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Abstract 

Background The hippocampus, with its complex subfields, is linked to numerous neuropsychiatric traits. While most 
research has focused on its global structure or a few specific subfields, a comprehensive analysis of hippocampal sub-
structures and their genetic correlations across a wide range of neuropsychiatric traits remains underexplored. Given 
the hippocampus’s high heritability, considering hippocampal and subfield volumes (HASV) as endophenotypes 
for neuropsychiatric conditions is essential.

Methods We analyzed MRI-derived volumetric data of hippocampal and subfield structures from 41,525 UK Biobank 
participants. Genome-wide association studies (GWAS) on 24 HASV traits were conducted, followed by genetic cor-
relation, overlap, and Mendelian randomization (MR) analyses with 10 common neuropsychiatric traits. Polygenic risk 
scores (PRS) based on HASV traits were also evaluated for predicting these traits.

Results Our analysis identified 352 independent genetic variants surpassing a significance threshold of 2.1 ×  10−9 
within the 24 HASV traits, located across 93 chromosomal regions. Notably, the regions 12q14.3, 17q21.31, 12q24.22, 
6q21, 9q33.1, 6q25.1, and 2q24.2 were found to influence multiple HASVs. Gene set analysis revealed enrichment 
of neural differentiation and signaling pathways, as well as protein binding and degradation. Of 240 HASV-neuropsy-
chiatric trait pairs, 75 demonstrated significant genetic correlations (P < 0.05/240), revealing 433 pleiotropic loci. 
Particularly, genes like ACBD4, ARHGAP27, KANSL1, MAPT, ARL17A, and ARL17B were involved in over 50 HASV-neu-
ropsychiatric pairs. Leveraging Mendelian randomization analysis, we further confirmed that atrophy in the left hip-
pocampus, right hippocampus, right hippocampal body, and right CA1-3 region were associated with an increased 
risk of developing Parkinson’s disease (PD). Furthermore, PRS for all four HASVs were significantly linked to a higher 
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risk of Parkinson’s disease (PD), with the highest hazard ratio (HR) of 1.30 (95% CI 1.18–1.43, P = 6.15 × 10⁻⁸) for right 
hippocampal volume.

Conclusions These findings highlight the extensive distribution of pleiotropic genetic determinants between HASVs 
and neuropsychiatric traits. Moreover, they suggest a significant potential for effectively managing and intervening 
in these diseases during their early stages.

Keywords Hippocampus, Neuropsychiatric, Pleiotropic, Parkinson’s disease

Background
The human hippocampus, situated in the medial tempo-
ral lobe, is crucial for fundamental cognitive functions 
such as learning, memory [1, 2], and stress regulation [3]. 
This intricate structure consists of histologically distinct 
subfields, each of which exhibits structural and func-
tional changes associated with various complex neuro-
logical and psychiatric conditions, including Alzheimer’s 
disease (AD) [4], Parkinson’s disease (PD) [5], bipolar 
disorder (BIP) [6], and schizophrenia (SCZ) [7]. Despite 
the hippocampus’ significance, current research has pre-
dominantly focused on either its global architecture or 
on the association between specific subfields and a lim-
ited number of neuropsychiatric traits. A comprehensive 
understanding of the hippocampal substructures’ corre-
lations and impacts across a broader spectrum of disor-
ders remains largely unexplored.

As a recognized biomarker for AD, hippocampal vol-
ume has an estimated heritability exceeding 75% based 
on twin studies [8]. This high heritability, therefore, 
underscores the importance of considering hippocampal 
and subfield volumes (HASV) as endophenotypes for a 
spectrum of neuropsychiatric conditions. Among imag-
ing modalities, magnetic resonance imaging (MRI) is 
favored for its superior soft tissue contrast, positioning it 
as the non-invasive examination tool of choice for study-
ing the human brain in vivo. Moreover, recent advance-
ments in MRI technology, paired with progress in the 
adaptive segmentation of hippocampal subregions, have 
significantly enhanced our ability to rapidly and accu-
rately estimate the volume of the entire hippocampus 
and its individual subregions from MRI data [9]. Conse-
quently, this presents an opportunity to integrate large-
scale brain MRI and genetic data, thereby increasing our 
understanding of the genetic architecture underlying 
HASV and their association with a range of neuropsychi-
atric traits.

Importantly, neuropsychiatric traits, notably AD and 
PD, exhibit relentless progression once diagnosed. Hence, 
proactive identification of high-risk subpopulations in 
their early stages is imperative for timely interventions. 
Currently, there is a scarcity of genetic or biological 
markers for risk prediction in these diseases. We pro-
pose leveraging polygenic risk scores (PRS) derived from 

HASV traits for this purpose, as the computation of PRS 
requires only partial genetic information, which is essen-
tially fixed at birth. PRS have been extensively inves-
tigated for predicting disease onset and have proven 
invaluable in identifying high-risk populations and guid-
ing decision-making in other diseases [10]. However, to 
our knowledge, there is limited research assessing the 
predictive role of PRS related to hippocampal volume in 
the occurrence of these diseases.

In the current study, we initially conducted genome-
wide association studies (GWAS) on 24 well-segmented 
and quantified HASV in a cohort of 41,525 individuals. 
Subsequently, we performed variants and genes annota-
tion analyses to investigate the biological significance 
of the GWAS findings, with a particular focus on the 
genomic distribution of these loci and the genes that sig-
nificantly impact multiple HASV traits. Then, we assessed 
the genetic associations between the 24 HASVs and 97 
other regional brain volumes, along with a range of neu-
ropsychiatric traits using genetic correlation and genetic 
overlap analyses. For the HASV-neuropsychiatric trait 
pairs that showed significant correlations, we sequentially 
investigated the pleiotropic associations through various 
statistical genetic approaches, from the genome-wide to 
the variant and gene levels, to disentangle the underlying 
shared genetic etiology. Following this, we utilized Men-
delian randomization (MR) to further confirm the causal 
connections across these significant genetic associations. 
Lastly, to facilitate clinical application and early interven-
tion, we established PRS derived from HASV traits and 
validated their predictive ability for these neuropsychi-
atric traits in approximately 450,000 individuals without 
brain imaging data. An overview of the study design and 
analyses is provided in Fig. 1.

