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Abstract 

Background Long COVID, also known as post‑acute sequelae of COVID‑19 (PASC), is a poorly understood condition 
with symptoms across a range of biological domains that often have debilitating consequences. Some have recently 
suggested that lingering SARS‑CoV‑2 virus particles in the gut may impede serotonin production and that low 
serotonin may drive many Long COVID symptoms across a range of biological systems. Therefore, selective seroto‑
nin reuptake inhibitors (SSRIs), which increase synaptic serotonin availability, may be used to prevent or treat Long 
COVID. SSRIs are commonly prescribed for depression, therefore restricting a study sample to only include patients 
with depression can reduce the concern of confounding by indication.

Methods In an observational sample of electronic health records from patients in the National COVID Cohort Col‑
laborative (N3C) with a COVID‑19 diagnosis between September 1, 2021, and December 1, 2022, and a comorbid 
depressive disorder, the leading indication for SSRI use, we evaluated the relationship between SSRI use during acute 
COVID‑19 and subsequent 12‑month risk of Long COVID (defined by ICD‑10 code U09.9). We defined SSRI use 
as a prescription for SSRI medication beginning at least 30 days before acute COVID‑19 and not ending before SARS‑
CoV‑2 infection. To minimize bias, we estimated relationships using nonparametric targeted maximum likelihood 
estimation to aggressively adjust for high‑dimensional covariates.

Results We analyzed a sample (n = 302,626) of patients with a diagnosis of a depressive condition before COVID‑19 
diagnosis, where 100,803 (33%) were using an SSRI. We found that SSRI users had a significantly lower risk of Long 
COVID compared to nonusers (adjusted causal relative risk 0.92, 95% CI (0.86, 0.99)) and we found a similar relation‑
ship comparing new SSRI users (first SSRI prescription 1 to 4 months before acute COVID‑19 with no prior history 
of SSRI use) to nonusers (adjusted causal relative risk 0.89, 95% CI (0.80, 0.98)).

Conclusions These findings suggest that SSRI use during acute COVID‑19 may be protective against Long COVID, 
supporting the hypothesis that serotonin may be a key mechanistic biomarker of Long COVID.
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Background
SARS-CoV-2 infection can have debilitating long-term 
consequences. Long COVID, also known as post-acute 
sequelae of COVID-19 (PASC), includes symptoms  
across a range of biological systems that can occur  
following SARS-CoV-2 infection. Millions of adults in  
the United States may be experiencing Long COVID, 
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the majority of whom only experienced mild to moder-
ate COVID-19 [1, 2]. Even though more than 10% of 
COVID-19 patients develop Long COVID, we have few 
insights regarding options for treatment and preven-
tion [3]. Insights regarding treatments that may prevent 
Long COVID are crucial to preventing this condition and 
understanding its etiology.

Investigators have hypothesized several biological 
mechanisms that drive Long COVID and lead to clusters 
of symptoms. These explanations include [1] persistent 
COVID-19 viral load, [2] chronic hyperinflammation, [3] 
platelet and coagulation issues, and [4] central nervous 
system dysfunction [4, 5]. Previous studies have clustered 
these symptoms and speculated that these pathways may 
be distinct disorders caused by different components of 
acute COVID-19 [6]. On the other hand, recent investi-
gations have highlighted reduced serotonin as a driver of 
all four of these symptom clusters [4]. A metabolomics 
investigation found that persistent COVID-19 viral load 
led to sustained interferon response, decreased trypto-
phan (a serotonin precursor) uptake, hypercoagulation, 
and subsequent decrease in serotonin [4]. This peripheral 
serotonin deficiency leads to reduced vagus nerve activ-
ity, which subsequently contributes to decreased hip-
pocampal activity, which can result in memory loss and 
cognitive dysfunction (Fig. 1) [4].

Selective serotonin reuptake inhibitors (SSRIs) are the 
first-line medication class used to treat depression. They 
have high tolerability and are considered safe and effec-
tive [8, 9]. SSRI’s mechanism of action is to prevent sero-
tonin reuptake by inhibiting serotonin transporter at the 

presynaptic axon terminal. The prevention of this reup-
take allows for a greater concentration of serotonin in the 
synaptic cleft that can bind to receptors [8]. Compared 
with other classes of antidepressants, such as tricyclic 
antidepressants or monoamine oxidase inhibitors, SSRIs 
have fewer side effects due to fewer effects on other neu-
rotransmitters and receptors [8]. Given SSRI’s specific 
targeting of serotonin, it is an ideal candidate to evaluate 
the role of serotonin in the development of Long COVID.

