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Abstract 

Background Kidney transplantation is the optimal renal replacement therapy for children with end-stage renal 
disease; however, delayed graft function (DGF), a common post-operative complication, may negatively impact 
the long-term outcomes of both the graft and the pediatric recipient. However, there is limited research on DGF 
in pediatric kidney transplant recipients. This study aims to develop a predictive model for the risk of DGF occurrence 
after pediatric kidney transplantation by integrating donor and recipient characteristics and utilizing machine learning 
algorithms, ultimately providing guidance for clinical decision-making.

Methods This single-center retrospective cohort study includes all recipients under 18 years of age who underwent 
single-donor kidney transplantation at our hospital between 2016 and 2023, along with their corresponding donors. 
Demographic, clinical, and laboratory examination data were collected from both donors and recipients. Univariate 
logistic regression models and differential analysis were employed to identify features associated with DGF. Subse-
quently, a risk score for predicting DGF occurrence (DGF-RS) was constructed based on machine learning combina-
tions. Model performance was evaluated using the receiver operating characteristic curves, decision curve analysis 
(DCA), and other methods.

Results The study included a total of 140 pediatric kidney transplant recipients, among whom 37 (26.4%) developed 
DGF. Univariate analysis revealed that high-density lipoprotein cholesterol (HDLC), donor after circulatory death (DCD), 
warm ischemia time (WIT), cold ischemia time (CIT), gender match, and donor creatinine were significantly associ-
ated with DGF (P < 0.05). Based on these six features, the random forest model (mtry = 5, 75%p) exhibited the best 
predictive performance among 97 machine learning models, with the area under the curve values reaching 0.983, 
1, and 0.905 for the entire cohort, training set, and validation set, respectively. This model significantly outperformed 
single indicators. The DCA curve confirmed the clinical utility of this model.
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Conclusions In this study, we developed a machine learning-based predictive model for DGF following pediatric 
kidney transplantation, termed DGF-RS, which integrates both donor and recipient characteristics. The model dem-
onstrated excellent predictive accuracy and provides essential guidance for clinical decision-making. These findings 
contribute to our understanding of the pathogenesis of DGF.
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Background
Kidney transplantation (KT) is currently recognized as 
the optimal treatment for children with end-stage renal 
disease (ESRD). With the current high success rate of 
pediatric KT, where over 80% of children survive and 
grow into adolescents and adults, maintaining a good 
quality of life and minimizing significant long-term side 
effects are essential priorities [1]. Delayed graft function 
(DGF), a common complication after KT with an inci-
dence ranging from 20 to 50% [2], not only potentially 
increases the risk of post-transplant graft loss [3] and 
chronic allograft nephropathy in children but also leads 
to increased medical resource utilization and costs [4–6]. 
However, there is currently a paucity of studies on pedi-
atric KT, with some DGF studies selectively excluding 
the pediatric population [7–11]. Therefore, timely iden-
tification of high-risk factors for DGF occurrence and 
implementation of effective preventive and therapeutic 
measures are crucial for improving the prognosis of pedi-
atric KT.

The occurrence of DGF is closely associated with 
acute ischemia–reperfusion injury in the donor kidney. 
Ischemia–reperfusion injury can cause apoptosis and 
necrosis of renal tubular epithelial cells, inflammatory 
cell infiltration, and microcirculatory disorders, ulti-
mately resulting in delayed recovery of the transplanted 
kidney function [12]. Pediatric kidney transplant recipi-
ents typically have smaller arterial diameters and lower 
cardiac output compared to adults. When pediatric kid-
ney transplant recipients receive kidneys from older 
donors, their cardiovascular system may not provide 
adequate perfusion to the mature donor kidney, poten-
tially leading to renal hypoperfusion. Furthermore, chil-
dren have a relatively low blood volume compared to 
adults. When a large volume of blood rapidly enters 
the transplanted kidney during the intraoperative res-
toration of blood flow, it can readily cause hypotension 
in the pediatric patient, further exacerbating the inad-
equate perfusion of the transplanted kidney, potentially 
leading to acute tubular necrosis and inducing DGF [13, 
14]. The pathogenesis of DGF remains poorly under-
stood. It is widely accepted that immunological and non-
immunological factors, including donor-related factors 
(ischemia duration, age, terminal serum creatinine (Scr), 
hypertension history, and cardiopulmonary resuscitation 

