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Abstract 

The integration of machine learning (ML) and artificial intelligence (AI) techniques in life-course epidemiology 
offers remarkable opportunities to advance our understanding of the complex interplay between biological, social, 
and environmental factors that shape health trajectories across the lifespan. This perspective summarizes the current 
applications, discusses future potential and challenges, and provides recommendations for harnessing ML and AI 
technologies to develop innovative public health solutions. ML and AI have been increasingly applied in epidemio-
logical studies, demonstrating their ability to handle large, complex datasets, identify intricate patterns and associa-
tions, integrate multiple and multimodal data types, improve predictive accuracy, and enhance causal inference 
methods. In life-course epidemiology, these techniques can help identify sensitive periods and critical windows 
for intervention, model complex interactions between risk factors, predict individual and population-level disease risk 
trajectories, and strengthen causal inference in observational studies. By leveraging the five principles of life-course 
research proposed by Elder and Shanahan—lifespan development, agency, time and place, timing, and linked lives—
we discuss a framework for applying ML and AI to uncover novel insights and inform targeted interventions. However, 
the successful integration of these technologies faces challenges related to data quality, model interpretability, bias, 
privacy, and equity. To fully realize the potential of ML and AI in life-course epidemiology, fostering interdisciplinary 
collaborations, developing standardized guidelines, advocating for their integration in public health decision-making, 
prioritizing fairness, and investing in training and capacity building are essential. By responsibly harnessing the power 
of ML and AI, we can take significant steps towards creating healthier and more equitable futures across the life 
course.
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Background
Life-course epidemiology is a field of study that examines 
the long-term effects of biological, behavioral, and social 
exposures during gestation, childhood, adolescence, and 
adulthood on the development of chronic diseases later 
in life [1]. This approach recognizes that health and dis-
ease are influenced by the complex interplay of various 
factors across an individual’s life span and that the timing 
and duration of these exposures can have critical implica-
tions for future health outcomes [1].

The importance of life-course epidemiology in under-
standing chronic diseases lies in its ability to provide 
a comprehensive framework for investigating the ori-
gins and trajectories of these conditions. As defined by 
Elder and Shanahan, the life-course approach is based 
on five key principles: lifespan development, agency, 
time and place, timing, and linked lives (Fig. 1) [2]. Lifes-
pan development recognizes that human development 
and aging are ongoing processes that occur throughout 
an individual’s life, rather than being limited to specific 
stages. Agency acknowledges that individuals have the 
capacity to make choices and take actions that shape 
their lives, albeit within the constraints of their envi-
ronmental, social, and historical contexts. The princi-
ple of time and place emphasizes that each person’s life 
course is embedded within and influenced by the specific 
historical era and location in which they live. Timing is 
crucial, as the same events and behaviors can have vary-
ing effects depending on when they occur in an indi-
vidual’s life course. Finally, linked lives underscores the 

interconnectedness of human experiences, as people 
influence each other through shared and interdependent 
relationships. By applying these principles, researchers 
can identify sensitive periods and critical windows dur-
ing which interventions may be most effective in prevent-
ing or mitigating the risk of chronic diseases.

In recent years, machine learning (ML) and artificial 
intelligence (AI) have emerged as powerful tools in epi-
demiological research. ML is a subfield of AI which refers 
to the ability of computers to draw conclusions (ie, learn) 
from data without being directly programmed and builds 
from traditional statistical methods [3]. These techniques 
offer the ability to handle vast amounts of complex, high-
dimensional data, identify intricate patterns and asso-
ciations, and develop predictive models that can inform 
personalized interventions and public health strate-
gies. ML and AI can integrate multiple data types, such 
as electronic health records (EHRs), genomic data, and 
environmental exposures, to provide a more comprehen-
sive understanding of the factors contributing to health 
outcomes across the life course. Moreover, advanced ML 
and AI techniques can analyze multimodal data, includ-
ing structured and unstructured text, audio, image, and 
video data, enabling the examination of diverse informa-
tion sources such as MRI scans, X-rays, recordings of 
heartbeats or respiratory sounds, and physical activity 
and behavioral patterns. Furthermore, these approaches 
can enhance causal inference methods, allowing 
researchers to better estimate the effects of exposures on 
health outcomes in observational settings.