Several studies have investigated the relationship 
between SSRI use and acute SARS-CoV-2 infection as 
well as Long COVID. The TOGETHER trial found that 
early treatment with the SSRI fluvoxamine improved 
COVID-19 patient recovery [10]. On the other hand, the 
COVID-OUT trial found that fluvoxamine treatment 
during acute COVID-19 did not reduce the cumulative 
incidence of Long COVID (1.36, 95% CI (0.78–2.34)), 
although this analysis included a relatively small sample 
size (334 patients assigned to fluvoxamine) and may have 
been underpowered [11]. More broadly, previous studies 
have found that SSRI use may reduce the probability of 
hospitalization or mortality due to SARS-CoV-2 infec-
tion [12, 13]. A 2022 study evaluated the relationship 
between SSRI use and the predicted PASC and found that 
SSRI use was associated with 0.75 (95% CI, 0.62, 0.90) 
times the risk of predicted PASC compared to non-use 
[14]. While this observational study provided evidence 
that SSRI use may be protective against Long COVID, 
this study used predicted PASC diagnosis (via XGBoost 
machine learning) as its primary endpoint, rather than 
actual PASC diagnosis. This predicted PASC status did 

Fig. 1 Hypothesized mechanism of the relationship between serotonin and Long COVID [4, 7]
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not directly include SSRI use in its prediction, but it did 
use a myriad of other diagnoses and medications, which 
may be correlated with SSRI use and may have induced 
bias. Furthermore, the study used a general sample of 
SSRI users and nonusers rather than restricting to condi-
tions that may yield SSRI use, leading to the possibility 
of residual confounding by indication, as a recent study 
found that personality and psychiatric disorders were 
associated with Long COVID [15]. In addition, another 
observational study found that patients experiencing 
Long COVID experienced improvement in self-reported 
symptoms following treatment with SSRIs [16].

Several investigators have evaluated the impact of indi-
vidual types of SSRIs on Long COVID. A multi-system 
study of the relationship between serotonin and Long 
COVID hypothesized that fluoxetine may be particularly 
effective in preventing and treating Long COVID, and 
they found that treating mice with fluoxetine improved 
cognitive function and restored tryptophan levels [4]. 
Furthermore, animal models involving fruit flies have 
demonstrated that the specific SSRI types fluoxetine, 
escitalopram, citalopram, and paroxetine may differen-
tially impact serotonin reuptake [17]. A systematic review 
of studies evaluating the use of fluvoxamine for COVID-
19 and Long COVID suggested that baseline use of flu-
voxamine may reduce the risk of Long COVID due to the 
drug’s sigma 1 receptor agonist activity and the role of 
sigma 1 receptor activity in acute SARS-CoV-2 infection 
[18]. Observational analyses of human electronic health 
record (EHR) data did not find a significant difference 
in the relationship between moderate to high-affinity 
sigma 1 receptor agonist SSRIs (fluvoxamine, fluoxetine, 
escitalopram, and citalopram) versus non-high affinity 
SSRIs (sertraline and paroxetine) in their impact on Long 
COVID [14].

The purpose of this study is to evaluate the impact of 
SSRI use during acute COVID-19 on subsequent Long 
COVID risk. This study evaluates a potential pharmaceu-
tical intervention to prevent Long COVID while testing 
a hypothesis regarding a mechanistic pathway of Long 
COVID. Identifying interventions that prevent Long 
COVID is crucial for clinical applications as well as our 
understanding of underlying biological mechanisms. 
Nationally sampled electronic health record (EHR) data-
bases, such as the National COVID Cohort Collabora-
tive (N3C), provide an excellent opportunity to evaluate 
these hypotheses but require analytic methods that can 
aggressively adjust for high-dimensional confounders 
without making bias-inducing parametric assumptions 
[19–24]. While randomized controlled trials may eventu-
ally provide definitive evidence regarding the benefit of 
SSRI use to prevent or treat Long COVID, observational 
analyses, using appropriate methods that are designed 

to leverage the complexity, including missing data, and 
large sample sizes characteristic of EHR real-world data 
(RWD) can provide early insights regarding the relation-
ship between SSRI use and Long COVID. Thus, to evalu-
ate the relationship between SSRI use during COVID-19 
and Long COVID cumulative incidence, we conducted 
an observational analysis of individuals in N3C with an 
acute SARS-CoV-2 infection and comorbid depression 
diagnosis using a machine-learning-based method tar-
geted to reduce bias due to confounding and missing data 
(Targeted Machine Learning) [19, 20, 22–24].