Methods
Study population
The UKBB is a large prospective cohort study of over 
500,000 participants recruited at 22 assessment centers 
across the UK between 2006 and 2010 [11]. It has gath-
ered a wealth of information on participants, includ-
ing health and lifestyle data, physical measurements, 
biological samples, imputed genome-wide genotypes, 
and a portion of participants had brain MRI data [12]. 
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All participants provided informed consent. The ethical 
committees from the North West Multi-Center Research 
Ethics approved the study.

Sample selection
In this study, we initially downloaded volumetric data 
for 44 hippocampal and subfield structures from the 
UK Biobank (UKB) official website, which had been seg-
mented using Freesurfer (Field ID 26620–26663). The 
initial dataset included hippocampal segmentation infor-
mation for 43,108 individuals who had not withdrawn 
consent as of December 2020. To ensure data quality, 
we excluded individuals with missing genetic data or 
those whose data did not meet quality standards (1126 
individuals), as well as those lacking covariate informa-
tion (280 individuals) (see Fig. 1B). Ultimately, our sam-
ple consisted of 41,702 individuals, with an average age 
of 55.0 years at the time of enrollment, and 47.5% were 
male (for detailed demographic information, refer to 
(Additional file 1: Table S1). It is important to note that 
to minimize the partial volume effect [13], we combined 

the volumes of certain subfields: CA1 and CA2/3 were 
merged as CA1-3, CA4, and GC-ML-DG were merged as 
CA4-DG, and parasubiculum, presubiculum, and subicu-
lum were merged as subiculum. As a result, we obtained 
phenotypic data for 24 merged hippocampal and subfield 
volumes (HASV), with these subfields symmetrically 
distributed in the left and right cerebral hemispheres, 
as illustrated in Fig. 1Aand detailed in Additional file 1: 
Table  S2. It is worth emphasizing that our subsequent 
GWAS analyses were conducted based on these 24 
merged HASV phenotypes. Prior to performing GWAS 
for each HASV trait, we further excluded individuals with 
extreme phenotype outliers (identified using the three 
times the interquartile range, IQR, criterion). And the 
largest sample size among these HASV traits is 41,525. 
The means and standard deviations of these 24 HASV 
traits can be found in Additional file 1: Table S2 for ref-
erence in subsequent research and analysis. The UKB 
Data-Fields of covariates were listed in Additional file 1: 
Table  S3. The definitions were used for GWAS partici-
pant exclusion and PRS assessment. And the Data Field 

Fig. 1 Study overview and workflow.A Schematic illustration of the hippocampus regions. B Sample selection flowchart. C A brief description 
of the overall workflow and major analyses
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in UKBB of the first in-patient diagnosis of relevant brain 
disorders was provided in Additional file 1: Table S4.

Genotyping and imputation
Detailed information on genotyping and imputation in 
the UKB has been described  previously1. Briefly, par-
ticipants were genotyped based on UK BiLEVE Axiom™ 
Array by Affymetrix (807,411 markers for 49,950 par-
ticipants) and UKB Axiom Array by Affymetrix (825,927 
markers for 438,427 participants). Genotype imputa-
tion was based on merged UK10K sequencing and 1000 
Genomes phase3 reference panels with SHAPEIT3 and 
 IMPUTE32. Variant positions were keyed to the GRCh37 
human genome reference.

Genome‑wide association study
We computed residuals for each HASV trait by regress-
ing them on covariates such as age, sex, BMI, and imag-
ing center. Subsequently, after rank-based inverse normal 
transformation of these residuals (Additional file  2: Fig. 
S1-2), we performed GWAS for the transformed HASV 
traits. This analysis utilized approximately 8.5 million 
well-imputed variants, each with a minor allele fre-
quency (MAF) of ≥ 1%, and an imputation quality (INFO) 
score > 0.3 and was conducted using BOLT-LMM v2.3.6 
[14]. GWAS analysis models were adjusted for age, sex, 
BMI, and principal component (PC) 1–10. BOLT-LMM 
accounts for ancestral heterogeneity, cryptic popula-
tion structure, and sample relatedness by fitting a linear 
mixed model with a Bayesian mixture prior as a random 
effect [15–17]. Previous evidence supports the use of 
LMM approaches to perform GWAS of admixed popu-
lations, which may provide favorable statistical power 
[16, 18, 19], and similar approaches have been taken 
previously [15–17]. As expected, our GWAS analyses 
did not reveal any evidence of confounding arising from 
population stratification or cryptic relatedness in our 
24 GWASs. The genomic inflation factor ranged from 
1.10 to 1.20, while the linkage disequilibrium (LD)-score 
regression intercept [20, 21] consistently remained below 
1.03. Moreover, (intercept − 1)/(mean(χ2) − 1) was less 
than 0.12, further supporting the conclusion that HASV 
traits were influenced more by polygenicity than popu-
lation structure (Additional file  1: Table  S3). Observed 
scale heritability (h2) was estimated using the slope of 
LDSC regression. To identify genetic loci, we uploaded 
this summary statistic to the FUMA platform v1.5.03. 
Using the 1000GPhase3 EUR as a reference panel, we 
identified independent significant SNPs at the statisti-
cal significance threshold P < 5 ×  10–8. All SNPs at r2 < 0.6 
with each other were considered as independent signifi-
cant SNPs and a fraction of the independent significant 

SNPs in approximate linkage equilibrium with each other 
at r2 < 0.1 were considered as lead SNPs.