Fig. 1 Five principles of the life-course approach proposed by Elder and Shanahan
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The integration of ML and AI techniques in life-course 
epidemiology has the potential to revolutionize our 
understanding of the complex determinants of diseases 
and inform the development of more targeted and effec-
tive public health interventions. By leveraging the power 
of these innovative tools, researchers can uncover novel 
risk factors, identify critical windows for intervention, 
and predict individual disease trajectories with greater 
precision.

This perspective aims to summarize the current appli-
cations and discuss future potential and challenges 
of integrating ML and AI in life-course epidemiology 
research, and to discuss the applications of such technol-
ogies to advance public health solutions. This perspective 
will also discuss the benefits and limitations of current 
applications, highlight opportunities for identifying sen-
sitive periods, modeling complex interactions, predicting 
disease risk trajectories, and enhancing causal inference 
methods. Further, it will address the challenges and ethi-
cal considerations associated with the use of ML and AI 
in life-course research, and provide recommendations for 
future directions.

Current applications of ML and AI in epidemiology
ML and AI have been increasingly applied in various 
areas of epidemiological studies, demonstrating their 
potential to advance our understanding of health and dis-
eases. These techniques offer several key benefits, includ-
ing the ability to handle large, complex datasets, identify 
intricate patterns and associations, and develop accurate 
predictive models.

One notable application of ML and AI in epidemiol-
ogy is in the prediction of cardiovascular disease risk. 
Researchers have developed ML models that integrate 
clinical, genetic, and lifestyle factors to predict an indi-
vidual’s risk of developing cardiovascular disease [4–7]. 
For example, a study utilized 216,152 retinal photographs 
from datasets in South Korea, Singapore, and the United 
Kingdom to train and validate deep learning algorithms 
[6]. The retinal photograph-derived coronary artery cal-
cium scores were found to be comparable to those meas-
ured by CT scans [6]. Ward et  al. (2020) used EHRs of 
262,923 individuals to train and validate ML models, 
demonstrating performance that was comparable to or 
better than traditional equations for atherosclerotic car-
diovascular disease risk [7].

Another area where ML and AI have shown promise is 
the early detection and prognosis of cancer. These tech-
niques have been applied to predict cancer prognosis and 
estimate treatment response based on genomic and clini-
cal data [8–14]. For instance, Lu et al. (2021) developed 
a deep learning network to predict early on-treatment 

response in metastatic colorectal cancer, which outper-
formed traditional methods [13].

ML and AI have also been employed to predict the 
onset and progression of neurodegenerative diseases, 
such as Alzheimer’s disease. By integrating neuroimag-
ing, genetic, and clinical data, researchers have developed 
models that can identify individuals at high risk of devel-
oping Alzheimer’s disease [15–18]. Bhagwat et al. (2018) 
used a neural-network algorithm to predict the conver-
sion from mild cognitive impairment to Alzheimer’s dis-
ease with as high as 0.90 accuracy [18].

In the realm of infectious diseases, ML and AI have 
been applied to predict disease outbreaks and identify 
high-risk areas [19, 20]. Bengtsson et  al. (2015) utilized 
mobile phone data and machine learning techniques to 
predict the spatial spread of cholera in Haiti following the 
2010 earthquake [20]. Similarly, these techniques have 
been used to assess the health impacts of environmen-
tal exposures, such as air pollution, by estimating daily 
pollutant concentrations and providing high-resolution 
exposure assessments for epidemiological studies [21]. 
Moreover, Odlum and Yoon (2015) leveraged natural 
language processing (NLP) techniques on data extracted 
from the social media platform Twitter to develop a real-
time model for Ebola outbreak surveillance during the 
early stage of the 2014 epidemic [22]. Their study show-
cased the potential of applying advanced computational 
methods to unconventional data sources for enhanced 
disease monitoring and early detection.