history), recipient-related factors (immune response, 
ischemia–reperfusion injury, and dialysis duration), and 
surgical factors, contribute to the onset and progres-
sion of DGF [4, 15]. Recently, several novel biomark-
ers have demonstrated potential for the early diagnosis 
of DGF. Recent studies have highlighted the potential 
utility of specific liver enzymes as early biomarkers for 
DGF in kidney transplantation. For instance, Malyszko 
et  al. demonstrated that alkaline phosphatase (ALP) 
may offer superior predictive capability for DGF com-
pared to creatinine, exhibiting an earlier elevation (12 to 
96  h prior to a detectable increase in serum creatinine) 
[16]. In a related study, Jochmans et  al. established that 
plasma aspartate transaminase (AST) not only reflected 
the severity of initial kidney graft injury but also pre-
dicted graft dysfunction with greater accuracy and time-
liness compared to creatinine clearance and histological 
assessment [16]. Moreover, studies have shown a corre-
lation between bilirubin levels and intraoperative blood 
flow measurements, potentially serving as a predictor of 
early graft function following transplantation [17]. This 
observed association between liver function markers 
and kidney graft outcomes highlights the intricate inter-
relationship among organ systems in the post-transplant 
milieu. The incorporation of lipid profiles in our investi-
gation was predicated on emerging evidence suggesting 
their potential prognostic value in kidney transplanta-
tion outcomes. In a recent study, Shi et al. reported that 
serum high-density lipoprotein cholesterol (HDL-C) may 
function as a predictive biomarker for postoperative DGF 
following kidney transplantation [18]. This observation 
suggests that lipid metabolism may exert an influence 
during the early post-transplant period and potentially 
impact graft function. Conventionally, the assessment of 
donor and recipient kidneys has primarily relied on age, 
gender, body mass index (BMI), Scr, and urea nitrogen; 
however, these indicators have limited predictive value 
[19]. Nevertheless, the majority of studies investigating 
the predictive value of biomarkers for DGF following 
KT have been performed in adult populations. Studies 
involving pediatric patients have been limited by small 
sample sizes or a restricted number of parameters. Thus, 
identifying biomarkers for the early diagnosis and predic-
tion of DGF following pediatric KT is crucial for guiding 
clinical management and improving patient outcomes.
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With the rapid advancement of artificial intelligence 
technology, machine learning (ML) has found increasing 
applications in the medical field. ML is a computational 
approach that predicts outcomes through data mining 
and algorithmic analysis [20]. In recent years, ML has 
demonstrated promising potential in predicting compli-
cations following KT [21]. For instance, multiple logis-
tic regression (LR)-based models have been constructed 
to predict the occurrence of DGF in kidney transplant 
recipients [22–25]. Moreover, decision tree (DT) algo-
rithms have demonstrated satisfactory predictive per-
formance in the context of DGF [26]. Nevertheless, the 
aforementioned studies merely utilize a single ML model 
for the prediction and evaluation of DGF. Research has 
indicated that the integration of multiple ML models can 
substantially enhance the prediction of outcomes [27]. 
Consequently, there is a pressing necessity to develop a 
model that can accurately predict the incidence of DGF 
following KT by leveraging a combination of multiple ML 
techniques.

Given the paucity of research on predicting DGF fol-
lowing pediatric KT, this study aims to develop a predic-
tive model for DGF risk in pediatric kidney transplant 
recipients by integrating clinical characteristics and diag-
nostic indicators of both donors and recipients with mul-
tiple ML algorithms. Analyzing the associations between 
DGF occurrence and various factors, including donor 
and recipient age, primary disease, dialysis duration, cold 
ischemia time (CIT), preoperative immunosuppressive 
regimen, human leukocyte antigen (HLA) typing and 
compatibility, and retransplantation, as well as compre-
hensively evaluating DGF risk in pediatric patients, can 
further enhance the accuracy of DGF risk prediction. 
This approach offers novel insights into the early detec-
tion and prevention of DGF following pediatric KT, ulti-
mately leading to improved prognosis and quality of life 
for pediatric patients. This study is anticipated to pro-
vide a crucial theoretical basis and practical guidance for 
advancing the field of pediatric KT.

Methods
Study population and data collection
This study employed a retrospective cohort study 
design and collected clinical data of all recipients 
and their corresponding donors who underwent sin-
gle-donor KT in the Department of Kidney Trans-
plantation at Zhujiang Hospital, Southern Medical 
University, from January 2016 to December 2023. The 
study was approved by the hospital’s ethics commit-
tee, and written informed consent was obtained from 
all participants. Inclusion criteria were as follows: (1) 
first-time kidney transplant recipients; (2) recipients 