Methods
Study sample, data source, and study design
Our primary study sample included individuals with a 
diagnosis of acute SARS-CoV-2 infection between Sep-
tember 1, 2021 (ensuring that all patients were eligible to 
be diagnosed with PASC during person-time at risk, as 
PASC ICD-10 code U09.9 was released October 1, 2021) 
and December 1, 2022, as well as a comorbid diagnosis 
of a depressive disorder (see concept IDs listed in Addi-
tional file 1: Supplemental Table 1) [25, 26]. This sample 
was drawn from patients in N3C (DUR-80D09B6), which 
includes 22 million patients from 83 healthcare institu-
tions [21]. N3C provides high-dimensional, longitudi-
nal data on these patients, which enables researchers to 
conduct evaluations of a wide range of factors related 
to Long COVID and acute COVID-19 while rigorously 
adjusting for factors related to medical history and soci-
odemographic information.

We constructed a retrospective cohort of patients 
in N3C who were diagnosed with a depressive disor-
der (depression) before their acute SARS-CoV-2 infec-
tion, and we excluded patients with a prior diagnosis of 
bipolar disorder. As SSRI prescription is often indicated 
by depression, we restricted our sample to only include 
those with depression to limit confounding by indica-
tion. We evaluated SSRI use (as a time-invariant, binary 
variable) at the time of acute COVID-19, and we assessed 
patients’ cumulative incidence of Long COVID (PASC) 
between 1 and 12 months (i.e., day 31 to 365) following 
acute SARS-CoV-2 infection, comparing SSRI users to 
nonusers. We included patients from 80 data partners 
(contributors of patient data) in N3C. We found that 23% 
of data partners did not report PASC diagnosis, and 6% 
of data partners did not report SSRI use in this study 
sample.

N3C inclusion criteria for identifying COVID-19 
patients includes either [1] at last one laboratory diag-
nostic positive result (either PCR or antigen) or [2] a 
provider diagnosis (ICD-10-CM U07.1). We used the 
earliest of the two dates as the index date for SARS-
CoV-2 infection [27].
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Key covariates
Exposures
We defined the exposure of interest as a binary variable 
that represents SSRI use (fluoxetine, sertraline, parox-
etine, citalopram, escitalopram, fluvoxamine, and vila-
zodone) during incident COVID-19. We defined SSRI 
users as patients who began using an SSRI at least 30 days 
before COVID-19 and continued through acute COVID-
19 (binary, time-invariant), and we defined all other 
patients as nonusers.

Outcomes
Our outcome of interest was observed PASC diagnosis, 
which was defined by ICD code U09.9, between 1 and 
12 months following acute SARS-CoV-2 infection [28]. 
We included observed PASC (U09.9) diagnosis as our 
outcome of interest, as it provides a standardized metric 
of Long COVID incidence across diagnostic settings. In 
contrast, using the predicted probability of PASC diag-
nosis (e.g., via machine learning methods) may induce 
bias if the predictions are generated using the same 
EHR data as the exposures of interest [14]. We ensured 
that all patients would have 12 months of follow-up by 
restricting to patients who were diagnosed with COVID-
19 between September 1, 2021 (1 month before the 
implementation of ICD code U09.9) [25] and December 
1, 2022, and including PASC diagnosis data within 12 
months of SARS-CoV-2 infection (i.e., up to December 1, 
2023). We will describe PASC (ICD code U09.9) as “Long 
COVID” hereafter.

Subgroups of interest
We created subgroups of individuals with specific SSRI 
drug type exposures for SSRIs with a sufficient sample 
size, which included fluoxetine, sertraline, paroxetine, 
citalopram, and escitalopram. Vilazodone and fluvox-
amine had insufficient sample sizes and, therefore, were 
excluded from subgroup analyses. We constructed sepa-
rate models for each SSRI of interest to assess potential 
effect heterogeneity. Furthermore, we conducted explor-
atory analyses of potential dose–response relationships 
by analyzing subgroups defined by SSRI dosage among 
fluoxetine users, given fluoxetine’s large sample size 
and hypothesized relationship with Long COVID [14]. 
Finally, to evaluate the possibility of residual bias due to 
history of SSRI use, we conducted a subgroup analysis 
comparing new SSRI users (new prescription for an SSRI 
between 1 and 4 months before acute COVID-19 and no 
prior history of SSRI prescription) to SSRI nonusers.

Confounders and other covariates
We extracted extensive medical histories from patients 
in N3C to adjust for a rich history of patient data and 

thus avoid unmeasured confounding. Our set of baseline 
covariates included the following: healthcare utilization 
rate (number of healthcare interactions pre-SARS-CoV-2 
infection and healthcare interactions per month before 
SARS-CoV-2 infection), sex, age at acute SARS-CoV-2 
infection, race/ethnicity, common data model format, 
region of residence, body mass index (BMI), tobacco 
smoking status, obesity, diabetes, chronic lung disease, 
heart failure, hypertension, use of systemic corticoster-
oids, depression severity, anxiety, antipsychotic medica-
tion use, benzodiazepine medication use, whether the 
patient was immunocompromised, and the number of 
COVID-19 vaccination doses before infection [29]. We 
defined a healthcare interaction as a single interaction, 
or cluster of interactions, with a healthcare provider that 
was associated with a given medical condition, diagnosis, 
or procedure. We included county-level socioeconomic 
variables that included the percent of the county with 
an income level below the poverty line and the county’s 
social deprivation index score. We also used methods 
that can minimize bias due to differential monitoring 
among patients, by including an indicator variable for 
whether the patient had a documented healthcare inter-
action between 1 and 12 months following acute SARS-
CoV-2 infection (the outcome observation period). For 
additional covariate information, see Additional file  1: 
Appendix 1.

