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Abstract 

Background Genome‑wide association studies have enabled Mendelian randomization analyses to be performed 
at an industrial scale. Two‑sample summary data Mendelian randomization analyses can be performed using 
publicly available data by anyone who has access to the internet. While this has led to many insightful papers, it 
has also fuelled an explosion of poor‑quality Mendelian randomization publications, which threatens to undermine 
the credibility of the whole approach.

Findings We detail five pitfalls in conducting a reliable Mendelian randomization investigation: (1) inappropriate 
research question, (2) inappropriate choice of variants as instruments, (3) insufficient interrogation of findings, (4) 
inappropriate interpretation of findings, and (5) lack of engagement with previous work. We have provided a brief 
checklist of key points to consider when performing a Mendelian randomization investigation; this does not replace 
previous guidance, but highlights critical analysis choices. Journal editors should be able to identify many low‑quality 
submissions and reject papers without requiring peer review. Peer reviewers should focus initially on key indicators 
of validity; if a paper does not satisfy these, then the paper may be meaningless even if it is technically flawless.

Conclusions Performing an informative Mendelian randomization investigation requires critical thought and col‑
laboration between different specialties and fields of research.

Keywords Causal inference, Genetic epidemiology, Instrumental variables, Evidence synthesis, Risk of bias, Bias 
evaluation

Background
Mendelian randomization is an epidemiological tech-
nique that exploits the properties of genetic variants to 
address causal questions about the potential effect of an 
exposure on an outcome [1, 2]. Mendel’s laws of heritabil-
ity mean that, conditional on parental genotype, genetic 
variants should only be associated with traits that they 
influence [3, 4]. Given a well-mixed population, the same 
property should hold at the population level [5]. Empiri-
cal investigations have shown that genetic associations 
with unrelated traits estimated in population-based 
cohorts are no stronger than would be expected due to 
chance alone [6, 7]. This suggests a generic strategy for 
testing the causal effect of any exposure on any outcome 
by the following steps:
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1. Find genetic variants that are predictors of the expo-
sure

2. Test whether these genetic variants associate with 
the outcome

The simplicity and universality of the approach is 
appealing [8]. Analogously to a randomized trial, infer-
ences are made not by application of clever statistical 
methodology, but by exploiting random variation [9, 
10]—although in the case of Mendelian randomization, 
this is naturally-occurring randomization rather than 
random allocation by a trialist [11]. However, such a sim-
ple recipe cannot provide reliable causal inferences with-
out thoughtful application.

The Mendelian randomization approach relies on the 
gene–environment equivalence principle [12]. This states 
that selected genetic variants influence an environmental 
(that is non-genetic) exposure equivalently to a proposed 
intervention that changes the population distribution 
of the exposure. In practice, there are often differences 
between the effect of a genetic variant and a proposed 
intervention in terms of mechanism, magnitude, tim-
ing, and duration that imply downstream consequences 
are not exactly equivalent [13, 14]. The principle can be 
restated to require that genetic associations are informa-
tive about the presence, direction, and (to a more limited 
extent) the size of the effect on the outcome resulting 
from an intervention in the exposure.

The availability of data from genome-wide association 
studies (GWAS) has enabled Mendelian randomization 
analyses to be performed at an industrial scale [15, 16]. 
In particular, it has enabled two-sample summary data 
Mendelian randomization investigations [17]: “two-sam-
ple” indicates that genetic associations with the putative 
exposure and outcome come from different datasets; 
“summary data” indicates that analyses are performed 
using genetic association estimates—beta-coefficients 
and standard errors representing associations of the 
respective variants with the exposure and outcome—
rather than individual-level data [18, 19]. Such associa-
tion data have been released for many large consortia and 
biobanks [20, 21]. Anyone with access to the internet can 
download genetic associations with risk factors and dis-
ease outcomes and use these to implement Mendelian 
randomization methods [22]. Indeed, such applications 
of Mendelian randomization have great advantages: they 
are able to use large datasets published by GWAS con-
sortia, and analyses can be made fully transparent and 
replicable.

However, particularly in the age of artificial intelli-
gence, such analyses are arguably too accessible. Web-
based tools have been created that simplify the task 
of the analyst to simply choosing the exposure and 

outcome—the automated analysis is performed at the 
touch of a button [23]. Mendelian randomization has 
become an easy target for researchers who are incentiv-
ized to publish as often as they can, as well as to preda-
tory journals which are willing to publish such articles. 
While the two-sample summary data approach has led 
to many insightful papers, it has also fuelled an explo-
sion of poor-quality Mendelian randomization publi-
cations, which threatens to overwhelm the capacity of 
qualified reviewers and undermine the credibility of the 
whole approach.