Functional follow‑up with FUMA
We utilized two main approaches to map genome-wide 
significant loci to genes via FUMA default settings and 
specialized datasets, as described as follows: (1) posi-
tional mapping of variants, whereby variants within a 
10kB window from known protein-coding genes in the 
human reference assembly (GRCh37/hg19) are mapped 
and (2) eQTL mapping whereby allelic variations at a var-
iant is significantly linked to expression of a gene, where 
we considered eQTLs within heart atrial appendage and 
heart left ventricle from GTEx v8.

We also performed a generalized gene set analysis 
using MAGMA within FUMA. Variants within exonic, 
intronic, and untranslated regions were chosen for 
each gene. The 18,888 protein-coding genes were used 
in MAGMA. The mean of the summary statistic (χ2) 
of GWAS for the variants in a gene was used to deter-
mine the gene-based P-value4. The Bonferroni method 
was used to calculate the P-value significance threshold, 
which is 2.64 ×  10–6 when 0.05 is divided by the total 
number of genes (18,888).

Transcriptome‑wide association study
For each of the 24 HASV traits, we performed a TWAS to 
identify the most strongly associated gene at each locus 
based on imputed cis-regulated gene expression. We 
used FUSION with eQTL data from GTEx v8. Precom-
puted transcript expression reference weights for the 
brain–hippocampus (3457 genes) were obtained from the 
FUSION authors, website (http:// gusev lab. org/ proje cts/ 
fusion/). A significance threshold of P < 6.03 ×  10−7 was 
applied, accounting for the number of genes and HASV 
traits. FUSION was then run with its default settings.

Pathway enrichment and tissue expression analyses
Functional enrichment and pathway characterization 
of the candidate genes associated with each HASV trait 
were performed using the clusterProfiler package [22]. 
Tissue expression analyses were obtained from GTEx 
which were also integrated in FUMA. Average gene 
expression per tissue type was utilized as a gene covari-
ate to test for a positive link between gene expression in a 
given tissue type and genetic correlations.

Genetic correlation analysis
Using summary statistics, we applied LDSC software [20, 
21] to estimate the genetic correlations (1) between 24 
HASV traits, (2) between 24 HASV traits and 97 other 
regional brain volumes [23], and (3) between 24 HASV 
traits and 10 common brain disease: AD (Alzheimer’s 

http://gusevlab.org/projects/fusion/
http://gusevlab.org/projects/fusion/
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disease) [24], attention-deficit hyperactivity disorder 
(ADHD) [25], anorexia nervosa (AN) [26], anxiety disor-
der (ANX) [27], bipolar disorder (BIP) [28], epilepsy [29], 
insomnia, PD (Parkinson’s disease) [30], post-traumatic 
stress disorder (PTSD) [31], and schizophrenia (SCZ) 
[32]. These analyses were performed according to the 
standard analysis process of LDSC. We performed LDSC 
using well-imputed HapMap3 variants (http:// ldsc. broad 
insti tute. org/ static/ media/w_ hm3. noMHC. snpli st. zip) 
and pre-computed LD scores of European ancestry from 
the 1000 Genomes Project Phase3 (https:// data. broad 
insti tute. org/ alkes group/ LDSCO RE/ eur_w_ ld_ chr. tar. 
bz2). We did not constrain the intercepts in LDSC analy-
sis, which could not only account for residual confound-
ing but also indicate whether there was potential sample 
overlap between two GWAS studies.

Genetic overlap analysis
Given that the genetic correlation analysis only reflects 
the overall correlation across the genome between traits, 
we further applied GPA (genetic analysis incorporating 
pleiotropy and annotation) [33] to explore the overall 
genetic overlap. For each trait pair, GPA relies on four dis-
tinct models to classify SNPs into four categories, aims to 
estimate the proportions of SNPs in each model, and uses 
a likelihood ratio test to assess the statistical significance 
for overall genetic overlap [33]. GPA assumes that P-val-
ues from null SNPs (not associated with the trait) follow 
the uniform distribution and non-null SNPs (associated 
with the trait) follow the Beta distribution, then extends 
the assumption to two GWASs and proposes four models 
 (M00,  M10,  M01, and  M11) to classify these SNPs into four 
categories: (i) SNPs associated with neither of traits, (ii) 
SNPs only associated with the first trait, (iii) SNPs only 
associated with the second trait, and (iv) SNPs associ-
ated with both traits. GPA aims to estimate the propor-
tions of SNPs in these models (PM) and uses likelihood 
ratio test (LRT) to assess the statistical significance for 
overall genetic overlap. Note that the proportion of risk 
SNPs should not be extremely small to enable GPA to 
work well [33]. To alleviate the influence of LD on GPA, 
we performed LD pruning based on the 1000 Genomes 
Phase 3 European-ancestry genotypes using PLINK1.9 to 
obtain relatively independent SNPs.