of single-donor KT; (3) recipients aged 18  years or 
younger at the time of surgery; (4) complete preopera-
tive and postoperative follow-up data; and (5) grafts 
obtained from deceased donors (DD). Exclusion crite-
ria included (1) recipients of multi-organ transplanta-
tion; (2) incomplete preoperative and postoperative 
follow-up data; and (3) death within one year after 
surgery. From an initial cohort of 153 pediatric kidney 
transplant recipients, we excluded (1) 3 patients with a 
history of kidney transplantation; (2) 10 patients with 
incomplete follow-up data. In this study, a total of 140 
kidney transplant recipients were ultimately included, 
of which 78 (55.7%) were male and 62 (44.3%) were 
female. Among the donors, 87 (62.1%) were male and 
53 (37.9%) were female. We retrospectively collected 
(1) recipient characteristics: high-density lipoprotein 
cholesterol (HDLC), low-density lipoprotein choles-
terol (LDLC), P, total cholesterol, triglyceride (TG), 
HLA-A mismatch, HLA-B mismatch, HLA-DRB1 mis-
match, HLA-ABDR mismatch, direct bilirubin, albumin 
(Alb), aspartate transaminase (AST), alanine transami-
nase (ALT), total bilirubin, alkaline phosphatase (ALP), 
dialysis before KT, peritoneal dialysis Before KT, hemo-
dialysis before KT, kidney transplant recipients (KTR) 
age, KTR height, KTR weight, KTR BMI, KTR gen-
der, panel-reactive antibody (PRA), white blood cell 
(WBC), neutrophil, lymphocyte, platelet, K, Scr, blood 
urea nitrogen (BUN), Total  CO2, glucose (Glu), and 
DGF; (2) Donor characteristics: donor after circulatory 
death (DCD), donor gender, donor age, donor height, 
donor weight, donor creatinine; warm ischemia time 
(WIT) in minutes and CIT in hours; (3) Donor-recip-
ient matching characteristics: age gap between donor 
and recipients, absolute age gap between donor and 
recipients, gender match. We gathered various clinical 
indicators, including the recipient’s HDLC. It should 
be noted that while HDLC is not routinely measured 
in pediatric recipients at many transplant centers, it 
was incorporated into our center’s comprehensive pre-
transplant evaluation protocol. In our study, donor 
creatinine refers to the final serum creatinine meas-
urement obtained prior to organ procurement. It is 
crucial to emphasize that these kidneys did not have 
known suboptimal function or chronic kidney disease. 
Instead, the elevated creatinine levels observed in some 
cases were likely attributable to acute kidney injury 
associated with critical illness or the dying process in 
deceased donors. All kidneys were considered suitable 
for pediatric transplantation based on a comprehen-
sive evaluation, including kidney biopsy when clinically 
indicated. All kidneys were stored by static cold stor-
age alone. DGF was defined as requiring at least one 
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dialysis treatment within one week after kidney trans-
plant surgery [28, 29].

Correlation analysis of clinical characteristics with DGF
First, normality tests were performed on all continuous 
variables, revealing that the data followed a non-normal 
distribution (P < 0.05). Non-normally distributed data 
were presented as median (interquartile range), and 
comparisons between groups were conducted using 
the Mann–Whitney U test. Categorical variables were 
presented as number (percentage), and comparisons 
between groups were conducted using the chi-square 
test or Fisher’s exact test. Subsequently, univariate LR 
analysis was employed to investigate the associations 
between various clinical indicators of kidney transplant 
recipients and donors and the incidence of DGF. Varia-
bles with P < 0.05 in the univariate LR analysis and differ-
ential analysis were included in the subsequent analysis. 
The results demonstrated that HDLC, DCD, WIT, CIT, 
gender match, and donor creatinine were risk factors for 
DGF (all P < 0.05) and were utilized for the development 
of subsequent predictive models.

Construction of a DGF‑Risk Score (DGF‑RS) predictive 
model using ML algorithms
Based on the results of the multivariate analysis, we 
selected six indicators: HDLC, DCD, WIT, CIT, gender 
match, and donor creatinine as independent variables, 
with the occurrence of DGF as the dependent variable 
(1 = yes, 0 = no). We then constructed DGF predictive 
models based on classical ML algorithms, including LR, 
linear discriminant analysis (LDA), K-nearest neighbor 
(KNN), DT, random forest (RF), XGBoost, support vec-
tor machine (SVM), gradient boosting machine (GBM), 
and naive Bayes [27]. Additionally, we explored several 
regularized regression methods, such as Lasso regres-
sion, Ridge regression, and ElasticNet, to address poten-
tial overfitting issues. Considering the limited sample 
size, we randomly partitioned the dataset into a training 
set and a validation set using a 7:3 ratio. In our RF model, 
we optimized the mtry parameter, which represents the 
number of variables randomly sampled as candidates at 
each split. This optimization helped improve the model’s 
predictive performance. To identify the best-perform-
ing model for subsequent analysis, we compared vari-
ous evaluation metrics, including area under the curve 
(AUC), specificity, sensitivity, accuracy, precision, recall, 
and F1 score, across all constructed models.

Statistical analysis
We employed the receiver operating characteristic 
(ROC) curve to assess the predictive capability of the 
model for DGF and computed the AUC along with its 

95% confidence interval (CI) [30]. The optimal diagnostic 
cutoff point was ascertained by maximizing the Youden 
index, and the corresponding sensitivity and specific-
ity were derived. Furthermore, decision curve analysis 
(DCA) was employed to assess the clinical utility of the 
predictive model, specifically the net benefit under the 
guidance of the predictive model at various threshold 
probabilities [31]. The statistical analyses and graphical 
plotting pertaining to this study were conducted in the 
R software environment (Version: 4.1). The visualization 
in this study was carried out utilizing the ggplot2 pack-
age [32, 33]. All hypothesis tests were two-sided, and a 
P-value less than 0.05 was deemed statistically significant.