Negative control outcome
We sought to evaluate a negative control outcome to 
evaluate the possibility of bias. We evaluated bone frac-
ture diagnosis between 1 and 12  months after acute 
COVID-19 diagnosis as a negative control outcome.

Analysis
To accomplish the goals of using nonparametric statis-
tical methods that could adjust for rich, messy patient 
history and monitoring data, we applied a Targeted 
Learning approach, which is well-suited for this context 
of observational analyses of electronic health record data 
[19, 20, 23, 30]. Traditional parametric analyses make 
assumptions regarding model form and relationships 
between covariates, and these assumptions will inevi-
tably be violated in this high-dimensional setting. This 
potential model misspecification would increase bias 
and the probability of type 1 error, particularly given our 
large sample size [19, 20, 23, 30]. On the other hand, Tar-
geted Learning utilizes advances in machine learning and 
causal inference by capitalizing on the extensive data to 
minimize bias introduced by arbitrary modeling assump-
tions, which can result in improper under-adjustment 
of confounders. In addition, Targeted Learning methods 
provide robust statistical inference despite data-adaptive, 
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machine learning methods being used to estimate the 
statistical relationships of interest.

Our goal was to estimate the impact of SSRI use at the 
time of acute COVID-19 on the probability of develop-
ing Long COVID by comparing the predicted distribu-
tion of Long COVID under universal (i.e., all patients 
using SSRIs) versus no use of SSRIs among our target 
population, patients with a depressive disorder, under 
a scenario of universal monitoring of patients between 
1 and 12 months after acute COVID-19. Our analysis 
approach first used Super Learner, an ensemble machine 
learning algorithm, to model Long COVID status given 
individual covariate status (diagnoses, treatment, demo-
graphics, and other history) [31, 32]. Super Learner uses 
cross-validation to determine the optimal weighting of 
candidate algorithms to maximize a parameter of inter-
est. Next, we used targeted maximum likelihood estima-
tion to estimate the causal parameter of interest (the risk 
ratio) comparing Long COVID incidence in the exposed 
versus unexposed population [19, 20, 23, 30]. Targeted 
maximum likelihood estimation allows us to gener-
ate interpretable measures of association, such as a risk 
ratio while reducing bias. In addition, targeted maximum 
likelihood estimation is doubly robust, meaning that it 
guarantees consistent estimation as long as the outcome 
regression or propensity score is estimated consistently 
[19, 20, 23, 30].

As Super Learner guarantees that the ensemble will 
perform at least as well as the best-performing candidate 
learner, given sufficient sample size, we sought to include 
a diverse library of parametric and nonparametric candi-
date algorithms to ensure optimal performance [31, 32]. 
We included the following candidate algorithms: gener-
alized linear models (SL.glm), Bayesian Additive Regres-
sion Trees (tmle.SL.dbarts2), Generalized Linear models 
net (SL.glmnet), XGBoost (SL.xgboost), Caret (SL.caret), 
Caret Recursive Partitioning and Regression Trees (SL.
caret.rpart), K Nearest Neighbors (SL.knn), Neural Net 
(SL.nnet), Random Forest (SL.randomForest), and Recur-
sive Partitioning and Regression Trees (SL.rpart) [31, 32]. 
We also used cross-validated (cross-fitted) targeted max-
imum likelihood estimation (TMLE), which avoids over-
fitting and adds robustness [19, 20, 23, 30].

We applied a W, A, � , �Y  data structure, where W 
referred to our baseline confounders and covariates of 
interest, A referred to our exposure of interest, � referred 
to participant observation during the outcome period 
(months 1–12), and �Y  referred to our observed out-
come. If a participant did not have a healthcare interac-
tion during the outcome window (months 1–12 following 
SARS-CoV-2 infection), which could be due to lack of 
healthcare engagement or patient death before obser-
vation, � would be equal to 0. We defined our causal 

parameter of interest as E(Y (1,1)− Y (0,1)) , where 
Y (a,� = 1) is defined as the counterfactual outcome if 
SSRI status is set to A = a, and the person was monitored 
during the at-risk period ( � = 1 ). We intervened on � to 
ensure that all patients were observed (had at least one 
healthcare visit) during the outcome window (between 
1 and 12 months following SARS-CoV-2 infection). We 
make the assumption that the subset of confounders that 
are observed for each subject was sufficient to adjust 
for confounding; operationally, this was done by adding 
new basis functions for confounders with missing values, 
which were indicators that the variable was observed, 
and imputed values for the missing covariate. This allows 
us to aggressively adjust for confounding and keep obser-
vations with missing covariate information (W) [24, 29].