Pairwise pleiotropic analysis using PLACO
For the union set of pairwise traits with significant 
genetic correlation or genetic overlap, we used the 
recently developed pleiotropic analysis under com-
posite null hypothesis (PLACO), which could account 
for potential correlation between two traits, to iden-
tify pleiotropic SNPs [34]. For a given variant, PLACO 
detects pleiotropic associations by considering a 

composite null hypothesis, where the null hypothesis 
H0 is a composite of the global null {beta trait1 = beta 
trait2 = 0} and the sub-null hypotheses are {beta trait1 = 0, 
beta trait2 ≠ 0} and {beta trait1 ≠ 0, beta trait2 = 0}. That is, 
PLACO tests H0: beta trait1 × beta trait2 = 0 vs H1: beta 
trait1 × beta trait2 ≠ 0, and the test statistic of PLACO is 
TPLACO = Ztrait1 Ztrait2 [34]. For each trait pair, we denote 
trait1 and trait2 as HASV trait and brain disease, beta 
trait1 and beta trait2 as the effect sizes of a SNP on two 
traits, Ztrait1 and Ztrait2 as the observed Z-scores of 
a SNP from corresponding GWAS summary data, 
respectively. The rejection of  H0 statistically suggests 
that the SNP would be a potential pleiotropic variant 
shared between two traits. Overlapped SNPs between 
GWASs of each pairwise traits were included and the 
summary statistics were harmonized to align to the 
same effect allele. SNPs with squared Z-scores above 80 
were removed since extremely large effect sizes could 
produce spurious signals [34]. We de-correlated the 
Z-scores using the correlation matrix estimated from 
GWAS summary statistics to account for potential 
sample overlap. SNPs with P < 6.67 ×  10−10 (5 ×  10−8/75, 
Bonferroni correction) were declared as significant 
pleiotropic variants.

Mendelian randomization (MR) analysis
The TwoSampleMR [35] and MendelianRandomization 
[36] R packages were primarily used to perform two-
sample MR. Effect allele coding was harmonized across 
phenotypes using the harmonise_data function. Strand 
ambiguous SNPs were excluded. Genome-wide sig-
nificant SNPs were LD clumped (P < 5 ×  10–8, r2 ≤ 0.001 
in 1000 Genomes Phase 3 European data, over a 10 
megabase window) to ensure independence. SNPs within 
highly pleiotropic regions, the MHC region (hg19 coor-
dinates: Chromosome 6, 28,477,797–33,448,354 base 
pairs) was excluded. To further mitigate the impact of 
pleiotropy, we refined our instrument variables (IVs) by 
removing SNPs associated with confounding factors such 
as socioeconomic status, education, drinking, and smok-
ing behavior. Additionally, we excluded IVs identified as 
pleiotropic in our PLACO analysis. Finally, we assessed 
the strength of genetic associations of instrumental SNPs 
and addressed the issue of weak instrument bias by cal-
culating phenotype variance explained (PVE) by genetic 
variants and F statistics. The primary MR analysis was 
conducted using the inverse variance weighted (IVW) 
estimator with multiplicative random effects. Addi-
tional MR analysis was performed using MR-Egger [37], 
weighted median [38], weighted mode [39], IVW method 
using robust regression (MR-Robust) [40], and MR 
robust adjusted profile score (MR-RAPS) [41].

http://ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.zip
http://ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.zip
https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2
https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2
https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2
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MR sensitivity analyses
Several sensitivity analyses were conducted to assess the 
robustness of findings and account for pleiotropy. MR 
PRESSO [42] was used to identify heterogeneity (global 
test) and outliers (outlier test) and to determine if the 
outlier-adjusted IVW estimate significantly differed from 
the unadjusted. The MR-Egger intercept, Cochran’s Q sta-
tistic, and MR-PRESSO Global Test were used to confirm 
that pleiotropic effects were not driving the observed asso-
ciations. To evaluate correlated horizontal pleiotropy, the 
CAUSE method [43] was applied. This method fits a series 
of nested models: a “null” model where only uncorrelated 
horizontal pleiotropy (defined as direct effects of genes 
on the outcome with net zero effect) is modeled (param-
eter q), a “sharing” model where an additional parameter 
(parameter eta) is fit to account for correlated horizon-
tal pleiotropy, and a “causal” model where a causal effect 
parameter (parameter gamma) is fit in addition to the shar-
ing parameter. To test the hypothesis that a causal model 
explained the relationship better than a sharing model, the 
causal and sharing model fits were compared using the dif-
ference in the expected log pointwise posterior density. 
Specifically, if the causal model fits better than the sharing 
model, this implies that the additional complexity needed 
to model a causal effect is justified and thus is evident that 
data are consistent with a causal effect. If, however, there 
is not significant evidence that the causal model fits better 
than the sharing model, this implies that shared pleiotropy 
alone is sufficient to explain the observed association.

Polygenic risk score development
We used the C + T (clumping + thresholding) method 
[44] to construct the polygenic risk score (PRS) of each 
HCAS trait based on the effect sizes derived from the 
HASV GWASs. The PRS was calculated through a 
weighted model, as shown below.

where β values (the log of odds ratio) is the summary sta-
tistic for the effective allele and G is the number of the 
effective allele observed. We used variants with genome-
wide significant (P < 5 ×  10–7) and clumping window 
(r2 < 0.1, kb = 250) to derive PRS. We categorized partici-
pants into three genetic risk levels: low (lowest tertile), 
intermediate (second tertile), and high (highest tertile).

Results
Genome‑wide association studies of 24 hippocampal 
and subfield volumes
To understand the common genetic basis for varia-
tion in hippocampal volumes, we performed a series 
of GWAS on 24 HASV with a maximum sample size 

PRSj =

i=1

βiGi,j

of 41,525 individuals. The baseline characteristics of 
the study population are detailed in Additional file  1: 
Table  S1, whereas Additional file  1: Table  S2, Addi-
tional file 2: Fig. S1A and Fig. S2 provide a summary of 
the 24 HASV traits. Subsequently, we aimed to assess 
the phenotypic correlations among these HASV traits. 
Approximately one-third of the phenotype pairs exhib-
ited correlation values (r2) greater than 0.70, while 
half showed correlations ranging from 0.30 to 0.70. 
Additionally, we observed weak negative correlations 
between certain phenotype pairs, such as the correla-
tion between left hippocampal fissure and right fim-
bria (r2 =  − 0.10, P < 0.05/276, Bonferroni corrected), as 
illustrated in Additional file 2: Fig. S1B.