Results
Basic clinical characteristics of pediatric kidney transplant 
recipients and donors
This study included a total of 140 pediatric patients 
who underwent KT. The patients were divided into two 
groups: the DGF group (37 cases) and the non-DGF 
group (103 cases), based on the occurrence of DGF 
after surgery. The kidney transplant recipients were fol-
lowed up until December 31, 2023, with a median fol-
low-up duration of 21.80  months (interquartile range 
[IQR] 10.09–31.90 months). The demographic and clini-
cal characteristics of the donor and recipients are sum-
marized in Tables 1, 2, and 3. No significant differences 
were observed between the two groups in terms of donor 
and recipient age, height, and weight. The distribution of 
pre-transplantation dialysis modality (peritoneal dialysis 
or hemodialysis) was similar between the two groups. 
However, the CIT was significantly longer in the DGF 
group compared to the non-DGF group, with median 
CITs of 10 and 6 h, respectively (P < 0.001). Furthermore, 
donors in the DGF group had significantly higher Scr lev-
els compared to those in the non-DGF group (P < 0.001), 
suggesting worse renal function. Furthermore, a signifi-
cantly higher proportion of donor kidneys in the DGF 
group (29.7%) were from DCD donors compared to the 
non-DGF group (4.9%) (P < 0.001). Regarding laboratory 
indicators, the preoperative HDLC level was significantly 
lower in the DGF group compared to the non-DGF 
group (P < 0.001). However, no significant differences 
were observed in other blood lipid indicators, including 
total cholesterol, LDLC, and TGs. Similarly, other indica-
tors, including blood routine, liver function, and kidney 
function, showed no statistically significant differences 
between the two groups. Moreover, immunological indi-
cators, such as HLA mismatch degree and PRA positive 
rate, were comparable between the two patient groups. In 
conclusion, the pediatric kidney transplant patients in the 
DGF and non-DGF groups included in this study were 
well-matched in terms of baseline characteristics, such as 



Page 5 of 13Liu et al. BMC Medicine          (2024) 22:407  

age and dialysis modality. However, the DGF group had 
a higher proportion of transplanted kidneys from DCD 
donors, longer CIT, and poorer donor kidney function, 
which may contribute to the development of DGF in the 
transplanted kidney. Additionally, the decreased preoper-
ative HDLC level observed in patients of the DGF group 
warrants further investigation to determine its clinical 
significance.

Screening and performance comparison of DGF Risk 
Stratification Models
In this study, we developed a model (DGF-RS) to pre-
dict the risk of DGF in pediatric kidney transplant 
recipients post-transplantation. As illustrated in Fig. 1, 
the process of constructing DGF-RS involves several 
steps, including data collection, data preprocessing, 
feature selection, ML model training, and validation. 
We initially performed univariate LR analysis on the 
clinical data of pediatric kidney transplant recipients 
and donors in the training set, which consisted of 70% 
of the total sample size. The results demonstrated that 
HDLC, DCD, WIT, CIT, gender match, and donor cre-
atinine were significantly associated with the occur-
rence of post-transplantation DGF (P < 0.05, Fig.  2A). 
Additional differential analysis further confirmed sig-
nificant differences between the DGF and non-DGF 
groups in the aforementioned indicators (P < 0.05, 
Fig. 2B). Based on these findings, we incorporated the 
six identified variables into the subsequent ML model 
training to develop a reliable DGF prediction tool. The 
novelty of this study lies in identifying specific risk fac-
tors that influence the occurrence of DGF in the pedi-
atric kidney transplant population, thereby providing 
new insights for clinical practice.

Evaluation of the predictive performance of the DGF‑RS 
model
To identify the optimal ML model for predicting DGF, 
we compared 97 different model combinations using the 
training and validation datasets. Figure 3A illustrates the 
top 10 models ranked by their predictive performance. 
The results demonstrated that the RF model consistently 
exhibited superior performance under various param-
eter settings. When the mtry parameter was set to 5 and 
75% of the features were retained, the average area under 
the AUC value on the training and validation datasets 
reached 0.951, ranking first among all models (Fig.  3B). 
Furthermore, we assessed several other widely used 
binary classification metrics, including Recall, F1-score, 
Precision, and Accuracy. Our findings revealed that the 
RF model (with mtry = 5 and 75% of features retained) 
significantly outperformed other models on these met-
rics (Fig.  3C–E; Additional file  1: Fig. S1-4), validating 
its predictive capability for DGF. In contrast, despite the 
XGBoost model being proven to yield favorable classifi-
cation results in certain studies, its performance on the 
dataset in the present study was not noteworthy. In sum-
mary, through extensive model comparisons, this study 
identified the optimal ML model for predicting the risk 
of DGF occurrence in pediatric kidney transplant recipi-
ents, which bears considerable significance in guiding 
clinical decision-making and improving prognosis.