Furthermore, ML and AI have been employed to inves-
tigate the social determinants of health and identify pop-
ulations at high risk of adverse health outcomes [23]. By 
analyzing EHRs and integrating data on social and envi-
ronmental factors, researchers have developed models 
that predict an individual’s risk of experiencing health 
disparities or poor health outcomes [24].

There are cases where ML and AI models in epide-
miology have been successfully implemented to assist 
resource allocation and decision-making in practice. 
During the COVID-19 pandemic when the healthcare 
systems were strained by increased healthcare demand, 
clinicians in emergency departments faced significant 
challenges in patient disposition decision based on the 
patient’s initial symptoms and limited information. In 
response, Hinson et  al. (2022) developed a ML algo-
rithm to predict near-term clinical deterioration in 
emergency patients with real-time EHR data [25]. This 
tool was rapidly integrated into clinical practice to sup-
port care decisions within the Johns Hopkins Health 
System, contributing to more consistent and reliable 
disposition decision and improved bed allocation dur-
ing the pandemic [26]. To inform resource allocation 
and enhance precision medicine in cardiovascular 
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diseases, Ye et al. (2018) developed and validated a ML 
model on EHRs of more than 1.5 million individuals 
to predict the risk of incidence essential hypertension 
within the next year [27]. Demonstrating excellent per-
formance, this model has been deployed in Maine, the 
United States, to assist healthcare providers in identify-
ing high-risk populations and promoting individualized 
treatment [27].

In the end, ML and AI can also contribute to causal 
inference by identifying potential causal pathways and 
controlling for confounding factors in observational 
studies. For example, Kang et  al. (2021) utilized a deep 
learning-based causal inference framework to estimate 
the causal effect of air pollution on COVID-19 severity 
while adjusting for confounding factors such as socio-
economic status and weather conditions [28]. Similarly, 
Chu et al. (2020) proposed an adversarial deep treatment 
effect prediction (ADTEP) model to predict treatment 
effects using heterogeneous EHR data [29].

In summary, the application of ML and AI in epidemi-
ology offers several key benefits, including:

1. Handling large, complex datasets: ML and AI can 
process vast amounts of high-dimensional data, mak-
ing them valuable tools for extracting meaningful 
insights from diverse data sources.

2. Identifying complex patterns: These techniques can 
uncover intricate, non-linear relationships between 
exposures and health outcomes, which may not be 
easily identified using traditional statistical methods.

3. Integrating multiple and multimodal data types: ML 
and AI can incorporate data from various sources, 
such as EHRs, genomic data, and environmental 
exposures, as well as structured and unstructured 
text, audio, image, and video data, to provide a more 
comprehensive understanding of the factors influ-
encing health outcomes.

4. Improving predictive accuracy: These approaches 
often achieve higher predictive accuracy than tradi-
tional methods, particularly when dealing with com-
plex datasets, enabling the development of more pre-
cise risk prediction models.

5. Enhancing causal inference: While primarily used for 
prediction, ML and AI can also contribute to causal 
inference by identifying potential causal pathways 
and controlling for confounding factors in observa-
tional studies.

By leveraging these benefits, the application of ML 
and AI in epidemiology has the potential to advance 
our understanding of disease risk factors, improve early 
detection and prognosis, and, thereby, inform targeted 
interventions to promote population health.

Opportunities for ML and AI in life‑course 
epidemiology
In life-course epidemiology that considers long-term 
effects of biological, behavioral, and social exposures 
during gestation, childhood, adolescence, and adult-
hood, ML and AI offer numerous opportunities by ena-
bling researchers to identify sensitive periods, model 
complex interactions, predict disease risk trajectories, 
and enhance causal inference methods.