Sensitivity analyses
In order to evaluate underlying biases in our analysis and 
data, we conducted a nonparametric sensitivity analysis 
[33]. This nonparametric sensitivity analysis allows us 
to compare the theoretical bias that would nullify our 
results to benchmarks, such as the difference between 
our observed adjusted estimate and unadjusted esti-
mate, that could explain the magnitude of our observed 
association. Furthermore, we evaluated the relationship 
between SSRI use during SARS-CoV-2 infection and 
bone fracture between 1 and 12 months following SARS-
CoV-2 infection as a negative control outcome analysis. 
We compared our observed, adjusted result to the [1] 
unadjusted association and [2] the negative control out-
come association.

Results
Descriptive statistics
We analyzed EHR data from a sample of 302,626 
patients who were diagnosed with a depressive dis-
order before COVID-19 diagnosis. Among these 
patients, 100,803 (33%) were using an SSRI at the time 
of SARS-CoV-2 infection and 201,823 (67%) were not 
(Table  1, see Additional file  1: Supplemental Fig.  1). 
We found that SSRI users generally had a greater bur-
den of disease and more markers of poor health than 
SSRI nonusers. Among SSRI users, 17% were mor-
bidly obese compared to 16% of nonusers, 14% had 
experienced heart failure compared to 11% of non-
users, 34% had experienced lung disease compared 
to 31% of nonusers, and 64% used systemic corticos-
teroids compared to 54% of nonusers. We found that 
27% of both groups were smokers. We observed that 
47% of SSRI users were diagnosed with an anxiety-
related condition and 17% were prescribed benzodi-
azepines, while 60% of nonusers were diagnosed with 
an anxiety-related condition and 22% were prescribed 
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benzodiazepines. We also found that 8% of SSRI users 
had severe major depressive disorder, compared with 
6% of non-SSRI users. SSRI users had a healthcare uti-
lization rate of 3.0 healthcare interactions per month, 

while nonusers had 2.3 healthcare interactions per 
month. We found that 30% of SSRI users had at least 
one dose of a COVID-19 vaccination, and 34% of non-
users had at least one vaccination dose.

Table 1 Patient characteristics

Characteristic Value SSRI 
Users Count/
Mean

SSRI 
Users Percentage/
Std Dev

Non SSRI 
Users Count/
Mean

Non SSRI 
Users Percentage/
Std Dev

Total 101016 33.3 202354 66.7

Sex FEMALE 74823 74 142930 70.8

MALE 25799 25.6 58975 29

Other/missing 394 0.4 449 0.2

Age (0.0, 17.0] 3437 3.4 9063 4.5

(17.0, 49.0] 44842 44.4 91366 45.2

(49.0, 70.0] 35076 34.7 70885 35

(70.0, 107.0] 17643 17.5 30884 15.3

Ethnicity White Non‑Hispanic 73703 73 130036 64.3

Black or African American Non‑Hispanic 10860 10.8 27919 13.8

Asian Non‑Hispanic 1704 1.7 5492 2.7

Other Non‑Hispanic/Unknown 1156 1.1 3414 1.7

Hispanic or Latino Any Race 8287 8.2 24721 12.2

Unknown 5306 5.3 10772 5.3

BMI (0.0, 25.0] 14842 14.7 35932 17.8

(25.0, 30.0] 19876 19.7 44054 21.8

(30.0, 35.0] 19123 18.9 38443 19

(35.0, 40.0] 13868 13.7 25611 12.7

(40.0, 100.0] 17569 17.4 31343 15.5

Missing 15738 15.6 26971 13.3

Medical Conditions Systemic Corticosteroid Use 64516 63.9 108821 53.8

Antipsychotic Medication Use 4767 4.7 15761 7.8

Benzodiazepine Use 17201 17 44858 22.2

Lung Disease 34308 34 62640 31

Diabetes 26493 26.2 47131 23.3

Other Immunocompromised 14667 14.5 28194 13.9

Smoking 26746 26.5 54079 26.7

Heart Failure 13712 13.6 21722 10.7

Hypertension 51323 50.8 93227 46.1

Anxiety 47382 46.9 121307 59.9

Depression Severity Mild major depression 11593 11.5 18514 9.1

Severe major depression 8493 8.4 12306 6.1

Unknown 80929 80.1 171532 84.8

Medical Utilization Medical Visits per Month Prior to COVID‑19 3.02 3.53 2.25 2.96