Evaluation of the predictive performance of the DGF‑RS 
Model
To comprehensively evaluate the predictive performance 
of the DGF-RS developed based on the RF (mtry = 5, 
75%p) model, we plotted the ROC curve and calcu-
lated the AUC. The results showed that in the entire 
study cohort, the AUC of DGF-RS was 0.983 (95% CI 

Table 1 Donor characteristics stratified by delayed graft function (DGF)

Abbreviations: DGF Delayed graft function, DCD Donor after circulatory death, WIT warm ischemia time, CIT Cold ischemia time

Level Overall DGF (No) DGF (Yes) P‑value

Patient number 140 103 37

Donor age (median [IQR]) 8.50 [4.00, 13.00] 8.00 [4.00, 12.50] 9.00 [5.00, 14.00] 0.391

Donor height (median [IQR]) 130.00 [107.00, 155.50] 128.00 [107.00, 158.00] 140.00 [110.00, 155.00] 0.857

Donor weight (median [IQR]) 26.00 [16.00, 44.25] 25.00 [16.00, 43.50] 35.00 [17.00, 48.00] 0.638

Donor creatinine (median [IQR]) 65.30 [30.50, 110.25] 54.30 [27.05, 88.55] 111.10 [68.00, 135.10]  < 0.001

Donor DCD (%) No 124 (88.6) 98 (95.1) 26 (70.3)  < 0.001

Yes 16 (11.4) 5 ( 4.9) 11 (29.7)

Donor gender (%) Female 53 (37.9) 39 (37.9) 14 (37.8) 1.000

Male 87 (62.1) 64 (62.1) 23 (62.2)

WIT/min (median [IQR]) 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 15.00]  < 0.001

CIT/h (median [IQR]) 6.00 [4.00, 9.25] 6.00 [4.00, 8.00] 10.00 [6.00, 14.00]  < 0.001
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0.959–1.000), indicating its excellent discriminative abil-
ity for DGF (Fig. 4A). Further analysis revealed that the 
risk score performed equally well in the training and 
validation sets, with AUC values of 1.000 (95% CI 1.000–
1.000) and 0.905 (95% CI 0.781–1.000), respectively. 
Additionally, we compared the predictive performance 

of DGF-RS with individual clinical indicators such as 
HDLC, DCD, WIT, CIT, gender match, and donor cre-
atinine. In both the training and validation sets, the pre-
dictive ability of DGF-RS was significantly superior to 
these single indicators (Additional file  1: Fig. S5), dem-
onstrating the advantage of a combined multi-indicator 

Table 2 Recipient characteristics stratified by delayed graft function (DGF)

Abbreviations: DGF Delayed graft function, HDLC High-density lipoprotein cholesterol, IQR Interquartile range, LDLC Low-density lipoprotein cholesterol, TG 
Triglyceride, HLA Human leukocyte antigen, Alb Albumin, AST Aspartate transaminase, ALT Alanine transaminase, ALP Alkaline phosphatase, KTR Kidney transplant 
recipients, WBC White blood cell, Scr Serum creatinine, BUN Blood urea nitrogen, Glu Glucose, KT Kidney transplantation, DCD Donor after circulatory death, PRA Panel-
reactive antibody

Level Overall DGF (No) DGF (Yes) P‑value

Patient number 140 103 37

HDLC (median [IQR]) 1.32 [1.06, 1.32] 1.32 [1.28, 1.36] 1.06 [1.00, 1.15]  < 0.001

LDLC (median [IQR]) 2.32 [2.14, 2.50] 2.32 [2.14, 2.49] 2.29 [2.15, 2.49] 0.211

P (median [IQR]) 2.01 [1.76, 2.19] 2.01 [1.79, 2.20] 2.04 [1.74, 2.17] 0.437

Total cholesterol (median [IQR]) 4.34 [3.67, 5.00] 4.34 [3.63, 5.13] 4.23 [3.78, 4.91] 0.768

TG (median [IQR]) 1.52 [1.08, 1.94] 1.52 [1.10, 1.85] 1.69 [1.03, 2.37] 0.215

HLA-A mismatch (median [IQR]) 1.00 [1.00, 2.00] 1.00 [0.00, 2.00] 1.00 [1.00, 2.00] 0.427

HLA-B mismatch (median [IQR]) 2.00 [1.00, 2.00] 2.00 [1.00, 2.00] 2.00 [1.00, 2.00] 0.429

HLA-DRB1 mismatch (median [IQR]) 1.00 [1.00, 2.00] 1.00 [1.00, 2.00] 1.00 [1.00, 2.00] 0.288

HLA-ABDR mismatch (median [IQR]) 4.00 [3.00, 5.00] 4.00 [3.00, 5.00] 4.00 [3.00, 5.00] 0.884

Direct bilirubin (median [IQR]) 3.10 [2.40, 3.92] 3.20 [2.40, 3.95] 2.90 [2.50, 3.80] 0.471

Alb (median [IQR]) 41.25 [36.90, 45.92] 40.90 [36.90, 45.55] 41.85 [37.40, 46.00] 0.6

AST (median [IQR]) 17.50 [13.00, 25.00] 18.00 [13.00, 26.00] 16.00 [14.00, 20.00] 0.442

ALT (median [IQR]) 10.00 [7.00, 17.00] 10.00 [7.00, 18.50] 11.50 [8.00, 16.00] 0.617

Total Bilirubin (median [IQR]) 7.35 [5.40, 10.70] 7.10 [5.35, 10.70] 8.25 [5.90, 10.60] 0.537

ALP (median [IQR]) 187.00 [116.50, 288.00] 186.50 [109.50, 278.50] 202.00 [122.00, 291.00] 0.686

KTR age (median [IQR]) 13.00 [9.00, 15.00] 12.00 [9.00, 15.00] 13.00 [10.00, 16.00] 0.113