Identifying sensitive periods and critical windows 
for intervention
ML and AI can help identify sensitive periods and 
critical windows for intervention by analyzing longi-
tudinal data on growth and development of exposure 
and health outcomes. Unsupervised learning tech-
niques, such as clustering and latent class analysis, can 
uncover distinct subgroups of individuals with similar 
developmental trajectories, which may inform the tim-
ing of interventions [30, 31]. Additionally, ML and AI 
allow for integration of multiple data types, including 
EHRs, genomic data, and environmental exposures, 
and of multimodal data, such as kinds of information 
from individual’s various types of records, thus provid-
ing a comprehensive perspective of the determinants 
of health outcomes across the different stages of life 
course [32]. Furthermore, potential causal pathways 
and mechanisms underlying the associations between 
exposures during critical windows of early life and later 
health outcomes can be better established by applying 
causal discovery algorithms or Mendelian randomiza-
tion techniques [33].

Modeling complex interactions between biological, social, 
and environmental factors
ML and AI techniques, such as deep learning and agent-
based modeling, can capture the complex, non-linear 
associations between multiple risk factors and health 
outcomes across the life course. These approaches can 
help researchers understand how individual-level expo-
sures and experiences at different life stages interact 
to shape population-level patterns of health and dis-
ease. For example, deep learning algorithms can model 
the hierarchical and temporal relationships between 
genetic susceptibility, early life adversity, and adult life-
style factors to predict the risk of developing chronic 
diseases. Agent-based models can simulate the spread 
of infectious diseases through a population, taking into 
account individual susceptibility, contact patterns, and 
environmental conditions [34].
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Predicting individual and population‑level disease risk 
trajectories
ML and AI can be used to develop personalized risk 
prediction models that estimate an individual’s likeli-
hood of developing a particular disease based on their 
unique combination of risk factors and exposures across 
the lifespan. By effectively combining data from various 
sources such as genomic data, EHRs, and lifestyle factors, 
these models can provide accurate prediction of disease 
risks at different stages at an individual’s lifespan. At the 
population level, ML and AI can identify high-risk sub-
groups and distinct disease trajectories associated with 
specific combinations of early life exposures, socioeco-
nomic factors, and health behaviors [4, 9, 16, 30, 31]. 
This information can guide the development of targeted 
interventions and policies to prevent and manage chronic 
diseases.

Enhancing causal inference methods in observational 
studies
ML and AI techniques can strengthen causal infer-
ence methods in life-course epidemiology by helping 
researchers adjust for confounding factors and estimate 
causal effects in observational studies. Propensity score 
methods, which estimate the probability of an individual 
receiving a particular treatment or exposure based on 
their observed characteristics, can be enhanced using ML 
algorithms to more accurately balance the distribution of 
potential confounders between exposed and unexposed 
groups [35]. Instrumental variable methods, which use 
factors associated with the exposure but not the outcome 
to estimate causal effects, can be improved by using ML 
to identify and validate potential instrumental variables 
[36]. Additionally, advanced ML techniques, such as 
causal forests, can directly estimate heterogeneous treat-
ment effects and minimize bias in observational studies 
[37–39].

By harnessing the power of ML and AI in these key 
areas, life-course epidemiology can gain novel insights 
into the complex determinants of health and disease 
across the lifespan, ultimately informing the development 
of more effective, personalized interventions and public 
health strategies.

Framework for harnessing ML and AI technologies 
to advance public health solutions
The five principles outlined by Elder and Shanahan offer 
a robust conceptual framework for comprehending the 
intricate and ever-changing aspects of health and disease 
throughout an individual’s life course [2]. These princi-
ples also serve as a foundation for harnessing the poten-
tial of ML and AI to identify previously unknown risk 

factors, predict disease progression, and guide the devel-
opment of targeted interventions. By leveraging the five 
principles of life-course research, we discuss the applica-
tions of ML and AI in life-course epidemiology based on 
the framework proposed by Elder and Shanahan [2].

1. Lifespan development: This principle emphasizes 
that human development and aging are lifelong pro-
cesses, highlighting the importance of examining 
the cumulative effects of exposures and experiences 
across the entire life course. ML and AI techniques, 
such as deep learning and longitudinal modeling, can 
analyze large, complex datasets spanning multiple life 
stages to identify patterns and trajectories of health 
and disease over time [30, 31].

