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Abstract 

Background The pretherapeutic differentiation of subtypes of primary intracranial germ cell tumours (iGCTs), 
including germinomas (GEs) and nongerminomatous germ cell tumours (NGGCTs), is essential for clinical practice 
because of distinct treatment strategies and prognostic profiles of these diseases. This study aimed to develop a deep 
learning model, iGNet, to assist in the differentiation and prognostication of iGCT subtypes by employing prethera-
peutic MR T2-weighted imaging.

Methods The iGNet model, which is based on the nnUNet architecture, was developed using a retrospective dataset 
of 280 pathologically confirmed iGCT patients. The training dataset included 83 GEs and 117 NGGCTs, while the ret-
rospective internal test dataset included 31 GEs and 49 NGGCTs. The model’s diagnostic performance was then 
assessed with the area under the receiver operating characteristic curve (AUC) in a prospective internal dataset 
(n = 22) and two external datasets (n = 22 and 20). Next, we compared the diagnostic performance of six neuroradiolo-
gists with or without the assistance of iGNet. Finally, the predictive ability of the output of iGNet for progression-free 
and overall survival was assessed and compared to that of the pathological diagnosis.

Results iGNet achieved high diagnostic performance, with AUCs between 0.869 and 0.950 across the four test 
datasets. With the assistance of iGNet, the six neuroradiologists’ diagnostic AUCs (averages of the four test datasets) 
increased by 9.22% to 17.90%. There was no significant difference between the output of iGNet and the results 
of pathological diagnosis in predicting progression-free and overall survival (P = .889).

Conclusions By leveraging pretherapeutic MR imaging data, iGNet accurately differentiates iGCT subtypes, facilitat-
ing prognostic evaluation and increasing the potential for tailored treatment.
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Graphical Abstract

Background
Primary intracranial germ cell tumours (iGCTs) are the 
third most prevalent primary brain tumour in the paedi-
atric and adolescent populations in East Asia, particularly 
in China, Korea, and Japan [1–3]. The incidence of iGCTs 
in these regions is approximately 2.7 per million individu-
als per year, trailing only that of gliomas and medulloblas-
toma [4]. Notably, iGCTs constitute approximately 8% to 
15% of all paediatric brain tumours [5, 6]. According to 

the 2021 World Health Organization (WHO) classifica-
tion, these tumours can be categorized into germinomas 
(GEs), teratomas, yolk sac tumours, choriocarcinomas, 
embryonal carcinomas, and mixed germ cell tumours [7].

Clinically, GEs and non-germinomatous germ cell 
tumours (NGGCTs) demonstrate differences in radio-
sensitivity and prognosis [8–10]. Among nonmetastatic 
iGCTs, GEs are highly radiosensitive, and 4 cycles of 
chemotherapy combined with low-dose radiotherapy 
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can achieve a 5-year overall survival (OS) rate of 90% 
[6]. However, radiotherapy can cause side effects such as 
brain atrophy, white matter degeneration, and impaired 
or lost fertility (especially in females). Therefore, the 
primary treatment goal for GEs is to reduce the radia-
tion dose and improve the quality of life of the patients 
while achieving a high survival rate [4]. NGGCTs are less 
radiosensitive than GEs; the standard treatment regi-
men consists of 6 cycles of chemotherapy followed by 
an assessment of the response. If the residual lesion is 
greater than 1 cm in diameter, surgical resection is rec-
ommended, followed by high-dose radiotherapy. If the 
residual lesion is less than or equal to 1  cm in diam-
eter, high-dose radiotherapy is administered directly [6]. 
The 5-year OS rate for NGGCTs ranges from 50 to 90% 
(excluding mature teratomas, which can be cured by sur-
gery directly). The primary treatment goal for NGGCTs 
is to prolong survival time [11–13]. Therefore, the differ-
entiation of GEs and NGGCTs is essential for clinically 
stratified treatment.