We identified 578 significant variant–trait associa-
tions at P < 5.0 ×  10−8, of which 352 associations survived 
P < 2.1 ×  10−9 (Additional file  1: Table  S5-6, Additional 
file  2: Fig. S3-4). Notably, among the 578 variants, 93 
were found to be associated with at least two HASV 
traits, resulting in a total of 317 unique variants associ-
ated with the 24 HASV traits, distributed across 93 dis-
tinct chromosomal regions, including specific regions 
like12q14.3 [45, 46], 17q21.31 [45], 12q24.22 [45, 46], 
6q21, 9q33.1 [47], 6q25.1, and 2q24.2 [46, 47] (Fig. 2A). 
Particularly, the lead single-nucleotide polymorphism 
(SNP) rs55938136 on chromosome 17 within the 
LINC02210-CRHR1 (Fig.  2B) was associated with 19 
HASV traits. Similarly, rs17178006 within the MSRB3 on 
chromosome 12 (Fig. 2C) was associated with 18 HASV 
traits. In addition, rs1062034 on chromosome 6 within 
the FOXO3 (Fig. 2D) was linked to 12 HASV traits, while 
rs146607495 within the HRK on chromosome 12 (Fig. 2E) 
demonstrated an association with 12 HASV traits as well. 
Notably, 6q21 and 6q25.1 were recently reported to influ-
ence multiple HASVs [48].

Functional characterization of risk variants
We functionally annotated candidate variants that were 
in linkage disequilibrium (r2 ≥ 0.6) with one of the inde-
pendent significant SNPs for each HASV traits using 
functional mapping and annotation of GWAS (FUMA) 
[49] (Additional file  1: Table  S7). The number of candi-
date variants ranged from 539 in the right hippocam-
pal fissure to 8589 in the right hippocampus. We next 
observed that approximately 90% of these candidates in 
each HASV trait variants were localized within accessi-
ble chromatin regions (which is less than 1% of the total 
number of approximately 8.5 million GWAS SNPs), rep-
resented by chromatin states with scores ranging from 
1 to 7 (Fig.  3A), which suggests their potential func-
tional significance [50, 51]. Additionally, around 6.8% of 
the candidate SNPs were classified under regulomeDB 
categories 1 or 2 (Fig.  3B), indicating their potential 
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Fig. 2 Genomic loci associated with 24 hippocampal and subfield volumes (HASVs). A Ideogram of 93 genomic regions associated with 24 
hippocampal and subfield volumes. Orange name labels denote genomic regions that have been widely reported to be associated 
with hippocampal volume, while red represents newly identified loci in this study. B–G These regional plots illustrate an instance of corresponding 
loci that exerted influence on multiple HASV traits



Page 8 of 21Ning et al. BMC Medicine          (2024) 22:456 

involvement in regulatory functions [50]. Subsequently, 
we investigated whether these candidate variants were 
enriched among genetic regulatory elements. We gener-
ated control variants in a 1:1 ratio using vSampler [52]. 
The enrichment analysis revealed that candidate variants 
exhibited a positive association with H3K4 trimethylation 
marks (H3K4me3) when compared to control variants. 
Conversely, candidate SNPs showed a negative enrich-
ment for H3K27 acetylation marks (H3K27ac) (Fig. 3C). 
Notably, H3K27me3 is a well-known mark associated 
with gene silencing and downregulation [53], while 
H3K27ac is linked to enhancer regions and can promote 
gene transcription and expression [54]. Our findings lead 
us to reasonably infer that these candidate SNPs could 
be implicated in gene regulation, potentially modulating 
gene expression levels.

Identification and functional annotation of susceptible 
genes associated with HASVs
We further sought to identify candidate genes influenc-
ing HASV traits variation by combining evidence from 
physical position, eQTL association, transcriptome-
wide association study (TWAS), and multi-marker 
analysis of genomic annotation (MAGMA). Our anal-
ysis revealed a total of 4184 mapped genes associated 
with the 24 HASV traits (Fig.  3D). Specifically, taking 
into account the physical position within ± 1 Mb of 
the lead variant, we pinpointed 578 genes (Additional 
file  1: Table  S6). Additionally, eQTL mapping led to 
the discovery of 2289 genes associated with HASV 
traits (Additional file  1: Table  S8). Meanwhile, TWAS 
analysis contributed to the identification of 351 genes 
(P < 6.03 ×  10–7) (Additional file  1: Table  S9). Further-
more, MAGMA analyses yielded 996 significant genes 
(mean χ2 statistics, P < 2.64 ×  10−6) (Additional file  1: 
Table  S10). Notably, our findings revealed that 323 
genes shared at least two HASV traits or were identified 
by multiple methods, resulting in a total of 694 unique 

genes associated with the 24 HASV traits (Additional 
file  1: Table  S11). Among these genes, several notable 
ones, including MSRB3, HRK, CRHR1, FOXO3, NUP43, 
ASTN2, GINM1, LEMD3, WNT3, PCMT1, SSBP3, 
LRP11, and MAPT, exerted significant pleiotropic on 
nearly 24 HASV traits (Additional file 2: Fig. S5).