2. Agency: This principle recognizes that individuals 
have the capacity to make choices and take actions 
that shape their health and well-being within the 
constraints of their social and environmental con-
texts. ML and AI techniques, such as decision trees 
and reinforcement learning, can model the complex 
interactions between individual agency and social 
and environmental factors to identify key interven-
tion points for promoting health and preventing dis-
ease [40].

3. Time and place: This principle emphasizes that every 
individual life course is embedded within and influ-
enced by its specific historical and geographic con-
text. ML and AI techniques, such as spatial modeling 
and time series analysis, can analyze the effects of 
place and time on health outcomes and identify key 
contextual factors that may influence the effective-
ness of public health interventions [39, 41]. Recur-
rent neural networks (RNNs) and long short-term 
memory (LSTM) networks have been extensively 
employed for temporal data analysis, enabling the 
capture of dependencies and patterns over time 
[42–44]. Particularly, in recent years, novel architec-
tures like Transformers have emerged and gained 
prominence due to their capacity to handle long-
range dependencies and facilitate parallel process-
ing. Transformers, exemplified by the Bidirectional 
Encoder Representations from Transformers (BERT) 
model, have exhibited superior performance across a 
wide range of natural language processing tasks and 
have been successfully adapted for time series analy-
sis [45, 46].

4. Timing: This principle recognizes that the same 
events and experiences can have different effects 
on health depending on when they occur in the 
life course. ML and AI techniques, such as survival 
analysis (e.g. Survival Forest) and Bayesian networks, 
can model the time-varying effects of exposures on 



Page 6 of 11Chen et al. BMC Medicine          (2024) 22:354 

health outcomes and identify optimal timing and tar-
geting of interventions [37, 38].

5. Linked lives: This principle emphasizes that indi-
viduals are embedded within social networks and 
relationships that shape their exposures, behaviors, 
and outcomes. ML and AI techniques, such as social 
network analysis and agent-based modeling, can 
model the complex interactions between individuals 
and their social environments to identify key lever-
age points for interventions that promote health and 
well-being across communities [40, 47]. Moreover, 
large language models (LLMs) can be integrated 
into this principle to analyze social media data and 
patient-generated content, providing insights into the 
social and environmental factors influencing health 
outcomes across communities and networks [23, 48–
52].

The power of ML and AI techniques also enable 
itself to integrate multiple principles of the life-course 
approach simultaneously, enabling researchers to develop 
more comprehensive models of health trajectories. For 
instance, causal inference methods enhanced by ML, 
such as causal forests, can simultaneously address mul-
tiple principles by estimating heterogeneous treatment 
effects across different life stages, social contexts, and 
individual characteristics [37–39].

Challenges and ethical considerations
The integration of ML and AI in life-course epidemiology 
presents several challenges and ethical considerations 
that must be addressed to ensure the responsible and 
effective use of these technologies.

Data quality, harmonization, and integration
One major challenge is ensuring the quality, harmoni-
zation, and integration of data across multiple cohorts 
and sources [53]. Some data sources used for training 
ML models, such as EHRs collected for administrative 
purposes, might not be gathered with the necessary fre-
quency, granularity, or bandwidth that align with infor-
mation needs of science and learning, and may therefore 
present challenges in generating accurate and reliable 
algorithms [54]. Models trained on small sample sizes 
or data of suboptimal quality involving missing values, 
inaccuracies, and inconsistencies can lead to unreliable 
predictions and biased outcomes. Unlike certain health 
specialties such as dermatology or ophthalmology, where 
ML and AI have been successfully adopted due to their 
reliance on visual evaluation and pattern recognition 
[11], the application of ML and AI in epidemiology pre-
sents unique challenges. Life-course studies often involve 
data collected using different methods, at different time 

points, and from diverse populations. Ensuring the com-
parability and interoperability of these data is crucial for 
developing robust and generalizable ML and AI models. 
This requires close collaboration between researchers, 
data managers, and IT professionals to establish common 
data standards and protocols. Furthermore, life-course 
studies often involve factors with complex interactions 
and dynamic nature, as well as social phenomena that 
are inherently difficult to quantify and model. When 
dealing with dynamic variables, it is essential to retrain 
and reevaluate the models to account for new trends and 
changes, requiring ongoing monitoring and updates to 
maintain accuracy and relevance.