The guidance in this article is written to help those 
who want to write meaningful Mendelian randomization 
papers, as well as to journal editors and reviewers seek-
ing to triage and identify low-quality submissions. There 
is already plentiful guidance on performing and reporting 
Mendelian randomization investigations [24], including 
the Strengthening the Reporting of Observational Stud-
ies in Epidemiology using Mendelian Randomization 
(STROBE-MR) guidelines [25]; we would encourage jour-
nals to insist that authors complete the checklist based on 
these guidelines at initial submission. This is important to 
ensure analyses are performed accurately and to avoid 
errors, such as mistakes in allele harmonization [26]. 
However, a Mendelian randomization investigation may 
be perfectly written and follow these guidelines to the let-
ter—and yet the whole study may be completely useless.

We focus here on two-sample Mendelian randomiza-
tion analyses using established methods for the analysis 
of summarized data. Advanced methods, such as non-
linear analyses [27], cross-generational analyses [28], and 
time-varying analyses [29], require additional assump-
tions and detailed considerations that could potentially 
lead to biased estimates if violated [30–32]. Such meth-
ods are outside the scope of this paper. However, the con-
siderations discussed here about instrument selection, 
instrument validity, and interpretation are foundational, 
and also apply to such applications.

We consider five common pitfalls in conducting a reli-
able Mendelian randomization investigation: (1) inap-
propriate research question, (2) inappropriate choice 
of variants as instruments, (3) insufficient interrogation 
of findings, (4) inappropriate interpretation of findings, 
and (5) lack of engagement with previous literature. 
We present a short list of relevant questions relating to 
these points in Fig. 1 for authors to consider. While not 
as comprehensive as the STROBE-MR guidelines, it is 
more succinct and focuses on the key critical judgements 
that are required to assess the reliability of an investiga-
tion. It should be particularly valuable not just to authors, 
but also to reviewers and editors, and indeed, to eventual 
readers wanting to evaluate the quality of evidence pro-
vided by a Mendelian randomization publication.
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Inappropriate research question
The instrumental variable assumptions [33] require that 
any genetic variant used in a Mendelian randomization 
investigation as an instrument must:

1. Be associated with the exposure (relevance)
2. Not be associated with the outcome via a confound-

ing pathway (exchangeability)
3. Have no direct effect on the outcome, only poten-

tially an indirect effect via the exposure (exclusion 
restriction) [34]

Only the first of these assumptions can be verified 
based on data. The other two assumptions cannot be for-
mally tested and must be justified either on the basis of 
scientific understanding, or empirically supported based 
on the application of statistical methods [24].

These assumptions require the genetic variants to be 
specific in how they affect the exposure—there cannot 
be pleiotropic associations with variables on alternative 
causal pathways to the outcome. Associations with vari-
ables on the causal pathway from the genetic variants to 
the outcome via the exposure (sometimes called “vertical 
pleiotropy”) are allowed; associations with variables on 
alternative causal pathways (sometimes called “horizon-
tal pleiotropy”) are not [35] (Fig. 2).

For some exposures, it is implausible that there are 
genetic variants that influence the exposure in a way that 
meets these requirements. A paradigmatic example of 
such an exposure is “use of chopsticks”—if a researcher 
found genetic predictors of chopstick use in a Western 
population, the likely explanation would be that the vari-
ants reflect demographic or socioeconomic status, rather 

than a biological mechanism that affects cutlery choice 
[37]. Such variants would be invalid instrumental vari-
ables: first, they would be subject to population stratifica-
tion, and second, even if population stratification could 
be addressed, they would be associated with other traits 
and behaviours that are more common in chopstick 
users. As such, a Mendelian randomization study sup-
posedly finding evidence of an effect of chopsticks use 
would have to show that this effect is not attributable to 
the many other social and cultural factors that likely dif-
fer between the genetically defined population groups.