Subsequently, we conducted gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses to gain a comprehensive under-
standing of the functions of these susceptible genes. 
As expected, these genes showed significant enrich-
ment in several functional categories, including (1) ion 
transmembrane transport processes (e.g., regulation of 
sodium ion transport, positive regulation of potassium 
ion transport), (2) neural differentiation and signaling 
pathways (e.g., regulation of neuron differentiation, 
hippo signaling pathway, Wnt signaling pathway), (3) 
protein binding and degradation (e.g., protein-contain-
ing complex destabilizing activity, negative regulation 
of amyloid-beta formation, Wnt-protein binding), and 
(4) brain-related diseases (e.g., AD, long-term depres-
sion, glioma) (Fig. 3E and Additional file 1: Table S12). 
The tissue enrichment analysis revealed that these 
genes were predominantly expressed in nerve and brain 
tissues, aligning with our expectations (Fig.  3F and 
Additional file 1: Table S13). In summary, these findings 
represent a substantial expansion of our understand-
ing of the genetic basis of HASV traits and underscore 
their role in the development of brain-related diseases.

Heritability and genetic correlation of HASVs
Using summary statistics, we applied LD score regres-
sion (LDSC software) [20, 21] to estimate the herit-
ability and genetic correlation among these 24 HASV 
traits. The mean heritability (h2) was 0.24 for the 24 
traits (ranging from h2 = 0.15 of the left hippocampal 
fissure to h2 = 0.32 for the right hippocampus trait; 
Fig.  4A). Of significant note were the robust genetic 

Fig. 3 Annotation of risk variants and genes. A The minimum chromatin state across 127 tissue and cell types for candidate SNPs for each 
of the 24 HASV traits, with lower states indicating higher accessibility and states 1–7 referring to open chromatin states. B The bar charts represent 
the proportions of RegulomeDB scores 1 or 2 among the risk variants for each of the 24 HASV traits. A lower score suggests a higher likelihood 
of having a regulatory function. C Histone modifications and transcription factor (TF) peaks were primarily sourced from hippocampus samples 
provided by ENCODE. When hippocampus-specific data was unavailable, brain data was used instead. The enrichment of candidate SNPs 
in these epigenomic marks was assessed relative to control variants, which were generated in a 1:1 ratio using vSampler. Statistical significance 
was determined using a Fisher test. An asterisk denotes statistically significant differences (*P < 0.05; **P < 2.08 ×  10−4, Bonferroni corrected). D The 
stacked bar charts depict the number of genes mapped using four distinct strategies: physical position, eQTL association, transcriptome-wide 
association study (TWAS), and multi-marker analysis of genomic annotation (MAGMA), for each of the 24 HASV traits. E Pathway analysis of genes 
associated with each of the 24 HASV traits based on the molecular signatures database. F Tissue expression results across 29 specific tissue 
types from GTEx v8 in FUMA. The chromatin states are 1 = active transcription start site (TSS); 2 = flanking active TSS; 3 = transcription at gene 5’ 
and 3’; 4 = strong transcription; 5 = weak transcription; 6 = genic enhancers; 7 = enhancers; 8 = zinc finger genes and repeats; 9 = heterochromatic; 
10 = bivalent/poised TSS; 11 = flanking bivalent/poised TSS/Enh; 12 = bivalent enhancer; 13 = repressed PolyComb; 14 = weak repressed PolyComb; 
15 = quiescent/low

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Fig. 4 SNP heritability and genetic correlations of 24 HASV traits. A SNP heritability of 24 HASV traits. B Genetic correlations between 24 HASV traits. 
One asterisk denotes the nominal level (0.05), while two asterisks indicate genetic correlations that have survived multiple testing adjustments 
using the Bonferroni correction (P < 0.05/276). The colors represent the magnitude of genetic correlations
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correlations observed within these traits (Fig.  4B and 
Additional file  1: Table  S14). Particularly, the genetic 
correlations between corresponding regions of the 
left and right hippocampus consistently exceeded 0.95 
(P < 0.05/276, Bonferroni corrected). Additionally, 
when focusing on individual cerebral hemispheres, 
moderate genetic correlations were found between the 
hippocampus fimbria, hippocampal fissure, and HATA 
subregions with the remaining nine regions, indicating 
moderate influences. In contrast, stronger genetic cor-
relations emerged among the remaining nine regions 
ranging from 0.80 to 0.90. These intriguing observa-
tions suggest these traits are under pleiotropic genetic 
control.

Building on this groundwork, we extended our 
inquiry to explore the genetic connections between the 
HASV traits and 97 other regional brain volumes [23]. 
Employing a significance threshold of P < 2.15 ×  10–5 
(0.05/2328, Bonferroni corrected), we unearthed note-
worthy associations between HASV traits and various 
brain regions, encompassing total brain volume, amyg-
dalae, white matter, thalami, ventricles, and more, as 
visually presented in Additional file 2: Fig. S6 and com-
prehensively detailed in Additional file 1: Table S15. As 
expected, we found clear genetic correlations between 
the amygdala and multiple HASV traits, particularly 
with the HATA (hippocampal amygdala transition area) 
subregion (genetic correlation > 0.47, P < 5.15 ×  10−10). 
This reinforces the functional interplay between the 
amygdala and the hippocampal complex, two compo-
nents nestled within the medial temporal lobe, each 
tied to discrete memory systems. In emotional contexts, 
these systems intersect, with the amygdala regulating 
the encoding and retention of hippocampal-dependent 
memories, while the hippocampal complex shapes the 
amygdala’s reaction to emotional stimuli [55].