Interpretability and explainability
Another significant challenge is the interpretability and 
explainability of ML and AI models. As these algorithms 
become increasingly complex, it can be difficult to under-
stand how they arrive at their predictions or decisions. 
This “black box” nature of some ML models raises con-
cerns about their transparency and accountability, par-
ticularly in the context of public health interventions that 
can have far-reaching consequences [55, 56]. Researchers 
must strive to develop models that are not only accurate 
but also interpretable, allowing for clear communication 
of their underlying logic and limitations to policymakers, 
healthcare providers, and the public. A case study indi-
cated that when dealing with complex social factors, inte-
grating predictive ML models with explanatory models 
can enhance understanding and prediction of outcomes 
[57].

Bias and generalizability
Bias and generalizability are critical issues in the appli-
cation of ML and AI to life-course epidemiology. If the 
training data used to develop these models are not rep-
resentative of the broader population or if they contain 
historical biases, the resulting algorithms may perpetuate 
or even amplify these biases [58]. Results generated from 
these algorithms can lead to unintended consequences, 
such as the exacerbation of health disparities or the mis-
allocation of resources. For example, EHR data are often 
a complex product of biological, socio-economic condi-
tions as well as prior practices of providers and health 
systems [54]. Researchers must be vigilant in identifying 
and mitigating potential sources of bias in different data 
sources to ensure that their models are equitable and 
generalizable to diverse populations.

Integration with domain knowledge
While ML and AI can identify novel patterns and asso-
ciations in data, they do not necessarily provide insights 
into the underlying biological or clinical mechanisms. 
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Integrating ML and AI findings with existing domain 
knowledge and expert interpretation is essential for 
ensuring the validity and relevance of the results [59, 60]. 
This requires close collaboration between data scientists, 
epidemiologists, and clinical experts, as well as a will-
ingness to iterate between data-driven and hypothesis-
driven approaches.

Privacy and ethical concerns
The use of sensitive data in life-course studies poses sig-
nificant privacy concerns and ethical challenges [61, 62]. 
These studies often involve the collection and analy-
sis of highly personal information, such as genetic data, 
medical records, and social media activity. Ensuring the 
security and confidentiality of these data is paramount, 
requiring robust data governance frameworks and strict 
adherence to ethical guidelines. Researchers must also 
grapple with the potential unintended consequences of 
their work, such as the stigmatization of certain groups 
or the misuse of predictive models for discriminatory 
purposes. Strategies such as adopting synthetic data for 
training models provide new opportunities to improve 
the diversity and robustness of ML and AI models by 
reducing patient privacy concerns and facilitating data 
sharing while maintaining the original distribution of 
data [63].

Computational resources and expertise
Applying ML and AI techniques to large-scale epidemio-
logical data can be computationally intensive and require 
specialized expertise in data science and programming. 
Access to high-performance computing resources and 
qualified personnel may be a barrier for some research 
groups, particularly in low- and middle-income settings. 
Building capacity and infrastructure for ML and AI in 
epidemiological research is an important challenge that 
requires ongoing investment and support.