Pathology is traditionally regarded as the gold stand-
ard for identifying iGCT subtypes. However, approxi-
mately 30% of iGCTs are unsuitable for biopsy or surgical 
resection due to the high risk of significant neurologi-
cal deficits, especially when located in sensitive regions 
such as the sellar area and basal ganglia, or for patients 
harbouring potentially adverse conditions such as intrac-
ranial haemorrhage and metastasis [14–16]. Currently, 
the clinical consensus [6, 17] in the field of paediatric 
neurooncology suggests that iGCTs can be diagnosed 
through a combination of characteristic radiological 
features and elevated levels of tumour markers, includ-
ing beta-human chorionic gonadotropin (β-HCG) and 
alpha-fetoprotein (AFP). However, the diagnostic values 
for these biomarkers are subject to international varia-
tions (β-HCG ≥ 50 IU/L and AFP ≥ 25 ng/mL in Europe, 
β-HCG ≥ 100  IU/L and AFP ≥ 10  ng/mL in the USA), 
leading to a lack of consistency across different popula-
tions [6]. Compared with the use of tumour markers, 
imaging is a promising approach that is more objective 
and stable across populations. A study by Wu et al. [18] 
on the MR features of 85 iGCT patients suggested that 
GEs have lower apparent diffusion coefficient (ADC) 
values than NGGCTs. Li et  al. [16] combined quantita-
tive and semiquantitative data from MR images (e.g. 
perfusion and diffusion images) to differentiate GEs and 
NGGCTs and revealed that conventional MR features 
combined with ADC and perfusion-weighted imaging 
(PWI) values achieved good differentiation (area under 
the curve (AUC) = 0.950). Nevertheless, the generalizabil-
ity of these findings is constrained by the study’s single-
centre nature, limited sample size and low dimensionality 
of the features. Therefore, the determination of specific 

imaging features to assist in the diagnosis of GEs and 
NGGCTs remains challenging. Deep learning (DL), with 
its ability to harness high-dimensional imaging features 
related to brain tumour grade, pathology, and molecular 
markers, has shown promise in enhancing the accuracy 
of brain tumour diagnosis. Although previous studies 
have used machine learning algorithms to distinguish 
iGCTs from other brain tumours [19–21], thus far, they 
have not been applied in differentiating iGCT subtypes.

This study aims to develop a DL model, iGNet, to accu-
rately and independently distinguish GEs from NGGCTs, 
providing clinicians with crucial imaging-based dif-
ferentiation of the two types of tumours. We utilized a 
comprehensive dataset of widely used MR T2-weighted 
(T2W) images from multiple centres to ensure the model 
could be seamlessly integrated into clinical practice. We 
then evaluated the performance of iGNet in facilitating 
clinical decision-making and predicting patient survival.

Methods
Study design and participants
This study aimed to develop and test an end-to-end auto-
mated pipeline for differentiating GEs and NGGCTs 
based on the most clinically available preoperative 
brain T2W images with a DL algorithm to aid in clini-
cal decision-making and prognostic evaluation. First, 
we trained and tested the DL model (iGNet) with a ret-
rospective dataset from Beijing Tiantan Hospital, Capi-
tal Medical University. We subsequently tested iGNet in 
an independent internal prospective test dataset from 
Beijing Tiantan Hospital, Capital Medical University, 
and two independent external test datasets from Beijing 
Sanbo Hospital, Capital Medical University, and Tianjin 
Huanhu Hospital, Tianjin Medical University. A series of 
additional analyses were conducted to interpret model 
performance. Finally, we evaluated the clinical role of the 
developed iGNet by assessing whether it could help neu-
roradiologists improve clinical diagnoses and predicting 
prognosis.

The Institutional Review Board of Beijing Tiantan Hos-
pital, Capital Medical University, approved this study 
(KY2021-142-02). The need for informed consent was 
waived since MR images were retrospectively collected 
and anonymized. Written informed consent was obtained 
from patients whose MR images were prospectively col-
lected. The local Institutional Review Board approved the 
use of data from external centres.

Figure  1 illustrates the flowchart of patient enrol-
ment. The study consisted of multiple datasets: a retro-
spective dataset, a prospective internal test dataset, and 
two independent external test datasets. We collected 
data from 296 patients who underwent MR T2W imag-
ing with pathology-confirmed GEs or NGGCTs from 
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January 2010 to January 2021 at Beijing Tiantan Hos-
pital, Capital Medical University, for developing iGNet. 
In addition, we used three independent datasets for 
testing the model, including an internal prospective test 
dataset, consisting of the data of 27 patients from Bei-
jing Tiantan Hospital; external test dataset-1, consisting 
of the data of 29 patients from Beijing Sanbo Hospital; 
and external test dataset-2, consisting of the data of 24 
patients from Tianjin Huanhu Hospital.

The inclusion criteria were as follows: (i) pathology-
confirmed GEs or NGGCTs through biopsy or surgi-
cal resection, (ii) pretherapeutic axial T2W images 
obtained within 2  weeks prior to biopsy and surgical 
intervention, and (iii) age 0–18  years. We excluded 
patients with significant MR image artefacts, those 
who had received chemotherapy or radiation therapy 
before imaging, and those who underwent brain sur-
gery targeting the tumour before imaging. Ultimately, 
we included 280 patients (development set) and ran-
domly split them into training (n = 200, 83 GEs, and 
117 NGGCTs) and test datasets (n = 80, 31 GEs, and 49 
NGGCTs). The independent internal prospective test 
dataset included the data of 22 patients, whereas exter-
nal test dataset-1 and external test dataset-2 included 
the data of 22 and 20 patients, respectively, all sub-
jected to the same inclusion criteria as the main study 
group.