KTR height (median [IQR]) 145.00 [125.50, 160.25] 145.00 [123.00, 159.00] 150.00 [137.00, 163.00] 0.082

KTR weight (median [IQR]) 35.25 [23.50, 45.23] 33.30 [21.85, 44.25] 37.70 [27.00, 50.00] 0.054

KTR BMI (median [IQR]) 16.05 [14.70, 18.14] 15.80 [14.70, 17.85] 16.30 [14.95, 18.70] 0.392

WBC (median [IQR]) 6.16 [4.90, 7.15] 6.16 [4.73, 7.07] 6.16 [5.51, 7.28] 0.501

Neutrophil (median [IQR]) 3.42 [2.56, 4.38] 3.29 [2.50, 4.40] 3.50 [2.99, 4.35] 0.303

Lymphocyte (median [IQR]) 1.79 [1.44, 2.33] 1.76 [1.33, 2.31] 1.88 [1.51, 2.33] 0.437

Platelet (median [IQR]) 219.50 [175.75, 276.00] 225.00 [178.50, 282.00] 202.00 [175.00, 252.00] 0.239

K (median [IQR]) 4.42 [3.85, 4.91] 4.40 [3.78, 4.88] 4.67 [3.96, 4.99] 0.378

Scr (median [IQR]) 816.00 [649.00, 990.25] 840.00 [640.50, 968.00] 778.00 [656.00, 1048.00] 0.671

BUN (median [IQR]) 24.17 [17.32, 30.29] 24.49 [17.72, 30.55] 22.83 [16.98, 28.49] 0.653

Total  CO2 (median [IQR]) 22.20 [20.30, 24.63] 22.20 [20.25, 25.15] 22.20 [20.60, 24.00] 0.889

Glu (median [IQR]) 5.00 [4.52, 5.41] 5.01 [4.54, 5.44] 4.96 [4.51, 5.36] 0.821

Dialysis BeforeKT (%) No 11 (7.9) 8 ( 7.8) 3 ( 8.1) 1.000

Yes 129 (92.1) 95 (92.2) 34 (91.9)

Peritoneal dialysis BeforeKT (%) No 68 (48.6) 50 (48.5) 18 (48.6) 1.000

Yes 72 (51.4) 53 (51.5) 19 (51.4)

Hemodialysis BeforeKT (%) No 82 (58.6) 60 (58.3) 22 (59.5) 1.000

Yes 58 (41.4) 43 (41.7) 15 (40.5)

KTR Gender (%) Female 62 (44.3) 45 (43.7) 17 (45.9) 0.965

Male 78 (55.7) 58 (56.3) 20 (54.1)

PRA (%) Negative 133 (95.0) 97 (94.2) 36 (97.3) 0.758

Positive 7 ( 5.0) 6 ( 5.8) 1 ( 2.7)
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assessment. The DCA intuitively displayed the net ben-
efit obtained by applying DGF-RS for clinical decision-
making at different thresholds (Fig.  4B, C), providing 

strong evidence for the utility of this model in practical 
applications. In summary, this study developed and vali-
dated a ML-based DGF risk assessment tool for pediatric 

Table 3 Donor-recipient matching characteristics stratified by delayed graft function (DGF)

Abbreviations: DGF Delayed graft function

Level Overall DGF (No) DGF (Yes) P‑value

Patient number 140 103 37

Age gap between donor 
and recipients (median [IQR])

 − 4.00 [− 8.00, 1.00]  − 5.00 [− 8.50, 2.00]  − 3.00 [− 7.00, 0.00] 0.883

Absolute age gap 
between donor and recipients 
(median [IQR])

5.00 [3.00, 8.00] 5.00 [3.00, 9.00] 4.00 [2.00, 7.00] 0.122

Gender match (%) No 67 (47.9) 44 (42.7) 23 (62.2) 0.066

Yes 73 (52.1) 59 (57.3) 14 (37.8)

Fig. 1 Schematic overview of the development and validation of the DGF-RS model for predicting DGF in pediatric kidney transplant recipients. 
The process involves data collection, preprocessing, feature selection using univariate LR and comparative analysis, and training and evaluation 
of various machine learning models. The best-performing model, a RF with an mtry value of 5 and 75% of features retained, was selected as the final 
DGF-RS model. Abbreviations: DGF, delayed graft function; DGF-RS, DGF-Risk Score; HDLC, high-density lipoprotein cholesterol; DCD, donor 
after circulatory death; WIT, warm ischemia time; CIT, cold ischemia time
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kidney transplant recipients, demonstrating its excellent 
predictive performance and potential clinical utility in 
this patient population.

Discussion
KT is a critical treatment option for children 
(aged < 18  years) with ESRD. DGF is a prevalent com-
plication following KT, with its occurrence being 
strongly associated with graft and patient outcomes. 