Potential overreliance on ML and AI
While ML and AI offer significant opportunities for 
advancing research, clinical practice, and policymaking, 
it is crucial to recognize that not all ML and AI models 
outperform traditional models in healthcare and public 
health areas [64, 65]. A salient illustration of this phe-
nomenon is the “Fragile Families Challenge,” wherein 
diverse state-of-the-art ML models were employed to 
predict individual life outcomes, including psychologi-
cal and socio-economic status [66]. The resultant per-
formance exhibited only marginal improvement over 
simple benchmark models [66]. This limited prediction 
value highlights the potential limitations of ML models 
when applied to complex social phenomena, contrast-
ing with their success in physical and biological contexts 

[66, 67]. Prior to the adoption of ML and AI technolo-
gies, particularly in applied domains, it appears requisite 
to conduct a critical evaluation of these techniques vis-à-
vis traditional models. This is especially pertinent in sce-
narios where reliable or superior alternatives are extant 
[64]. While a consensus has yet to emerge, such evalua-
tion seems essential to preclude unnecessary investment 
in these sophisticated models and to mitigate excessive 
consumption of finite computational resources.

Despite the demonstrated methodological efficacy of 
ML and AI models, it is imperative to acknowledge that 
their implementation may not necessarily yield net posi-
tive outcomes for patients. A systematic review of 65 ran-
domized controlled trials evaluating AI-based prediction 
tools revealed that approximately 40% of the tools, which 
had previously exhibited satisfactory performance in 
observational model development or validation studies, 
failed to demonstrate statistically significant clinical ben-
efits for patients when compared to standard clinical care 
protocols [68]. The dynamic nature of clinical practice, 
fluctuations in the prevalence of comorbidities, and vari-
ous socio-environmental factors can precipitate shifts in 
the distribution of patient characteristics. Consequently, 
these changes necessitate the periodic retraining and re-
evaluation of AI systems to maintain their relevance and 
efficacy [69, 70].

Addressing these challenges and ethical considerations 
will require ongoing collaboration and dialogue among 
researchers, policymakers, and community stakeholders. 
It will be essential to develop guidelines and best prac-
tices for the responsible use of ML and AI in life course 
epidemiology, ensuring that these technologies are 
applied in a manner that is transparent, accountable, and 
aligned with public values and priorities. By proactively 
addressing these issues, we can harness the power of ML 
and AI to advance our understanding of health and dis-
ease across the life course while safeguarding the rights 
and wellbeing of individuals and communities.

Future directions and recommendations
To fully realize the potential of ML and AI in life-course 
epidemiology and advance public health solutions, 
we discuss the following recommendations for future 
research and practice:

Foster interdisciplinary collaborations
Collaboration between epidemiologists, data scientists, 
and public health professionals is crucial for the suc-
cessful integration of ML and AI in life-course research. 
These collaborations will enable the exchange of knowl-
edge, skills, and expertise necessary to develop and 
apply cutting-edge ML and AI techniques to complex 
life-course data. Epidemiologists contribute a deep 
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understanding of the biological, social, and environ-
mental factors influencing health trajectories, while data 
scientists bring advanced computational and analyti-
cal skills. Public health professionals provide invaluable 
insights into the practical implications and translational 
potential of research findings. By working together, these 
multidisciplinary teams can drive innovation, uncover 
novel insights, and ultimately improve population health 
outcomes.

Develop standardized guidelines and best practices
Establishing standardized guidelines and best practices 
for using ML and AI in life-course research is essential 
to ensure the reliability, reproducibility, and ethical appli-
cation of these technologies. Clear protocols should be 
developed for data collection, preprocessing, and analy-
sis, as well as guidelines for model development, valida-
tion, and reporting. These standards should be created 
through a collaborative process involving researchers, 
professional societies, and other stakeholders, drawing 
on existing best practices in epidemiology, data science, 
and bioethics. By promoting transparency, consistency, 
and rigor in the use of ML and AI, the credibility and 
impact of life course research can be enhanced. In the 
meantime, it is important to be aware of the limits of ML 
and AI applications. Guidelines should be formulated to 
instruct the necessity and appropriateness of adopting 
ML and AI in different areas.