Outcomes
The primary outcome was the diagnostic AUC of iGNet. 
The secondary outcomes were the AUC improvement 
rate of the neurologists’ diagnosis with iGNet assistance 
and the difference in the predictive abilities for progres-
sion-free survival (PFS) and OS between DL outputs and 
pathological findings.

MR image acquisition
T2W images for both the internal and external datasets 
were acquired with MR scanners with field strengths 
of 1.5  T and 3.0  T and from different vendors, includ-
ing Philips, Siemens, GE, and Toshiba. Additionally, 
conventional 2D or 3D T1-weighted (T1W) and gado-
linium contrast-enhanced T1W (CE-T1W) images 
were collected. For the iGCT MR images, axial turbo-
spin‒echo 2D-T2W images were acquired with the 
following protocol parameters: repetition time/echo 
time = 3030–6711/84–119 ms; flip angle = 90°–160°; slice 
thickness = 3–6  mm; and matrix size = 256–328 × 512–
512. Additional file  1: Fig. S1 and Table  S1 provide fur-
ther details of the protocol parameters.

Histological determination
Two neuropathologists (X.L. and Y.J.H., each with 
10  years of experience in neuropathology) indepen-
dently reviewed the integrated histological diagnosis for 

Fig. 1 Patient enrolment process and dataset distribution for the study. The figure shows the total number of patients with pathologically 
confirmed intracranial germ cell tumours (iGCTs), including in the development cohort (n = 280), training cohort (n = 200), and retrospective internal 
test cohort (n = 80). The exclusion criteria are as follows: significant MRI artefacts, preimaging chemotherapy or radiation therapy, and preimaging 
biopsy. The figure also describes the prospective internal test dataset and two external test datasets from Beijing Sanbo Hospital and Tianjin 
Huanhu Hospital, specifying the number of patients and exclusion criteria for each
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the development and internal test datasets and reached 
a consensus according to the 2021 WHO classification 
of tumours of the central nervous system. The speci-
mens that did not receive a diagnosis according to the 
2021 WHO classification were re-reviewed by the same 
neuropathologists. The interrater agreement was high 
(Kappa = 0.932, P < 0.0001). Disagreements were resolved 
by discussion with a third senior neuropathologist (J.D., 
with more than 30 years of experience). The immunohis-
tochemical and diagnostic criteria for the external test 
datasets were consistent with those used for the develop-
ment set (Additional file 1: Method S1) [22] showed the 
criteria for the pathological diagnosis of iGCTs).

Conventional MR feature assessment
Two neuroradiologists (X.K. and T.T.H., with 6  years of 
experience in neuroradiology) independently assessed con-
ventional MR characteristics, including T1W hyperin-
tensity, T2W hypointensity, enhancement, haemorrhage, 
and cystic/necrosis, in all datasets (Kappa = 0.877–0.932, 
all P < 0.0001). Furthermore, a senior neuroradiologist 
(Y.Y.D., with 15 years of experience in neuroradiology) 
resolved any disagreements. For performance com-
parison with iGNet, we constructed a logistic regres-
sion model using conventional clinical information 
and MR characteristics that were significantly differ-
ent between GEs and NGGCTs in the training dataset. 
This approach was employed to evaluate the effective-
ness of these variables in distinguishing between GEs 
and NGGCTs.

Blinded manual tumour labelling for generating 
the ground truth
Two neuroradiologists (X.K. and T.T.H.), blinded to 
the clinical data, independently manually delineated 
the tumour region with open-source software (ITK-
SNAP, version 3.8.0; http:// www. itksn ap. org). The aver-
age interrater segmentation Dice score was 0.84 ± 0.12. 
The manual segmentation results were then reviewed 
and modified by another experienced neuroradiologist 
(Y.Y.D.) when necessary. The overlap of the reviewed 
and confirmed tumour segmentations of the two raters 
was used as the ground truth for DL model development 
(Additional file 1: Fig. S2).

Deep learning model development
Image preprocessing
T2W images were first skull-stripped with the ‘BET’ tool 
in the FMRIB Software Library (FSL v6.0, https:// fsl. fmrib. 
ox. ac. uk/ fsl/ fslwi ki/). The skull-stripped T2W images were 
subjected to N4 bias correction with the ANTs package 
(http:// stnava. github. io/ ANTs/). Subsequently, the T2W 
images were cropped to the size of a nonzero intensity 

area. Finally, the intensity of each image was normalized 
by subtracting the mean and dividing by the standard 
deviation.