Consequently, accurate prediction of DGF occurrence is 
crucial for prompt intervention and improved prognosis. 
In this study, we concentrated on the field of pediatric KT 
and developed a risk scoring model (DGF-RS) for pre-
dicting DGF occurrence utilizing clinical characteristics 
and detection indicators of kidney transplant donors and 
recipients, in conjunction with multiple ML algorithms. 
By comparing the predictive performance of different 
ML models, we discovered that the RF model (mtry = 5, 

Fig. 2 Identification of key features associated with DGF in pediatric KT. A Forest plot depicting the odds ratios and 95% CIs of variables significantly 
associated with DGF in univariate LR analysis (P < 0.05). B Comparative analysis of the distribution of these significant features between the DGF 
and non-DGF groups, revealing notable differences (P < 0.05). Abbreviations: DGF, delayed graft function; KT, kidney transplantation; LR, logistic 
regression; HDLC, high-density lipoprotein cholesterol; DCD, donor after circulatory death; WIT, warm ischemia time; CIT, cold ischemia time
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75%p) demonstrated the highest predictive accuracy. 
DGF-RS exhibited remarkably high accuracy and sensi-
tivity in both the training set and validation set (training 
set: AUC = 1; validation set: AUC = 0.905). This result 
indicates that ML models integrating donor and recipi-
ent characteristics can effectively predict the risk of DGF 
occurrence, offering valuable insights for clinical deci-
sion-making. Additionally, our study further validated 
the application potential of ML in the field of pediatric 
KT. Compared to traditional statistical methods, ML 
possesses the ability to uncover intricate patterns in data 
and enhance the accuracy of predictions. We anticipate 
that this study will foster the further application of ML 
in pediatric KT, ultimately benefiting a greater number of 
children afflicted with the disease.

During the development of the DGF-RS, we identified 
several features that significantly influence the occur-
rence of DGF, including HDLC, DCD, WIT, CIT, gender 
match, and donor creatinine levels [34]. These findings 

are consistent with previous research. Studies have dem-
onstrated that DCD and prolonged CIT are risk factors 
for DGF [4, 35]. Similarly, prolonged WIT has been asso-
ciated with an increased incidence of DGF [4]. Further-
more, gender mismatch between the donor and recipient 
may elicit an immune response, thereby increasing the 
risk of DGF [14, 36]. Donor renal dysfunction, as indi-
cated by elevated creatinine levels, has also been associ-
ated with recipient DGF [34]. However, the relationship 
between HDLC and DGF has not been systematically 
investigated. Considering the anti-inflammatory and 
endothelial function-improving effects of HDLC [37], we 
hypothesize that it may influence the occurrence of DGF 
by regulating the inflammatory response of the graft. 
Further research is needed to elucidate the role of HDLC 
in the mechanism of DGF occurrence. In summary, our 
DGF prediction model integrates demographic, clinical, 
and biochemical indicators of both donors and recipi-
ents, thereby reflecting the risk of DGF occurrence from 

Fig. 3 Comprehensive evaluation and comparison of machine learning models for the prediction of DGF. A The top 10 best-performing models 
ranked by their average area under the AUC values on the training and validation sets. B Detailed AUC values of the top 10 models, with the RF 
model (mtry = 5, 75%p) achieving the highest average AUC of 0.951. C–E Comparison of other commonly used binary classification metrics, 
including recall, F1-score, precision, and accuracy, among the top models, confirming the superior performance of the RF (mtry = 5, 75%p) model. 
Abbreviations: DGF, delayed graft function; AUC, area under the curve; RF, random forest
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multiple dimensions and providing significant clinical 
utility.

Long-term graft survival and function are also cru-
cial indicators for evaluating prognosis. Future studies 
should further explore the association between delayed 

graft function (DGF) and long-term graft survival, and 
develop a comprehensive predictive model integrating 
DGF and long-term prognosis to provide a foundation 
for personalized diagnostic and treatment strategies. We 
acknowledge that our single-center retrospective study 
primarily focused on the incidence of DGF in pediat-
ric kidney transplant recipients without incorporating 
short-term risk indicators such as incomplete renal func-
tion recovery (defined as achieving less than 50% of the 
donor’s estimated glomerular filtration rate [eGFR]) and 
recipient’s 90-day eGFR below 30 [38]. In light of Sandal 
et  al.’s findings that DGF does not invariably correlate 
with poor long-term graft outcomes [38], we acknowl-
edge the need for further investigation into the relation-
ship between DGF and long-term prognosis through 
systematic collection of renal function data at 100  days 
and 1  year post-transplantation. In future prospective 
studies, we aim to collect comprehensive data from a 
larger cohort of pediatric kidney transplant recipients, 
including short-term risk indicators and renal function 
assessments at 100 days and 1 year post-transplantation. 
This approach will facilitate a more robust investigation 
into the association between DGF incidence and long-
term outcomes in pediatric kidney transplant recipients, 
potentially yielding insights for improved post-transplant 
management strategies. We believe our study contributes 
valuable insights to the field of pediatric kidney trans-
plantation. Our innovative approach leverages artificial 
intelligence to integrate multiple potential biomarkers 
with machine learning algorithms, constructing a risk 
score for predicting DGF. Although DGF has limitations 
as a predictor, it remains a crucial short-term measure 
for determining graft prognosis, guiding organ utiliza-
tion decisions, and serving as a primary endpoint in clini-
cal trials [39, 40]. Given the paucity of research on DGF 
prediction in pediatric kidney transplantation, our study 
aims to address this gap by developing a predictive model 
based on clinical characteristics and diagnostic indicators 
of both donors and recipients, incorporating multiple 
machine learning algorithms. The DGF-RS model devel-
oped in this study offers several potential clinical applica-
tions. Firstly, it can assist clinicians in identifying patients 
at high risk for DGF prior to transplantation, enabling 
the implementation of personalized management strate-
gies and more intensive post-operative monitoring. Sec-
ondly, the model can inform decision-making in organ 
allocation, potentially prioritizing kidneys with lower 
DGF risk for pediatric recipients. Thirdly, it can serve as 
a valuable tool for patient and family counseling, provid-
ing more accurate risk assessments and facilitating the 
establishment of realistic expectations. Finally, the mod-
el’s insights into risk factors can guide future research 
directions and inform the development of targeted 