Advocate for the integration of ML and AI in public health 
decision‑making
Translating research findings into actionable policies and 
interventions is the key to realizing the full potential of 
ML and AI in life-course epidemiology. This requires 
close collaboration between researchers, policymak-
ers, and community stakeholders to ensure that ML and 
AI models are developed and applied in a manner that 
addresses real-world health challenges and promotes 
health equity [71]. In order to generate results that can 
translate to advances that promote population health 
and health systems, the learning initiatives must align 
with questions that impact the important aspects of 
clinical practice or health-related decision-making [54]. 
Researchers should strive to communicate their findings 
in a clear, accessible language and engage with decision-
makers and the public to build trust and understand-
ing of these technologies. Policymakers, in turn, should 
invest in the infrastructure and resources necessary to 
support the use of ML and AI in public health, including 
data systems, computational tools, and workforce devel-
opment. By working together, the power of ML and AI 
can be harnessed to inform evidence-based policies and 

interventions that improve health outcomes across the 
life course.

Prioritize equity and fairness in ML and AI applications
As ML and AI technologies become increasingly inte-
grated into life-course research and public health prac-
tice, it is crucial to prioritize equity and fairness in their 
development and application [58, 72]. Researchers should 
assess the data comprehensively given the specific pur-
poses, while actively work to identify and mitigate poten-
tial sources of bias in their data and models, ensuring that 
the benefits of these technologies are distributed equita-
bly across diverse populations. This may involve devel-
oping new methods for bias detection and correction, as 
well as engaging with communities and stakeholders to 
understand their needs and concerns. Policymakers and 
funding agencies should also prioritize research and ini-
tiatives that focus on addressing health disparities and 
promoting health equity through the use of ML and AI.

Invest in training and capacity building
To fully capitalize on the potential of ML and AI in life-
course epidemiology, it is essential to invest in training 
and capacity building for researchers, public health pro-
fessionals, and policymakers. This may involve devel-
oping new educational programs and curricula that 
integrate data science and computational skills with 
domain expertise in epidemiology and public health. It 
may also require establishing new funding mechanisms 
and support structures to enable researchers to access 
the computational resources and expertise necessary 
to apply ML and AI techniques to their data. Building a 
skilled and diverse workforce that can effectively leverage 
these technologies will be critical for driving innovation 
and progress in life course research and public health 
practice.

By pursuing these recommendations and prioritizing 
interdisciplinary collaboration, standardization, integra-
tion, equity, and capacity building, the field of life course 
epidemiology can harness the full potential of ML and 
AI to advance our understanding of health and disease 
across the lifespan and develop more effective, equitable, 
and evidence-based public health solutions.

Conclusions
The integration of ML and AI in life-course epidemiology 
presents a remarkable opportunity to advance our under-
standing of the complex interplay between biological, 
social, and environmental factors that shape health tra-
jectories across the lifespan. Leveraging these powerful 
technologies to analyze diverse datasets can yield novel 
insights, improve disease risk prediction, and inform the 
development of targeted interventions.
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However, the realization of this potential is contin-
gent upon addressing the significant challenges associ-
ated with the use of ML and AI, including issues related 
to data quality, model interpretability, bias, privacy, 
and equity. To fully harness the power of these tech-
nologies, it is imperative to foster interdisciplinary col-
laborations, establish standardized guidelines and best 
practices, advocate for the integration of ML and AI 
into public health decision-making processes, prioritize 
fairness in their application, and invest in training and 
capacity building.

It is important to acknowledge that this perspective 
paper, while striving for a balanced and comprehen-
sive discussion, is not a systematic review. As such, the 
information presented may be subject to selection bias. 
Our narrative approach, while broad, may not capture 
all relevant studies or viewpoints. The examples cited 
were selected based on relevance and impact, but may 
not represent an exhaustive body of evidence. Readers 
should consider this limitation when interpreting the 
conclusions and recommendations presented.

As we look to the future, we should be guided by a 
vision of harnessing data, technology, and innovation 
to promote health, prevent disease, and reduce inequi-
ties across the life course. By working collaboratively to 
responsibly integrate ML and AI into life-course epide-
miology, we can take a significant step towards creating 
a healthier and more equitable future for all.
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