DL model training and testing
We developed iGNet to differentiate GEs from NGGCTs 
according to the information within the T2W images. In 
this study, we modified the state-of-the-art 3D nnU-Net 
[23] framework to simultaneously segment the tumour 
and predict the tumour subtype. We developed the 
model in the training dataset and tested in the test data-
set. Fivefold cross-validation of the training dataset was 
adopted to improve the robustness of the model. The DL 
network segmentation and classification architectures 
are shown in Additional file  1: Method S2, Fig. S3, and 
Fig. S4. Method S3 [23–26] shows the details of iGNet 
development. Furthermore, we independently tested the 
model in the internal prospective test dataset and two 
independent external test datasets. Gradient-weighted 
class activation mapping (Grad-CAM) [27] was used to 
generate saliency maps to improve model interpretability. 
These saliency maps highlight important regions in the 
input image by leveraging the gradient information of the 
model during classification tasks. This capability aids in 
elucidating the model’s decision-making process, thereby 
addressing the black box nature of deep learning.

DL model evaluation
We evaluated iGNet in terms of its performance in the 
test datasets. The evaluation included the following: the 
diagnostic performance of iGNet across various clinical 
scenarios (details shown below); the improvement in the 
diagnostic performance of six neuroradiologists when 
assisted by iGNet; and the potential role of the output of 
iGNet in predicting the PFS and OS of GEs and NGGCTs 
with respect to the pathological findings.

(1) Overview of model performance evaluation meth-
ods: We integrated a logistic regression model with 
the output of iGNet to assess the added value of clini-
cal information and conventional MR characteristics in 
distinguishing between GEs and NGGCTs; conducted 
additional analyses using multimodal MR images as 
inputs; and performed sensitivity analyses on subgroups 
stratified by eleven clinical and imaging phenotypes, 
particularly tumour location. Previous studies have 
demonstrated that various tumour sites exhibit subtype 
biases; for example, the pineal region tends to have a 
higher incidence of NGGCTs, whereas the basal ganglia 
are more commonly associated with a higher incidence 
of GEs [9]. (2) Evaluation of the clinical role of iGNet: 
six neuroradiologists conducted diagnostic assess-
ments with and without iGNet assistance to assess its 
efficacy. (3) Assessment of the output of iGNet as an 

http://www.itksnap.org
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://stnava.github.io/ANTs/
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independent prognostic factor for PFS and OS: The per-
formance of the model was evaluated with univariable 
Cox proportional hazards models and visualized with 
Kaplan‒Meier survival analysis. More details of the 
DL model evaluation are provided in Additional file  1: 
Method S4 [4, 12, 28–30].

Statistical analysis
We used the Statistical Package for the Social Sciences 
(SPSS) software (version 22, IBM, USA) and Python 
(version 3.6, http:// www. python. org) for the statisti-
cal analyses. Categorical variables are displayed as fre-
quencies and percentages and were compared between 
groups with Pearson’s chi-square test or Fisher’s exact 
test. Continuous variables are displayed as the means and 
standard deviations (SDs) and were compared between 
groups with the two-sample t test or Mann–Whitney 
U test (according to the normality of the distribution of 
the data). Normality was assessed with the Kolmogorov‒
Smirnov test for large samples (n > 50) and the Shapiro‒
Wilk test for smaller samples (n ≤ 50).

To compare the model constructed with T2W images 
with that constructed with multimodal MRI data, we 
used the DeLong test to compare their AUCs. Addition-
ally, the DeLong test was employed to compare the AUCs 
between multivariate logistic regression and iGNet and 
between neuroradiologists’ performance without and 
with iGNet assistance. A two-sided P value < 0.05 was 
considered to indicate statistical significance. Method S5 
provides more details of the statistical analysis.

Results
Patient characteristics
A total of 344 patients were included in this study, 
including 280 patients (188 males and 92 females, with 
an age range of 3–19 years, mean age [SD] = 13 [6] years) 
in the training and test cohort; 22 patients (17 males 
and 5 females, with an age range of 9–23  years, mean 
age [SD] = 15 [5] years) in the independent prospective 
internal test cohort; 22 patients (18 males and 4 females, 
with an age range of 6–21 years, mean age [SD] = 14 [5] 
years) in external test cohort-1; and 20 patients (15 males 
and 5 females, with an age range of 6–16 years, mean age 
[SD] = 10 [3] years) in external test cohort-2. The demo-
graphics, tumour marker levels (β-HCG and AFP), and 
conventional MR features of these patients are summa-
rized in Table 1.

The multivariate logistic regression model, created with 
demographic data, tumour marker levels (β-HCG and 
AFP), and conventional MR characteristics, achieved an 
accuracy of 76.77% (95% CI: 68.69–84.85%), a specificity 
of 64.86% (95% CI: 48.72–79.41%), a sensitivity of 83.87% 
(95% CI: 74.14–92.31%), and an AUC of 0.835 (95% CI: 

0.636–0.942) in differentiating GEs from NGGCTs in the 
retrospective test dataset (Additional file 1: Fig. S5A).