Another implausible exposure for use in Mendelian 
randomization is pollution levels [38]. Again, it is implau-
sible that there are particular genetic variants that affect 
exposure to air pollution. If genetic predictors of air 
pollution are found, it is likely that these are markers of 
social status rather than representing intrinsic biological 
mechanisms. In some large datasets, such as UK Biobank, 
air pollution is not measured at an individual level, but 
inferred based on home address [39]. This reinforces the 
concern that such an analysis is actually evaluating social 
status, not air pollution in any specific way. Another cate-
gory of implausible exposures for Mendelian randomiza-
tion is gut microbiota [40]. It is implausible that there are 
particular genetic variants that have specific effects on 
individual gut microbiome species. While some genetic 
predictors of gut microbiota have been found, they are 
located in highly pleiotropic gene regions, such as the 
ABO gene region [41]. Just because a GWAS has found 
genetic predictors of a trait does not imply that the trait 
is an appropriate exposure for a Mendelian randomiza-
tion investigation, nor that the genetic predictors repre-
sent valid genetic instruments.

Fig. 1 Key considerations when assessing the credibility of a Mendelian randomization investigation
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If an exposure is externally or environmentally deter-
mined, or variation in the exposure is influenced purely 
by social and cultural factors rather than intrinsic bio-
logical mechanisms, then it is unlikely that effects of the 
exposure can be reliably interrogated in a Mendelian 
randomization design. Such traits are more likely to be 
subject to bias from population stratification, non-ran-
dom mating patterns, and dynastic effects (that is inter-
generational effects, such as when the parental genotype 
directly influences the offspring exposure or outcome) 
[42].

A counter-example to this is alcohol consumption. 
While alcohol consumption is partially determined by 
personal and environmental factors, there are biological 
mechanisms influencing the metabolism of alcohol that 
affect consumption levels, as well as exposure to alcohol 
in the bloodstream. Genetic variants in key regulators of 
these mechanisms are potential instruments for under-
standing the downstream effects of alcohol consumption 
[43]. However, care is still required to appropriately per-
form and interpret such analyses; we follow up this exam-
ple in further sections.

Researchers should be aware that not all causal ques-
tions can appropriately be addressed in a Mendelian 
randomization paradigm. Journal editors and reviewers 

should use their judgement to rapidly decide whether a 
question can plausibly be addressed by Mendelian rand-
omization based on the abstract (or even the title) alone: 
is it plausible that there exist genetic variants such that 
the gene–environment equivalence principle holds? That 
is, are there likely to be genetic variants that affect the 
exposure in a way equivalent to the (possibly hypotheti-
cal) intervention implied by the causal question under 
investigation? If this is unlikely, then the investigation, 
even if perfectly implemented and reported, does not 
provide reliable evidence to address the causal question 
of interest.

Inappropriate choice of variants as instruments
The instrumental variable assumptions require that any 
causal pathway from the genetic variants to the outcome 
passes via the exposure under investigation. This is more 
plausible if the genetic variants are located in a gene 
region with known functional or biological relevance to 
the exposure [44–46]. It is less plausible for exposures 
that the genetic variants influence indirectly via complex 
causal pathways, such as educational attainment. For 
example, genetic variants in the UGT1A1 gene region 
that encodes an enzyme regulating the synthesis of biliru-
bin are more plausible instruments than variants in gene 

Fig. 2 Genetic associations with an exposure variable that is downstream of a mediating biomarker (diagrams A and B), or has a downstream 
effect on either a mediating biomarker (diagram C) or a non‑causal biomarker (diagram D). In case A, the only causal pathway from the genetic 
variants to the outcome passes via the exposure; hence, this is an example of “vertical pleiotropy”, and the genetic variants are valid instruments. 
In case B, there is a causal pathway from the genetic variants to the outcome that does not pass via the exposure; hence, this is an example 
of “horizontal pleiotropy”, and the genetic variants are not valid instruments. In cases C and D (which also represent “vertical pleiotropy”), Mendelian 
randomization analyses should be conceptualized in terms of the exposure (the putative causal trait), even if measured genetic associations are 
expressed in terms of the biomarker. Diagram D is likely to represent the situation between genetic variants in the IL6R gene region, interleukin 6 
signalling (exposure), and C‑reactive protein (non‑causal biomarker). C‑reactive protein is likely to be a non‑causal biomarker when considering 
the effect of interleukin 6 receptor inhibition on coronary heart disease [36]
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regions that are not functionally related to bilirubin, or 
whose function is unknown [47]. Genetic variants in the 
ALDH2 and ADH1B gene regions are known to relate to 
alcohol metabolism, and hence are plausible instruments 
to investigate the effect of alcohol consumption [48]. If 
gene regions with biological relevance to the exposure 
are not known, Mendelian randomization can provide 
some evidence on the causal relevance of the exposure, 
but additional caution is required [49].