Fig. 4 Comprehensive assessment of the predictive performance 
of the delayed graft function risk score (DGF-RS) model based 
on the RF (mtry = 5, 75%p) algorithm. A ROC curves and AUC values 
of the DGF-RS in the entire cohort, training set, and validation set, 
demonstrating excellent discriminative ability (AUC: 0.983, 1.000, 
and 0.905, respectively). B,C DCA illustrating the net benefit of using 
the DGF-RS for clinical decision-making at different threshold 
probabilities, providing strong evidence of its potential clinical 
utility. Abbreviations: RF, random forest; ROC, receiver operating 
characteristic; AUC, area under the curve; DCA, decision curve analysis
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interventions aimed at reducing DGF incidence in pedi-
atric kidney transplantation.

Despite the favorable outcomes of our study, several 
issues remain that urgently need to be addressed. First, 
the relatively small sample size of this study may limit the 
generalization performance of the model to some extent. 
Future studies should aim to expand the sample size and 
incorporate multicenter data to further validate and opti-
mize our predictive model. Second, our model primarily 
relies on pre-transplantation donor and recipient char-
acteristics, while factors related to the transplantation 
surgery itself (e.g., operation time, blood loss) may also 
influence the occurrence of DGF [15]. Integrating mul-
tidimensional data from pre- and post-transplantation 
to construct a dynamic predictive model may further 
enhance the accuracy of prediction. Third, the model did 
not incorporate several emerging predictive biomark-
ers, including peripheral vascular disease and chronic 
obstructive pulmonary disease for recipients, as well as 
diabetes history, hypertension history, smoking history, 
and HCV status for both recipients and donors. Our 
study enhances the current understanding of DGF risk 
prediction in pediatric kidney transplantation, surpassing 
existing risk assessment tools such as the Kidney Donor 
Risk Index (KDRI) and the recently developed Pediatric 
KDRI [41]. Although these indices offer valuable insights, 
our DGF-RS model exhibits superior predictive perfor-
mance in our cohort, demonstrating an AUC of 0.983 
(95% CI 0.959–1.000) compared to the highest reported 
AUC of 0.6273 for the Pediatric KDRI. It is crucial to 
acknowledge, however, that our model incorporates sev-
eral distinct variables compared to the Pediatric KDRI, 
which may contribute to its enhanced predictive capa-
bility. Future investigations should aim to integrate the 
comprehensive set of variables utilized in the Pediatric 
KDRI to further refine and validate our DGF-RS model 
across diverse pediatric populations. Forth, although 
our model incorporates factors (such as CIT and WIT), 
it maintains significant value. It can be utilized immedi-
ately post-transplant to identify high-risk patients who 
may benefit from more intensive monitoring and thera-
peutic interventions. Moreover, the model can be modi-
fied for pre-transplant risk assessment by incorporating 
estimated values for post-transplant factors, facilitating 
improved preparation and resource allocation. While our 
study found a significant difference in CIT between DGF 
and non-DGF groups, we recognize the practical chal-
lenges in substantially reducing CIT given the realities of 
resource constraints, surgeon availability, and personnel 
logistics. The clinical application of this finding should be 
interpreted with caution. Our study incorporated HDLC 
as a predictor, a parameter which is not routinely meas-
ured in pediatric recipients at many transplant centers. 

Although this may limit the immediate generalizability of 
our model, it simultaneously highlights a potential area 
for further investigation in pediatric kidney transplanta-
tion. Despite these limitations, this study provides sig-
nificant innovation and academic value by offering novel 
insights and methods for predicting DGF risk in pediatric 
kidney transplant recipients.

Conclusions
This study validated the significant value of various ML 
methods in predicting DGF, with the RF (mtry = 5, 75%p) 
model exhibiting the highest accuracy and sensitivity. We 
identified several important predictive factors, including 
HDLC, DCD, WIT, CIT, gender match, and donor creati-
nine. These findings provide new insights into the patho-
genesis of DGF in pediatric kidney transplant recipients. 
Future studies should aim to expand the sample size, 
integrate multi-omics data, improve model interpret-
ability, and explore strategies for clinical translation. In 
conclusion, we propose that ML-based DGF prediction 
models have the potential to facilitate clinical practice in 
pediatric KT, optimize patient management, and improve 
transplantation outcomes.
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