Accurate differentiation of GEs from NGGCTs with the DL 
model
iGNet automatically segmented the entire tumour in the 
retrospective internal test dataset, achieving a Dice score 
of 0.83 ± 0.04. The model demonstrated an accuracy of 
90.91% (95% CI: 84.85–95.96%), a specificity of 78.40% 
(95% CI: 64.10–90.60%), a sensitivity of 98.39% (95% CI: 
94.74–100.00%), and an AUC of 0.950 (95% CI: 0.863–
0.994) in differentiating GEs from NGGCTs (Additional 
file  1: Fig.  2A and Table  2). The results of the fivefold 
cross-validation are shown in Additional file 1: Table S2.

In the prospective internal test dataset, iGNet achieved 
an accuracy of 87.10% (95% CI: 68.00–96.00%), specificity 
of 84.64% (95% CI: 67.42–100.00%), sensitivity of 76.47% 
(95% CI: 53.85–94.12%), and AUC of 0.921 (95% CI: 
0.657–0.974) in differentiating GEs from NGGCTs.

In external test dataset-1, iGNet achieved an accuracy 
of 80.00% (95% CI: 60.00–95.00%), a specificity of 88.24% 
(95% CI: 70.59–100.00%), a sensitivity of 78.33% (95% 
CI: 56.65–95.14%), and an AUC of 0.869 (95% CI: 0.757–
0.941) in this differentiation task.

In external test dataset-2, iGNet achieved an accu-
racy of 89.56% (95% CI: 71.22–100.00%), a specificity of 
76.47% (95% CI: 53.85–94.12%), a sensitivity of 89.79% 
(95% CI: 76.84–98.62%), and an AUC of 0.905 (95% CI: 
0.774–0.971) in differentiating GEs from NGGCTs. 
Additional file  1: Fig.  2B shows the visualization of the 
outputs of iGNet for the various datasets. The results of 
the DeLong test comparing the performance of multivar-
iate logistic regression with that of iGNet are presented 
in Additional file 1: Table S3.

Robust performance of the DL model in various clinical 
scenarios
Evaluation of the DL model revealed that combining con-
ventional information with the output of iGNet achieved 
an AUC of 0.963 (95% CI: 0.921–0.990) in the retrospec-
tive internal dataset, 0.899 (95% CI: 0.769–0.967) in the 
prospective internal dataset, 0.891 (95% CI: 0.760–0.943) 
in external dataset-1, and 0.917 (95% CI: 0.776–0.972) in 
external dataset-2. The integration of multimodal (T2W, 
T1W, and CE-T1W) MR images resulted in an AUC of 
0.901 (95% CI: 0.800–0.938) in the retrospective internal 
dataset, 0.896 (95% CI: 0.785–0.980) in the prospective 
internal dataset, 0.856 (95% CI: 0.753–0.936) in external 
dataset-1, and 0.903 (95% CI: 0.773–0.969) in external 
dataset-2 (Fig. 2C and Additional file 1: Table S4). There 
was no statistically significant difference in diagnos-
tic performance between the use of T2W images alone 
and the use of multimodal MR images (0.919 vs. 0.901, 

http://www.python.org
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P = 0.676) in the retrospective internal test dataset (Addi-
tional file 1: Fig. S5B). In terms of tumour location, iGNet 
achieved an AUC of 0.936 (95% CI: 0.843–1.000) for the 
sellar/suprasellar region, 0.929 (95% CI: 0.875–0.983) 
for the pineal region, and 0.617 (95% CI: 0.318–0.864) 
for the basal ganglia region (Table  2, Additional file  1: 
Fig. S5 C, and Table  S5). Moreover, Fig.  2D illustrates 
the performance of iGNet in subgroup analyses within 
the retrospective internal test dataset, showing results 
consistent with the primary, nonstratified findings. The 
results of the DeLong test comparing the performance 

of neuroradiologists without iGNet assistance with those 
with iGNet assistance are presented in Additional file 1: 
Table S6.