For a given gene region, genetic variants should be 
chosen based on their biological relation to the causal 
risk factor of interest, as far as is possible. This includes 
proximity to the relevant gene and functional effects on 
regulation of the gene or its downstream protein. For 
example, when investigating the effect of angiotensin 
converting enzyme (ACE) on risk of Alzheimer’s disease, 
use of variants in the ACE gene region predicting tissue-
specific gene and protein expression likely increases their 
plausibility as valid instruments for pharmacological 
perturbation of ACE at the relevant biological site [50]. 
In some cases, the same variant may be the lead signal 
for circulating protein levels, gene expression in the most 
relevant tissue, and levels of a downstream risk factor. In 
other cases, these approaches may identify different vari-
ants [51]. If these differ, careful consideration is needed 
to select the variant(s) that best mimic the intervention 
of interest.

Biological mechanisms affecting many exposures are 
not known. In such cases, genetic variants used as instru-
ments may be selected solely based on their statistical 
association with the exposure. Such analyses are often 
still valuable, in that they provide a source of evidence 
supporting or refuting a causal effect of the exposure on 
the outcome. The strength of evidence provided depends 
on our confidence in the validity of the genetic variants as 
instruments. Testing genetic associations with potential 
confounders can provide empirical evidence supporting 
the validity of the variants as instruments, as can other 
statistical approaches, such as the application of pleiot-
ropy-robust methods [52].

Researchers should prioritize investigating expo-
sures using variants in gene regions that are biologically 
related to the exposure where possible. Journal editors 
and reviewers should look for a justification as to why the 
genetic variants in a given analysis were chosen. If this is 
absent, or if genetic variants are purely chosen on statisti-
cal grounds, then findings will generally be less authorita-
tive and require a greater degree of statistical assessment.

Insufficient interrogation of findings
While the exact analysis plan will depend on the spe-
cifics of the question under investigation, availabil-
ity of valid instruments, data quality, and so forth, one 

recommended generic strategy for conducting Mende-
lian randomization analyses is as follows. First, if there 
are biologically informed candidate instruments, the pri-
mary analysis should be based on these variants. Second, 
if there are no biologically informed candidate instru-
ments, an initial liberal analysis based on a wide range 
of variants is recommended. Finally, results should be 
interrogated further to investigate robustness to a vari-
ety of factors [24]. A null finding in a liberal analysis that 
includes potentially pleiotropic variants is likely to reflect 
a true null relationship; it is more likely that bias will lead 
to a false positive finding than a false negative finding 
[53]. However, false negative results can be just as harm-
ful to science. Absence of evidence does not always mean 
evidence of absence, particularly if the analysis is under-
powered, unspecific, or poorly designed.

There are many approaches for the interrogation of 
findings (see reference [24] for more details), including 
examining genetic associations with potentially pleio-
tropic variables [54], testing against positive and/or nega-
tive controls [55], colocalization (particularly when the 
finding is based on a single gene region) [56], use of plei-
otropy-robust methods (particularly when the finding is 
based on variants from several gene regions) [52], inves-
tigation in subgroups of the population [57] (although 
noting such stratification can lead to collider bias [58]), 
investigation with a subset of variants, and multivariable 
Mendelian randomization [59]. No single sensitivity anal-
ysis approach is foolproof [60], and all approaches make 
their own assumptions. A causal effect may be present 
even if one or more approach does not provide support-
ive evidence of a causal effect (or equally, a causal effect 
may be absent even if one or more approach supports a 
causal effect). In many cases, the evidence will be equivo-
cal; there may be evidence supporting a causal effect, but 
this evidence may not be fully consistent across all analy-
ses. If there is inconsistent evidence, then it is important 
that results are reported clearly, without undue emphasis 
on significant findings. Similarly, if multiple hypotheses 
are tested by the investigators, this should be accounted 
for when interpreting findings.

