapy, surgery, and immunotherapy.

EGFR and PD-L1 are important therapeutic targets in 
OSCC. EGFR, a transmembrane glycoprotein, is highly 
expressed in 90% of HNSCC cases and is a strong prog-
nostic indicator of head and neck cancer [38, 39]. Mau-
rizi et al. found that EGFR levels are associated with the 
risk of recurrence and death [40]. PD-L1 is also highly 
expressed on the surface of HNSCC [41]. The expres-
sion of PD-L1 in various solid tumors, such as esopha-
geal, gastric, and thyroid cancers, is associated with 
poor prognosis [42, 43]. Bioinformatics analysis from 
GEPIA Datasets and immunohistochemical staining of 
59 human OSCC biological specimens from the Chinese 
PLA General Hospital showed that EGFR and PD-L1 
were highly expressed in OSCC. The dataset obtained 
based on GEPIA also verified that high EGFR expres-
sion in HNSCC was correlated with OS. Overexpres-
sion of PD-L1 in HNSCC is associated with DFS, not OS, 
which is consistent with previous findings [44]. However, 
whether the expression of EGFR or PD-L1 in HNSCC is 
correlated with OS or DFS may be subjected to differ-
ences due to the sample numbers and follow-up time. 
Based on a 3-year retrospective analysis of 112 patients 
with OSCC treated at the Chinese PLA General Hospi-
tal, a ROC curve was used to predict the clinical model. 
The combination analysis of EGFR and PD-L1 expression 
in predicting the 3-year OS of patients with OSCC can 
improve the prediction accuracy. Therefore, both EGFR 
and PD-L1 can not only be used as prognostic markers 
for OSCC but also as potential markers for guiding anti-
tumor therapy.

Multiplexed FMI technology provides good opportuni-
ties for noninvasive and multitarget detection with high 
sensitivity and safety. A variety of malignant tumors, 
including OSCC, have tumor molecular heterogene-
ity [45], The multispectral fluorescence probes make up 
for the situation that the imaging of a single mode or the 
recognition of a single target makes the ability of tumor 
characterization and boundary analysis relatively chal-
lenging. And multispectral is more powerful than single 
spectrum in defining tumor heterogenous properties and 

Fig. 6  Fluorescence imaging of Nimotuzumab-ICG and Atezolizumab-ICG in OSCC human patients. A White light, NIR, and NIR overlay images were 
obtained by oral gargling experiment of Nimotuzumab-ICG on OSCC patients in clinical application. A dotted white line was drawn from tumor 
area to para tumor tissue to calculate the counts of fluoresce signal. The expression of EGFR was further imaged with Nimotuzumab-ICG in fresh 
biopsied specimens of OSCC patients, and verified using IHC and H&E staining. Scale bar, 2000 μm. B White light, NIR, and NIR overlay images 
were obtained by oral gargling experiment of Atezolizumab-ICG on OSCC patients for clinical application. The expression of PD-L1 was imaged 
with Atezolizumab-ICG in fresh biopsied specimens of OSCC patients, and verified using IHC. Scale bar, 2000 μm. C Nimotuzumab-ICG 
and Atezolizumab-ICG were used in the oral gargling experiment, and white light, NIR, and overlayed NIR images of both the left (with OSCC area) 
and right (with lichen planus) buccal mucosa were obtained. The fluorescence intensity was measured, calculated, and verified via pathology. D 
H&E, EGFR IHC, PD-L1 IHC, and IF staining were performed on fresh OSCC specimens on the patient’s left buccal mucosa. The yellow line indicated 
the gross tumor range in fresh surgical specimens. The black line shows the tumor areas in H&E staining and IHC staining, while the white line 
shows the tumor areas in IF staining. Scale bar, 2,000 μm