Improvement in neuroradiologists’ diagnostic performance 
with the assistance of the DL model
Without iGNet assistance, the average AUC values of the 
six neuroradiologists (T.T.H., L.N.W., Z.W., Y.Y.D., L.X.H., 
and M.W.Z.) were 0.717, 0.679, 0.716, 0.778, 0.817, and 
0.801, respectively, across the retrospective test dataset 
and three independent test datasets. When the output 

Fig. 2 Performance and application results of iGNet. A ROC curves displaying iGNet’s discriminative ability in the retrospective internal test dataset 
and three independent test datasets. B Representative T2-weighted MR image examples and corresponding iGNet predictions across the four 
independent datasets. Saliency maps highlight regions that influenced the performance of the model, with colour-coded voxel predictions for GEs 
(red) and NGGCTs (green). C Comparison of the performance of iGNet against a model that integrates conventional clinical information with iGNet 
outputs, as well as a DL model using multimodal MR images. D Subgroup performance metrics for iGNet, presented as the accuracy, specificity, 
sensitivity, and AUC values, alongside their 95% CIs from bootstrap analysis (N = 2000 replicates). Sensitivity and specificity were calculated 
at a threshold matched to average reader sensitivity. The frequency of GEs and NGGCTs per subgroup is visualized with bar plots. The full numerical 
values for each subgroup are available in Table S4
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of iGNet was used, the average AUC values increased to 
0.841, 0.827, 0.825, 0.900, 0.926, and 0.899 across the four 
datasets, with improvements of 14.74%, 17.90%, 12.82%, 
13.56%, 9.22%, and 10.90%, respectively (Fig.  3A and 
Additional file 1: Table S6 provide further details).

Regarding diagnostic consistency, the Kappa coeffi-
cients ranged from 0.472 to 0.680 across the four data-
sets for the six neuroradiologists when not referring to 
the iGNet output and increased to 0.697 to 0.922 when 
the output of iGNet was consulted. This represents an 
absolute improvement from 10.90 to 40.49% in diagnos-
tic consistency (Fig.  3B and Additional file  1: Table  S7). 
Furthermore, we assessed the six neuroradiologists’ reli-
ance on the iGNet outputs, and the results are presented 
in Additional file 1: Fig. S6.

Comparable prognostic value of the DL model 
for pathological diagnosis
For the iGNet output, the hazard ratio (HR) for the 5-year 
PFS was 1.06 (95% CI: 0.85–1.57, P = 0.061), and that for 
the 5-year OS was 1.21 (95% CI: 0.87–1.62, P = 0.035) in 
the retrospective internal test dataset (Fig.  3C). For the 
pathological diagnosis, the HR for 5-year PFS was 1.09 
(95% CI: 0.83–1.42, P = 0.057], and the HR for 5-year OS 
was 1.33 (95% CI: 0.78–1.58, P = 0.019) in the same data-
set (Fig.  3D). The log-rank test indicated that the prog-
nostic utility of iGNet in the prediction of PFS and OS 
was comparable to that of the pathological diagnosis, 
with a P value of 0.889.

Finally, the output results of three real cases generated 
by iGNet in the retrospective internal test dataset and their 
pathological verification results are shown in Fig. 4A–C.

Discussion
In this study, we developed and validated an automated 
DL model to differentiate GEs from NGGCTs. This 
model demonstrated considerable generalizability across 
multiple centres and high robustness in various clinical 
scenarios. Furthermore, it was capable of helping neuro-
radiologists significantly improve their clinical diagnostic 
accuracy and assisting in evaluating patient prognosis, 
showing comparable performance to pathology.

A significant advantage of iGNet is its ability to simul-
taneously complete iGCT segmentation and differen-
tiation. The employs a Hough voting-based approach 
[31, 32], facilitating precise tumour localization and 
segmentation areas by aggregating feature votes within 
the neural network architecture, as detailed in the 
aforementioned references. This strategy allows auto-
matic localization and segmentation of the anatomies 
of interest, differing from models in previous studies in 
which image segmentation and differentiation were typ-
ically divided into separate steps. Using the outcomes 
of 3D nnU-Net–based [23] classification, our approach 
exploits the features from the deepest network layers 
[33–35], which extract more detailed imaging informa-
tion than manually selected features such as conven-
tional and quantitative imaging features, as described 
in previous studies [16, 18]. The performance of iGNet 

Table 2 Performance of the DL model in the retrospective internal test dataset, prospective internal test dataset, external test 
dataset-1, and external test dataset-2; evaluation of the DL model after combining iGNet with other information; performance of the 
DL model developed with multimodal MR images; and performance of iGNet for different tumour locations

ACC  accuracy, AUC  area under the curve
a Wide CIs typically suggest a small sample size or high variability in the estimates

ACC (%, (95% CIa)) Specificity (%, (95% CI)) Sensitivity (%, (95% CI)) AUC (95% CI)

iGNet performance
 Retrospective internal dataset 90.91 (84.85–95.96) 78.40 (64.10–90.60) 98.39 (94.74–100.00) 0.950 (0.863–0.994)

 Prospective internal dataset 87.10 (68.00–96.00) 84.64 (67.42–100.00) 76.47 (53.85–94.12) 0.921 (0.657–0.974)

 External dataset-1 80.00 (60.00–95.00) 88.24 (70.59–100.00) 78.33 (56.65–95.14) 0.869 (0.757–0.941)