As an example, the robustness of Mendelian randomi-
zation analyses with alcohol as an exposure has been 
tested in several ways. Analyses in East Asian popula-
tions have typically used variants in the ALDH2 and 
ADH1B gene regions as instruments [61]. These inves-
tigations have exploited a further natural experiment 
by conducting analyses separately for men and women. 
Genetic associations with disease outcomes would not be 
expected in East Asian women as their alcohol consump-
tion levels are much lower than those of men. East Asian 
women represents a negative control population, and 
null associations in women but positive associations with 



Page 6 of 9Burgess et al. BMC Medicine          (2024) 22:374 

men have been observed for oesophageal cancer [62] 
and blood pressure [63]. In European-descent popula-
tions, similar findings have been observed using a variant 
in the ADH1B gene region only and using a wider range 
of genetic predictors of alcohol consumption [64]. Con-
sistent results for many outcomes have been observed 
across a range of robust methods, including MR-Egger, 
weighted median, and MR-PRESSO methods [65]. Multi-
variable analyses have also been conducted adjusting for 
smoking behaviour, as genetic predictors of alcohol may 
have pleiotropic effects on smoking intensity [66].

Researchers should perform a range of approaches to 
investigate the robustness of findings. The reported level 
of confidence in conclusions should be dependent on the 
consistency of these results. Journal editors and review-
ers should be suspicious of selective reporting of signifi-
cant findings, particularly when approaches to assess the 
validity of findings have either not been reported, or indi-
cate lack of support for a causal effect.

Inappropriate interpretation of findings
We have hereto assumed that the exposure measured in 
the Mendelian randomization analysis is the true causal 
agent affecting the outcome. However, this may not be 
the case. It is possible that a version of the gene–environ-
ment equivalence principle is true, but not for the meas-
ured exposure. It may be that the measured exposure is a 
biomarker that acts as a proxy measure of the true causal 
mechanism of action (Fig. 2).

As an example, genetic variants in the IL6R gene 
region are associated with levels of both interleukin 6 
and C-reactive protein. This is plausibly an example of 
vertical pleiotropy, as the association with C-reactive 
protein is potentially a downstream consequence of the 
effect of interleukin 6 receptor signalling [36]. If we use 
genetic variants in the IL6R gene region in a Mendelian 
randomization analysis investigating the effects of inter-
leukin 6 receptor signalling, we should come to the same 
conclusion whether our nominal biomarker for select-
ing and weighting instruments is levels of interleukin-6 
receptor or levels of C-reactive protein [67]. Our estimate 
may be expressed in terms of change in genetically pre-
dicted interleukin-6 receptor levels or genetically pre-
dicted C-reactive protein levels, but it is the choice of 
variants that determines the causal question that is being 
addressed, not the biomarker used to select instruments 
for the exposure. As a further hypothetical example, 
suppose that we performed a Mendelian randomization 
analysis using genetic predictors of left leg mass. Would 
we be confident that any finding was truly attributable to 
an effect of left leg mass as opposed to adiposity or mus-
cle mass more generally?

A related issue, particularly for binary exposures, is 
that genetic variants increase liability to the exposure, 
but do not necessarily increase the exposure [68]. For 
example, most individuals having genetic variants associ-
ated with increased schizophrenia risk do not themselves 
have clinically diagnosed schizophrenia [69]. Genetic 
variants that predispose individuals to increased alcohol 
consumption do not increase exposure to alcohol in pop-
ulations of non-alcohol drinkers. Genetic variants shown 
to predispose individuals to greater COVID-19 risk did 
not increase exposure to COVID-19 in pre-pandemic 
datasets.

Mendelian randomization is serendipitous in nature; 
we exploit what is available. We cannot control which 
genetic variants are available for our analysis, or what 
these genetic variants do. The gene–environment equiv-
alence principle requires to first understand how the 
genetic variants operate, and express our causal question 
in terms of the tools that are available. This implies that 
a simple conclusion statement such as “the exposure has 
a causal effect on the outcome” may not be appropriate.

Returning to the example of alcohol, genetic vari-
ants that increase alcohol consumption may have effects 
relating to social aspects of alcohol consumption as 
well as biological aspects. Those who drink more alco-
hol in Western societies are likely to spend more time 
in licenced establishments, and potentially have greater 
exposure to environmental tobacco smoke. Another com-
plication is distinguishing between alcohol consumption 
and exposure to high alcohol levels. For caffeine, genetic 
associations with coffee consumption and circulating 
plasma caffeine levels are not all concordant. This can be 
explained as some genetic variants that increase caffeine 
metabolism lead to lower circulating caffeine levels, but 
greater coffee consumption, as fast caffeine metabolizers 
tend to consume more coffee to get the same physiologi-
cal response [70]. Variants in the ALDH2 and ADH1B 
gene regions affect alcohol consumption via different 
biological pathways. While the rs671 variant in ALDH2 
decreases alcohol consumption, it impairs the metabo-
lism of alcohol, meaning that carriers who drink alcohol 
have greater exposure to acetaldehyde, a known carcino-
gen [71]. Hence, the associations of the rs671 variant may 
be misinterpreted if investigators focus on associations 
with alcohol consumption level. Correct interpretation of 
Mendelian randomization analyses requires appreciation 
of the broad social context of alcohol consumption and 
understanding of the biological effects of the variants.