Number of COVID‑19 Vaccinations 0.72 1.18 0.77 1.2

Socioeconomic Factors Percent of County Below Poverty Line 14.9 5.09 15.09 5.04

County Social Deprivation Index 43.43 27.07 49.12 27.39

COVID‑19 factors Number of COVID‑19 Vaccinations 0.72 1.18 0.77 1.2

At lease one dose of vaccine 37989 30.4 129804 34

Covid Associated Hospitalization 27927 22.4 96479 25.3

Long COVID diagnosis 1735 1.7 3337 1.6
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Relationship between SSRI use and long COVID
We found that SSRI users had a lower risk of Long 
COVID (adjusted risk ratio (aRR) 0.922, 95% confi-
dence interval (CI) (0.863, 0.986)) compared to nonus-
ers (Fig. 2). Adjustment for baseline confounders shifted 
the estimate a fair distance from the unadjusted associa-
tion, which failed to detect relationship between SSRI use 
and Long COVID (unadjusted RR 1.042, 95% CI (0.984, 
1.104)) (Table 2).

We evaluated the relationship between individual SSRI 
types and Long COVID (fluoxetine, sertraline, paroxetine, 
escitalopram, and citalopram). In our subgroup analysis, 
comparing the use of each of the five SSRIs to no SSRI 
use, we did not detect an association between the use of 
fluoxetine (aRR 0.897, 95% CI (0.752, 1.071)), sertraline 
(aRR 0.954, 95% CI (0.849, 1.073)), escitalopram (aRR 
0.912, 95% CI (0.804, 1.034)), paroxetine (aRR 0.858, 95% 
CI (0.581, 1.267)), or citalopram (aRR 0.949, 95% CI (0.778, 
1.157)) and the risk of Long COVID, although all point 
estimates indicated a protective (i.e., RR < 1), albeit not sig-
nificant, relationship. We did not find evidence of a dose–
response relationship between fluoxetine dose and risk of 
Long COVID (60 mg vs. 10 mg aRR 1.421, 95% CI (0.656, 
3.080)) (see Additional file 1: Supplemental Table 2).

Sensitivity analyses and confounding
We found that the relationship between SSRI use and 
Long COVID was strongly and qualitatively confounded, 
as the unadjusted estimate indicated a positive (harmful) 
correlation, but the adjusted estimate indicated a nega-
tive (protective) correlation. We observed the change 
in estimate following the backward exclusion of each 
covariate, where we defined “confounder RR” as the 
risk ratio in the fully adjusted model divided by the risk 
ratio of the partially adjusted model (with the covariate 
excluded) (see Additional file  1: Supplemental Table  3). 
We found that the strongest confounders of the rela-
tionship between SSRI use and Long COVID were base-
line systemic corticosteroid use (confounder RR 0.983), 

monitoring during the outcome window (binary indica-
tor of healthcare interactions between 1 and 12 months 
after acute COVID-19) (confounder RR 0.989), health-
care utilization at baseline (confounder RR 0.995), and 
social deprivation index (confounder RR 1.005). We also 
evaluated the impact of excluding two groups of covari-
ates, healthcare utilization (number of healthcare inter-
actions before baseline, healthcare interaction rate before 
baseline, and monitoring during the outcome window) 
and baseline general health and comorbidities general 
health and comorbidities (BMI, chronic lung disease, 
diabetes, obesity, immunocompromised status, smok-
ing, corticosteroid use, hypertension, and COVID-19 
vaccinations). We found that excluding factors related 
to healthcare utilization led to a confounder RR of 0.969 
while excluding factors related to baseline comorbidities 
and health led to a confounder RR of 0.979.

In a subgroup analysis comparing new SSRI users (first 
SSRI prescription 1 to 4  months before acute COVID-
19 with no prior history of SSRI use) to SSRI nonusers, 
we found a protective association similar to the primary 
analysis (aRR 0.886, 95% CI (0.780, 0.985)) (Table 2).

We conducted a nonparametric sensitivity analysis 
to evaluate the potential impact of bias on our results 
(Fig. 3). We found that 0.65 units of bias, where one unit 
corresponds to the difference between our adjusted and 
unadjusted estimate, could lead to a value as extreme as 
our observed estimate, due to random variation alone.

Discussion
We found a protective effect of SSRI use at the time of 
acute SARS-CoV-2 infection on subsequent 12-month 
risk of Long COVID among patients with depression. 
These results are consistent with the hypothesis that 
SSRIs may be an effective intervention to prevent Long 
COVID, which also supports the hypothesis that seroto-
nin may play a role in the development of Long COVID. 
Randomized controlled trials are currently underway 
to evaluate the ability of SSRIs to prevent or treat Long 

Fig. 2 Relationship between SSRI use (overall and by SSRI type) and Long COVID among patients with depression
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COVID (NCT05874037, NCT06128967). With ongo-
ing COVID-19 transmission, the risk of Long COVID 
remains prevalent, and finding interventions to prevent 
Long COVID remains prudent. SSRIs may serve as an 
important tool in preventing this condition and limiting 
the rippling effects of the COVID-19 pandemic.