 External dataset-2 89.56 (71.22–100.00) 76.47 (53.85–94.12) 89.79 (76.84–98.62) 0.905 (0.774–0.971)

DL model evaluation
 Combination of clinical information and iGNet 
in the retrospective internal dataset

92.91 (84.85–95.96) 78.38 (64.29–90.70) 98.39 (94.83–100.00) 0.963 (0.921–0.990)

 DL model developed using multimodal MR 
images (T2W-, T1W-, and CE T1W-images) in the ret-
rospective internal dataset

87.50 (80.00–93.75) 83.87 (69.57–95.65) 89.80 (80.85–97.73) 0.901 (0.800–0.938)

DL performance for tumours with different locations in the retrospective internal dataset
 Sellar/suprasellar region 86.84 (76.32–97.37) 85.19 (70.37–96.55) 90.91 (70.00–100.00) 0.936 (0.843–1.000)

 Pineal region 87.80 (80.49–93.90) 78.57 (62.50–92.59) 92.59 (84.91–98.31) 0.929 (0.875–0.983)

 Basal ganglia region 61.11 (38.89–83.33) 77.78 (50.00–100.00) 44.44 (11.11–80.00) 0.617 (0.318–0.864)
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(AUC of 0.950 in the test dataset) indicated that features 
extracted from T2W images alone could effectively dif-
ferentiate GEs from NGGCTs, which is consistent with 
previous findings using advanced imaging techniques 
(including diffusion and perfusion imaging) [16, 18]. 
The network’s robustness was confirmed in multicen-
tre datasets, representing a crucial step towards under-
standing the generalizability and clinical value of the 
neural network, which was lacking in previous single-
centre studies [36–39].

Grad-CAM [27] enhances the interpretability of 
DL models by generating saliency maps that highlight 
regions of interest, helping neuroradiologists understand 
the decision-making process of the model. Additionally, 
on MR images, Grad-CAM precisely localizes tumours 
by highlighting potential lesion areas, thereby assisting 
neuroradiologists in making more accurate diagnoses 
and assessments, ultimately increasing the credibility 
and acceptability of the diagnosis of the model. We also 
performed a comprehensive analysis of the discrepancies 

Fig. 3 A Enhancement of neuroradiological diagnosis with iGNet assistance. Improvement in the average AUCs for the neuroradiologists’ diagnoses 
was observed for the retrospective internal test and independent test datasets upon referencing the output of iGNet, with significant percentage 
increases (P < .05). B Kappa coefficient enhancements indicating improved diagnostic consistency among neuroradiologists utilizing iGNet, 
with specific percentage improvements noted (P < .001). C Kaplan‒Meier plots for PFS and OS categorized by iGNet’s MR-based predictions. D 
Kaplan‒Meier plots for PFS and OS categorized by pathological diagnosis
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between iGNet’s predictions and the ground truth, as 
detailed in Additional file 1: Fig. S7A. Approximately 50% 
of the iGNet diagnostic errors coincided with those of 
the logistic regression model or the neuroradiologists. A 
review of some MR images revealed that these discrepan-
cies were due primarily to atypical tumour presentations 
and inadequate tumour segmentation (Additional file  1: 
Fig. S7B). The pathological type commonly involved was 
NGGCT mixed with GE and mature teratoma. By exam-
ining these cases, we aimed to identify potential areas for 
model improvement and gain a deeper understanding of 
the limitations and strengths of iGNet. This detailed anal-
ysis offers valuable insights into specific scenarios where 
iGNet’s performance could be enhanced and underscores 
the importance of ongoing validation and refinement of 
the model.

When the DL model was evaluated with conventional 
information alongside its output, the AUC was 0.963, 
reflecting iGNet’s standalone performance (0.963 vs. 
0.950, P = 0.087) in the test dataset. This finding sug-
gests that the DL model alone can provide reliable and 
precise clinical diagnostic results. When unimodal and 

multimodal MR data inputs were compared, the DL 
models trained on T2W images and multimodal MR 
images showed similar performances, indicating that 
additional MR sequences did not significantly enhance 
the model’s effectiveness over T2W images alone. Con-
sidering that a standard MR scan [40] usually includes 
T1W and CE-T1W sequences, prioritizing T2W imag-
ing is clinically advantageous, especially for patients such 
as restless children or those receiving platinum-based 
chemotherapy (platinum-based chemotherapeutic agents 
induce nephrotoxicity and exhibit increased sensitivity to 
contrast agents), who have limited tolerance for extended 
scans [41]. Thus, T2W imaging as the primary MR 
sequence is clinically beneficial, enabling quicker adop-
tion, eliminating the need for contrast agents, reduc-
ing the scan duration to under 3 min, and still providing 
high-resolution tumour visualization [42].