Genetic correlations and genetic overlaps between HASVs 
and neuropsychiatric traits
Previous research has revealed that the hippocampus is a 
critical brain region involved in memory formation, spa-
tial navigation and other higher-level cognitive functions 

[56–58], and structural abnormalities in the hippocam-
pus have been connected to a variety of neurological 
and psychiatric diseases [4, 5, 59–61]. We performed 
genetic correlation analyses between HASVs and the ten 
most frequent neuropsychiatric traits: AD, attention-
deficit hyperactivity disorder (ADHD), anorexia nervosa 
(AN), anxiety disorder (ANX), BIP, epilepsy, insomnia, 
PD, post-traumatic stress disorder (PTSD), and schizo-
phrenia (SCZ). As expected, the majority of HASV traits 
displayed significant positive genetic associations with 
PD from LDSC (ranging from 0.18 to 0.21, P < 0.05/240, 
Bonferroni corrected), as depicted in Fig. 5A and Addi-
tional file 1: Table S16. We further applied genetic analy-
sis incorporating pleiotropy and annotation (GPA) [33] to 
explore the overall genetic overlap between those traits. 
We discovered genetic overlap not only just with PD but 
also with other diseases that had previously shown no 
clear genetic link in genetic correlation analysis, such as 
AD, ADHD, AN, BIP, insomnia, PTSD, and SCZ (Fig. 5B 
and Additional file  1: Table  S17). By integrating the 
results of genetic correlation and genetic overlap analy-
ses, we finally produced a set of 75 significant pairwise 
traits (P < 0.05/240, Bonferroni corrected, Table 1). These 
findings imply that the genetic foundation of HASVs is 
complex and involves multiple neuropsychiatric traits.

Shared loci between HASVs and neuropsychiatric traits
Our comprehensive examination extended to iden-
tifying shared genetic loci between HASVs and neu-
ropsychiatric traits. Through a novel pleiotropic 
analysis under the composite null hypothesis (PLACO) 
[34] across 75 trait pairs, we identified a total of 
133,100 variants (8567 unique) pleiotropic variants at 
the threshold of P < 6.67 ×  10–10 (5 ×  10−8/75, Bonfer-
roni correction). After performing variant clumping 
(r2 < 0.1 and 6.67 < 5 ×  10−10), we totally identified 433 
pleiotropic lead SNPs across the 75 trait pairs (Addi-
tional file 1: Table S18). Notable, loci such as 17q21.31, 
2q33.1, 12q14.3, 6q21, 16p11.2, 2q24.2, and 6p22.2 dis-
played associations with at least 20 trait pairs (Addi-
tional file  1: Table  S19). To better understand the 
functional relevance of these pleiotropic variants, we 

Fig. 5 Genetic connections between 24 HASV traits and 10 brain disorders.A Genetic correlations between 24 HASV traits (X-axis) and 10 brain 
disorders (Y-axis). Genetic correlation was estimated using the LDSC method. Asterisk denotes statistically significant differences, *P < 0.05; 
**P < 2.08 ×  10−4 (0.05/240, Bonferroni corrected). B Genetic overlaps between 24 HASV traits (X-axis) and 10 brain disorders (Y-axis). Genetic 
overlap was estimated using the GPA method. We introduced PAR as PM 11/(PM10 + PM01 + PM11) to represent the proportion of pleiotropic 
SNPs associated with both traits against the proportion of SNPs associated with at least 1 trait. Asterisk denotes statistically significant differences, 
*P < 0.05; **P < 2.08 ×  10−4 (0.05/240, Bonferroni corrected). LDSC, linkage disequilibrium score regression; GPA, genetic analysis incorporating 
pleiotropy and annotation method; PAR, pleiotropy association ratio; PM11, proportion of genetic variants associated with both traits; AD, 
Alzheimer’s disease; ADHD, attention-deficit hyperactivity disorder; AN, anorexia nervosa; ANX, anxiety disorder; BIP, bipolar disorder; PD, Parkinson’s 
disease; PTSD, post-traumatic stress disorder; SCZ, schizophrenia

(See figure on next page.)
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conducted a comprehensive mapping of variants to 
genes by employing three distinct methodologies–posi-
tional analysis, eQTL analysis, and MAGMA analysis 

(Additional file 1: Table S20). We found that genes like 
ACBD4, ARHGAP27, KANSL1, MAPT, ARL17A, and 
ARL17B were implicated in no fewer than 50 trait pairs, 

Fig. 5 (See legend on previous page.)
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Table 1 Seventy-five significant trait pairs with genetic correlations or overlaps

Hippocampus Neuropsychiatric 
traits

rg se P value for LDSC PM11 PAR P value for GPA Either significant

Left hippocampus AD  − 0.1021 0.0766 1.83E-01 0.0005 0.0090 2.45E-06 GPA

Left hippocampus BIP  − 0.0232 0.0285 4.14E-01 0.0415 0.2023 5.64E-11 GPA

Left hippocampus PD  − 0.1757 0.0499 4.00E-04 0.0034 0.0467 1.24E-05 GPA

Left hippocampus SCZ  − 0.0428 0.0272 1.16E-01 0.0437 0.1944 2.24E-17 GPA

Left hippocampal head AD  − 0.0720 0.0733 3.26E-01 0.0005 0.0093 3.19E-05 GPA

Left hippocampal head BIP  − 0.0175 0.0288 5.43E-01 0.0410 0.2056 5.11E-11 GPA

Left hippocampal head PD  − 0.1808 0.0481 2.00E-04 0.0027 0.0404 5.48E-04 LDSC

Left hippocampal head SCZ  − 0.0460 0.0267 8.57E-02 0.0399 0.1807 9.26E-16 GPA

Left hippocampal body AD  − 0.1235 0.0798 1.22E-01 0.0005 0.0080 1.46E-04 GPA

Left hippocampal body ADHD  − 0.0825 0.0467 7.77E-02 0.0486 0.2256 1.20E-04 GPA

Left hippocampal body BIP  − 0.0175 0.0313 5.76E-01 0.0439 0.2127 9.57E-10 GPA

Left hippocampal body PD  − 0.1635 0.0563 3.70E-03 0.0031 0.0396 9.87E-05 GPA

Left hippocampal body SCZ  − 0.0414 0.0297 1.64E-01 0.0465 0.2041 8.62E-15 GPA

Left hippocampal tail BIP  − 0.0088 0.0308 7.75E-01 0.0296 0.1464 2.29E-06 GPA

Left hippocampal tail Insomnia  − 0.0866 0.0400 3.05E-02 0.0343 0.1511 1.40E-04 GPA