Researchers should think carefully about the identity of 
the underlying causal risk factor or mechanism evaluated 
in their analysis; this may differ from the measured vari-
able used as the exposure. Journal editors and reviewers 
should be sceptical about strong causal claims. Jumps of 
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logic from factual statements such as “genetic predictors 
of the exposure were associated with the outcome” (or 
equivalently “genetically predicted exposure levels were 
associated with the outcome”) to subjective inferences 
such as “therefore, we believe the exposure is a cause of 
the outcome” should only be made when they can be jus-
tified [72]. If it is implausible that an exposure could be 
altered in a specific way by a genetically regulated mecha-
nism, then it may be that the nominal exposure is a bio-
marker for a wider mechanism, not the literal causal risk 
factor.

Lack of engagement with previous literature
Mendelian randomization cannot by itself demonstrate 
or prove the existence of a causal effect. Indeed, the aim 
of a Mendelian randomization investigation is often to 
provide supportive or suggestive evidence to encourage 
further research, including the establishment of a rand-
omized trial. As such, it is important to weigh evidence 
from Mendelian randomization against that from other 
approaches, including epidemiological data, trial find-
ings, and basic science experiments. Triangulation is 
a framework for evidence synthesis that considers evi-
dence from various sources that make different assump-
tions, and hence the validity of these assumptions will be 
orthogonal [60, 73]. Evidence from different approaches 
making different assumptions can provide a more com-
pelling case for a causal effect, or can help enhance the 
specificity of evidence. By showing that evidence for a 
causal effect is stronger or weaker in certain circum-
stances (such as different populations, different times, or 
different subgroups), we can improve our understanding 
of the causal mechanism.

In the case of alcohol, while there are no large-scale 
long-term randomized trials investigating the impact of 
alcohol consumption on disease outcomes [74], there 
are randomized trials exploring the effects of drinking 
alcohol in the short term, and many mechanistic stud-
ies into the effects of alcohol. While several observa-
tional epidemiological studies have shown lower risk of 
cardiovascular disease amongst light drinkers compared 
to non-drinkers [75], Mendelian randomization analy-
ses have not supported evidence of a protective effect 
of increased alcohol at any level of alcohol consumption 
[61, 76]. A Mendelian randomization investigation into 
the effect of alcohol consumption should explore rea-
sons for discrepancies from results from conventional 
observational analyses. A potential explanation is that the 
non-drinker category contains both never-drinkers and 
former-drinkers, and the observational elevated risk in 
non-drinkers is due to former-drinkers.

Researchers should compare findings from their 
Mendelian randomization investigation to those from 

lab-based experiments, functional genomic studies, 
observational epidemiological associations, and clini-
cal trials. Results should be appraised in a triangulation 
framework indicating the extent to which they strengthen 
or weaken the evidence for a causal effect of the expo-
sure. Journal editors and reviewers should hold authors 
to high standards and ensure that findings are adequately 
compared to those from previous Mendelian randomiza-
tion investigations and other approaches.

Conclusions
Mendelian randomization can be applied in an uncriti-
cal, algorithmic way to obtain findings and generate 
publications [77]. Policing such outputs is an impossible 
task requiring far more resources than it takes to create 
the publications, and the onus should be on authors to 
perform thoughtful and well-justified analyses. Journal 
editors at reputable journals should be able to spot low-
effort submissions without wasting precious peer review 
resources. Reviewers should focus not only on whether 
technical aspects of a submission are present, but also on 
key indicators that require critical judgement: whether 
the causal question can plausibly be addressed by Men-
delian randomization, whether the choice of variants is 
justified, whether there has been sufficient interrogation 
of findings (assessment of internal validity), whether any 
inferred causal interpretation is appropriate (assessment 
of external validity), and how this finding supports or 
refutes aspects of the wider literature. Performing such 
an investigation requires close collaboration between 
those with biological, clinical, sociological, genetic, and 
statistical expertise to understand the plausibility of 
the assumptions and to perform and interpret analyses 
appropriately.
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