Our findings regarding the protective effect of SSRI use 
on Long COVID risk are consistent with previous stud-
ies. This observed treatment effect, a risk ratio of 0.922 
(95% CI 0.863, 0.986), is less protective than a previous 
analysis, which found a risk ratio of 0.76 (95% CI 0.62, 
0.90) [14]. The difference in these effects may be attrib-
uted to several potential factors, including the previous 
study’s use of predicted Long COVID status rather than 
observed diagnosis (yielding a prevalence of 15% rather 
than 2%) as well as our restriction to only include patients 
with a diagnosis of a depressive disorder [14]. These con-
siderations may avoid bias and confounding due to indi-
cation, respectively.

The observed unadjusted and adjusted estimates var-
ied. The unadjusted association indicating a non-signif-
icant relationship between SSRI use and Long COVID 
may be explained by strong confounding due to various 
factors and is supported by our finding of imbalance 
and confounding due to healthcare utilization, medica-
tion usage, and socioeconomic factors (see Additional 
file  1: Appendix  2 for details). Our finding that factors 
related to healthcare utilization rate (number of health-
care interactions before baseline and outcome monitor-
ing indicator) were strong confounders of our observed 
relationship highlights the importance of addressing 
differential healthcare utilization rates and other causal 
considerations in observational studies that rely on Long 
COVID diagnosis as an outcome of interest [29]. We 

observed similar estimates in our overall analysis (aRR 
0.92, 95% CI (0.86, 0.99)) and subgroup analysis com-
paring new SSRI users to SSRI nonusers (aRR 0.89, 95% 
CI (0.80, 0.98)). This finding supports that our observed 
associations were minimally biased by patient history of 
SSRI use, although the small difference in observed point 
estimates indicates that our observed association may be 
conservative (i.e., the true protective effect of SSRIs on 
Long COVID may be even stronger).

These findings provide support for the hypothesis that 
low serotonin may be a driver of Long COVID incidence 
and that SSRIs may prevent or treat Long COVID. This 
finding merits further exploration of the hypothesis of 
Wong et  al. regarding Long COVID etiology via hypo-
activity in the serotonin system [4]. This hypothesis 
posits that remnants of the SARS-CoV-2 virus leads to 
sustained release of viral RNA-induced type 1 interfer-
ons, which decreases tryptophan uptake and prevents 
cortisol production. According to this hypothesis, SSRI 
use may interrupt this causal pathway of disease etiol-
ogy [4]. As this hypothesis posits that low serotonin is a 
downstream effect of lingering SARS-CoV-2 virus and 
sustained interferon 1 response, these findings also hint 
at interventions that aim to detect or treat persistent 
viral load of SARS-CoV-2 or viral RNA-induced type 1 
interferon.

These findings indicate the need for several future stud-
ies to further explore these hypotheses. The impact of 
SSRIs on Long COVID risk in other populations, such 
as premenstrual dysphoric disorder or generalized anxi-
ety disorder, may provide additional insights regarding 
the generalizability of these findings. In addition, future 
investigations should evaluate the impact of other ser-
otonergic drugs, such as serotonin-norepinephrine 

Fig. 3 Nonparametric sensitivity analysis depicting the observed, adjusted risk ratio (TMLE + SL) as well as the unadjusted risk ratio (unadjusted) 
and the results of an analysis of a negative control outcome (bone fracture)
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reuptake inhibitors (SNRIs), on Long COVID risk. Finally, 
given the phenotypic overlap between Long COVID and 
other post-infectious chronic somatoform disorders, 
such as chronic Lyme’s disease (patients with both condi-
tions frequently exhibit post-exertional malaise, chronic 
pain, brain fog, etc.), investigators should investigate the 
ability of SSRIs to treat or prevent these related condi-
tions [34–36]. It should be noted that investigators have 
found mixed results regarding long-term effects of SSRIs 
on the serotonin system, with some studies indicating 
that long-term SSRI use may lead to decreased serotonin 
signaling (i.e., a negative feedback loop) [37–41].