In the stratified subgroup analysis, we focused on the 
model’s performance across different iGCT locations 
because of the known bias associated with the tumour 
site. For example, NGGCT is more common in the pineal 
region, and GE is more common in the basal ganglia [5]. 

Fig. 4 A A 20-year-old male who experienced headaches for 3 months presented with a pineal lesion. In October 2020, his serum AFP level 
was 8.69 ng/ml (normal level: < 7 ng/ml). By November 2020, his serum AFP had increased to 10.05 ng/ml. Additionally, in November 2020, his CSF 
AFP level was 7.11 ng/ml, which decreased to < 0.5 ng/ml following one cycle of chemotherapy. B An 8-year-old female suffering from headaches 
and diminished vision for 5 months presented with a suprasellar lesion. In May 2021, her serum AFP was significantly elevated, at 353.1 ng/ml. After 
two cycles of chemotherapy, her serum AFP had decreased to 266.4 ng/ml, and her CSF AFP level was < 0.5 ng/ml by May 2021. C An 11-year-old 
male who had been experiencing weakness in one limb for 11 months presented with a serum AFP level of 1.53 ng/ml and a CSF AFP level 
of < 0.5 ng/ml in February 2019. After four cycles of chemotherapy, his serum AFP level was increased to 64.2 ng/ml by June 2019
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iGNet yielded AUCs of 0.936, 0.929, and 0.617 in the sellar/
suprasellar region, pineal region, and basal ganglia region, 
respectively, indicating variable performance across tumour 
locations, with lower sensitivity in the basal ganglia region 
than in other regions (e.g. the sellar/suprasellar and pineal 
regions). The heterogeneous imaging features of iGCTs in 
the basal ganglia present challenges and often require more 
attention and manual correction [43, 44] (Additional file 1: 
Fig. S8A and B).

iGNet significantly improved the neuroradiologists’ 
diagnostic performance by over 18% and consistency by 
up to 40%, confirming its reliability and value for neu-
roradiologists in clinical settings. It was particularly 
effective in reducing diagnostic discrepancies in rare 
paediatric brain tumours such as iGCTs, thereby enhanc-
ing clinicians’ precision and efficiency. A comparative 
analysis between iGNet and neuroradiologists’ diagnoses 
revealed that less experienced doctors leaned more on 
the DL model, whereas experienced doctors relied more 
on their expertise. However, the results of this study sug-
gest that junior doctors should prioritize gaining clinical 
experience over solely relying on artificial intelligence for 
diagnosing relatively rare tumours.

Pathological analyses provide insights into iGCT 
tumour type, grade, and immunohistochemical char-
acteristics, all of which are correlated with PFS and OS 
[11]. If a DL- and MR-based diagnostic tool can accu-
rately predict the pathological type, artificial intelligence-
enhanced MR images could potentially offer prognostic 
information similar to traditional pathology. In our study, 
the prognostic predictions from iGNet demonstrated a 
strong correlation with those from pathological evalua-
tions, suggesting that iGNet may have potential as a sup-
plementary prognostic tool. The ability of iGNet’s output 
to predict PFS and OS indicates that the model can assist 
in monitoring treatment response and adjusting thera-
peutic strategies. For example, a low likelihood of disease 
progression predicted by iGNet might allow extended 
intervals between follow-up imaging scans, releasing 
patient stress and exposure to unnecessary procedures. 
Conversely, a high risk of progression would prompt 
more frequent monitoring and timely adjustments to the 
treatment regimen. By integrating these predictions into 
routine clinical practice [9, 45], clinicians can potentially 
tailor treatment plans more effectively, optimize resource 
allocation, and ultimately improve patient care and out-
comes [6].

This study has certain limitations. First, there is poten-
tial methodological bias in the comparison of neurora-
diologists’ diagnostic accuracy. Despite the three-month 
interval between assessments, the neuroradiologists were 
exposed to the same images during both diagnoses with 
and without the assistance from iGNet. Second, iGNet 

performed effectively for tumours in the sellar/supra-
sellar and pineal areas, but its effectiveness was less desir-
able for tumours in the basal ganglia region, likely due to 
the limited sample size. Therefore, more tumours in the 
basal ganglia regions should be included in further stud-
ies to improve the model’s performance.

Conclusions
In summary, the developed iGNet demonstrated nota-
ble performance in the differentiation of iGCTs based on 
pretherapeutic MR images, as evidenced by its high AUC 
in identifying GEs and NGGCTs. Given that its predic-
tive capacity closely aligned with that of pathological 
findings, iGNet promises to be a noninvasive tool that 
could be employed in parallel with traditional biopsy 
analyses.
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GE but also misclassified by iGNet, we found that the tumour segmenta-
tion results from iGNet did not correspond to the actual tumour location, 
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with obvious enhancement
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