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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boundary analysis [24]. And thus the detection of multi-
targets is most likely to improve both the sensitivity and 
specificity of tumor recognition and for accurate clinical 
diagnosis and guidance of treatment. The fluorescence-
labeled anti-EGFR antibody Cetuximab-IRDye800CW 
has been used to locate tumors and surrounding tis-
sues in advanced HNSCC [34]. Intravenous injection of 
Cetuximab-IRDye800 in patients with HNSCC achieved 
high sensitivity and specificity and successfully distin-
guished tumors from normal tissues in FMI-guided 
surgical studies [46, 47]. As a humanized monoclonal 
antibody, Nimotuzumab has a high affinity and can bind 
to the extracellular domain of EGFR and inhibit EGF 
binding [48] Nimotuzumab has been approved in several 
countries for the treatment of HNSCC [49] and glioma 
[50] based on clinical trials of various malignancies [51]. 
Nimotuzumab has the advantage of low toxicity com-
pared with Cetuximab [35]. Therefore, in this study, we 
developed a novel EGFR targeting Nimotuzumab-ICG 
fluorescence imaging probe. In OSCC tumor tissues with 
high EGFR expression, Nimotuzumab-ICG showed a 
higher fluorescence imaging signal and better image con-
trast than images of tumors with low or no EGFR expres-
sion. Moreover, we developed an Atezolizumab-Cy5.5 
fluorescence imaging probe targeting the PD-L1 mol-
ecule, which can realize noninvasive and dynamic imag-
ing of PD-L1 expression and provide guidance for safe 
immunotherapy. Targeted molecular imaging of PD-L1 is 
an effective method for dynamic and noninvasive evalua-
tion of PD-L1 expression; however, the main administra-
tion method is the intravenous route [37, 52–54]. In this 
study, we administered imaging probes through topically 
administration [27–32], which can achieve almost instant 
imaging of EGFR and PD-L1 by spraying the target area 
with micro-doses of fluorescent imaging probes and 
detecting suspected cancer lesions. Multispectral FMI 
imaging of Nimotuzumab-ICG and Atezolizumab-Cy5.5 
is a new non-invasive, sensitive and specific way to iden-
tify tumors. Ultimately, we will be able to offer more pre-
cise and personalized treatments.

To further promote clinical translation, we applied our 
imaging probes as mouthwashes to 8 OSCC patients. 
Since the homemade multispectral fluorescence imaging 
system is still in the prototype stage, it cannot be used in 
the surgery room. Hence, we utilized the commercial-
ized Digital Precision Medicine imaging device H2800, 
though this system has only one channel for detecting 
ICG fluorescence signal. Hence, we developed Nimotu-
zumab-ICG and Atezolizumab-ICG imaging probes and 
applied them consecutively to OSCC patients through 
a mouthwash. Our imaging method is quick sensitive 
and specific in detecting EGFR and PD-L1 expression 

in patients with OSCC, which was further validated 
by post-surgical histology and immunohistochemistry. 
Moreover, our imaging strategy can discriminate tumor 
lesions from other oral diseases, such as buccal mucosa 
lichen planus. For the future clinical application of home-
made multispectral fluorescence imaging system can not 
only provide early identification and diagnosis of OSCC, 
but also provide guidance for clinical surgical boundary 
recognition and anti-tumor targeted therapy and immu-
notherapy. In addition, it is still necessary to further opti-
mize the imaging algorithm and autofocus algorithm, 
eliminate the image distortion caused by oral haze, and 
continuously improve the image recognition ability.

Conclusions
We developed a multispectral FMI imaging strategy 
that demonstrated the feasibility of concurrently detect-
ing multiple tumor biomarkers and the potential for the 
early detection of tumors that are molecularly hetero-
geneous. We synthesized the multispectral fluorescence 
imaging probes Nimotuzumab-ICG and Atezolizumab-
Cy5.5 with OSCC targeted imaging performance and 
good biosafety. Make up for the situation that the imag-
ing method of a single mode or the recognition of a sin-
gle target makes the ability of tumor characterization 
and boundary analysis relatively Challenging. Combined 
with the homemade multispectral fluorescence imaging 
system, the EGFR and PD-L1 expression can be identi-
fied and quantified from preclinical OSCC tumor-bear-
ing mouse models to clinical OSCC patients, which 
facilitates early cancer detection and provide guidance 
for anti-tumor targeted therapy, image-guided surgery, 
and immunotherapy of OSCC. We demonstrated a 
proof-of-concept for detecting multiple targets concur-
rently in patients with OSCC neoplasia, which is prom-
ising for a wide range of clinical applications, including 
early screening and surveillance, biopsy guidance, quick 
staining of fresh biopsies, in vivo diagnosis, and intraop-
erative margin delineation.
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