We did not find evidence of heterogeneity of the rela-
tionship between SSRI use and Long COVID depending 
on SSRI type, which is consistent with previous findings 
[14]. A previous study did not find a differential impact 
of moderate to high-affinity sigma 1 receptor agonist 
SSRIs (fluvoxamine, fluoxetine, escitalopram, and cit-
alopram) versus non-high affinity SSRIs (sertraline and 
paroxetine) in their relationship with Long COVID [14]. 
We caution readers to consider this finding in the con-
text of a few limitations. Residual confounding due to 
indication, as different depressive symptomatology, 
comorbidities, side effects, and tolerance may lead pro-
viders to prescribe a specific SSRI over another SSRI. For 
instance, citalopram and paroxetine are often prescribed 
for obsessive–compulsive disorder, which may be associ-
ated with Long COVID symptoms [42–45]. Furthermore, 
our analysis of paroxetine was limited by a small sample 
size of users (n = 7189). We also did not find evidence 
of a dose–response relationship between fluoxetine and 
Long COVID. This may be explained due to a large pro-
portion of missingness of dose information leading to a 
small functional sample size. Future studies should fur-
ther explore the possibility of a dose–response relation-
ship [9].

Strengths and limitations
A strength of this study is its large, national sample size 
of patients and the broad range of high-dimensional data 
that we included via N3C. This rich data source allows 
us to construct a cohort of patients with a diagnosis of 
a depressive condition, assess their SSRI use at the time 
of SARS-CoV-2 infection, and evaluate their probability 
of Long COVID diagnosis. Furthermore, the documen-
tation of comorbidities, sociodemographic information, 
and other medical history allows for rigorous multivariate 
adjustment.

A second strength of this study is the analytic methods 
that we applied. A Targeted Learning approach, involv-
ing Super Learner and targeted maximum likelihood esti-
mation, allows for efficient and flexible estimation while 
making minimal parametric assumptions [19, 20, 23, 31, 

46]. With this large sample size of high-dimensional data, 
this allows us to aggressively reduce bias due to meas-
ured, potentially high-dimensional confounding and to 
do so with nearly no model assumptions. These methods 
allowed us to intervene on participant observation dur-
ing the outcome window, which is an important driver 
of differential outcome ascertainment [29, 33]. Further-
more, nonparametric sensitivity analyses allowed us to 
determine the extent to which our results are vulnerable 
to bias. Cumulatively, these methods provide a replicable 
framework for investigators to conduct rigorous observa-
tional analyses using electronic health record databases 
such as N3C.

A third strength of this study was its ability to flexibly 
account for and intervene on the missingness of the out-
come and heterogeneous monitoring [33]. There is sig-
nificant heterogeneity in N3C’s documentation of Long 
COVID diagnoses (our outcome of interest), as is com-
mon with electronic health record databases. Previous 
studies have found that Long COVID diagnosis is strongly 
correlated with healthcare utilization rate [29, 47]. We 
sought to control for healthcare utilization rate by adjust-
ing for multiple factors related to healthcare utilization, 
including healthcare visits per month before SARS-CoV-2 
infection. In addition, we were able to use novel causal 
inference framing to define our parameter of interest at 
the ratio of probabilities of PASC under universal moni-
toring, i.e., by “intervening” on whether an individual 
had a healthcare visit between 1 and 12 months following 
acute SARS-CoV-2 infection (the period at-risk for Long 
COVID), to observe the counterfactual impact of SSRI 
exposure given that all patients were observed during the 
period at-risk for the outcome [48]. It remains possible 
that residual confounding due to healthcare utilization 
rate remains, although this would likely bias our estimate 
towards the null, indicating that our observed measure of 
association is likely conservative [29].

This study had several limitations. We defined the 
exposure of interest as a binary, time-invariant variable 
based on SSRI use during COVID-19. It remains pos-
sible that factors related to the duration of SSRI use, 
timing of SSRI use, or SSRI dosage may modify this rela-
tionship, although these factors are poorly documented 
(i.e., high missingness) in EHR databases such as N3C 
and should be explored in a future study. Furthermore, 
PASC diagnosis (ICD code U09.9) has limited sensitivity 
and low clinical utilization, which may lead to outcome 
misclassification. Furthermore, the binary definition of 
Long COVID may fail to reflect heterogeneity within 
Long COVID subtypes (e.g., neurological versus gastro-
intestinal symptoms). Finally, as an observational study, 
this analysis may be subject to residual bias and investi-
gators should conduct randomized controlled trials to 
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corroborate these findings. The generalizability of N3C 
patients has been described previously [6, 47, 49]. N3C 
is a broad, national sample of patients, as it relies on elec-
tronic health record data, but it skews towards patients 
who engage more with healthcare systems. This yields a 
study population that is generally older, has more comor-
bidities than the general population, and underrepresents 
un- or underinsured patients [47].

Conclusions
This study suggests that the use of SSRIs during acute 
COVID-19 is associated with a lower risk of Long 
COVID among patients with depression. These results 
support the hypothesis that serotonin may be a mecha-
nistic biomarker of Long COVID and that SSRIs may be 
an effective intervention to prevent Long COVID.
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