Left hippocampal tail PD  − 0.1441 0.0518 5.40E-03 0.0031 0.0545 3.99E-05 GPA

Left hippocampal tail SCZ 0.0101 0.0305 7.40E-01 0.0385 0.1798 5.40E-15 GPA

Left subiculum BIP  − 0.0213 0.0297 4.72E-01 0.0310 0.1507 2.68E-06 GPA

Left subiculum SCZ  − 0.0548 0.0277 4.83E-02 0.0357 0.1611 1.08E-12 GPA

Left CA1-3 AD  − 0.0443 0.0737 5.47E-01 0.0005 0.0099 5.41E-06 GPA

Left CA1-3 BIP  − 0.0379 0.0300 2.06E-01 0.0376 0.1924 1.76E-10 GPA

Left CA1-3 PD  − 0.1684 0.0505 9.00E-04 0.0036 0.0597 7.17E-06 GPA

Left CA1-3 SCZ  − 0.0651 0.0283 2.12E-02 0.0404 0.1867 1.06E-15 GPA

Left CA4-DG BIP  − 0.0233 0.0311 4.53E-01 0.0533 0.2578 2.35E-11 GPA

Left CA4-DG PD  − 0.2104 0.0532 7.67E-05 0.0029 0.0359 1.03E-03 LDSC

Left CA4-DG SCZ  − 0.0289 0.0297 3.32E-01 0.0535 0.2359 1.40E-16 GPA

Left molecular layer HP body SCZ  − 0.0245 0.0363 5.00E-01 0.0380 0.1577 1.17E-04 GPA

Left molecular layer HP head ADHD  − 0.0596 0.0434 1.70E-01 0.0502 0.2439 1.44E-04 GPA

Left molecular layer HP head BIP  − 0.0037 0.0320 9.08E-01 0.0355 0.1756 5.18E-06 GPA

Left molecular layer HP head SCZ  − 0.0383 0.0316 2.26E-01 0.0409 0.1795 3.00E-08 GPA

Left HATA BIP  − 0.0050 0.0365 8.91E-01 0.0305 0.1577 8.65E-06 GPA

Left HATA PD  − 0.2102 0.0562 2.00E-04 0.0030 0.0619 4.72E-02 LDSC

Left HATA SCZ  − 0.0779 0.0352 2.70E-02 0.0306 0.1414 1.37E-06 GPA

Right hippocampus AD  − 0.0393 0.0721 5.86E-01 0.0005 0.0088 7.05E-05 GPA

Right hippocampus ADHD  − 0.0926 0.0421 2.77E-02 0.0375 0.1824 2.07E-04 GPA

Right hippocampus BIP  − 0.0080 0.0288 7.81E-01 0.0379 0.1866 3.25E-11 GPA

Right hippocampus Insomnia  − 0.0745 0.0366 4.16E-02 0.0401 0.1748 5.91E-06 GPA

Right hippocampus PD  − 0.2042 0.0509 6.00E-05 0.0034 0.0505 8.64E-07 LDSC, GPA

Right hippocampus SCZ  − 0.0296 0.0268 2.70E-01 0.0414 0.1889 1.09E-21 GPA

Right hippocampal head AD  − 0.0488 0.0735 5.07E-01 0.0005 0.0096 8.46E-06 GPA

Right hippocampal head ADHD  − 0.0815 0.0423 5.40E-02 0.0431 0.2172 8.80E-06 GPA

Right hippocampal head BIP 0.0200 0.0301 5.07E-01 0.0345 0.1722 3.08E-10 GPA

Right hippocampal head Insomnia  − 0.0760 0.0359 3.41E-02 0.0383 0.1657 1.51E-05 GPA

Right hippocampal head PD  − 0.2002 0.0488 4.13E-05 0.0028 0.0448 2.43E-05 LDSC, GPA

Right hippocampal head SCZ  − 0.0409 0.0289 1.57E-01 0.0372 0.1727 4.82E-19 GPA

Right hippocampal body BIP  − 0.0244 0.0306 4.25E-01 0.0480 0.2334 1.15E-11 GPA

Right hippocampal body PD  − 0.2080 0.0568 2.00E-04 0.0036 0.0475 2.45E-05 LDSC, GPA

Right hippocampal body SCZ  − 0.0280 0.0272 3.04E-01 0.0493 0.2238 1.89E-19 GPA

Right hippocampal tail ADHD  − 0.0980 0.0452 3.00E-02 0.0355 0.1844 1.09E-04 GPA
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across a range of diseases including AD, ADHD, BIP, 
insomnia, PD, and SCZ (Additional file 1: Table S21). In 
summary, these findings reinforce the strong associa-
tions between hippocampal and subfield structures and 
various neurological and psychiatric conditions, pro-
viding a foundation for a deeper understanding of the 
complex genetic factors influencing these diseases.

Causal hippocampal‑brain disease relationships detected 
by Mendelian randomization
To further verify the potential causation of the 75 pairs 
(HASVs to neuropsychiatric traits), we performed two-
sample Mendelian randomization (MR) analyses [62] 
using genetic instruments for neuropsychiatric traits 
among individuals of European ancestry. We employed 
the inverse variance weighted method (IVW) as our 
primary analysis approach. As shown in Fig.  6A and 

Additional file 1: Table S22, we observed that four HASVs 
(left hippocampus, right hippocampus, right hippocam-
pal body, right CA1-3) were causally associated with PD 
a threshold of P < 6.67 ×  10–4 (0.05/75, Bonferroni correc-
tion). For example, a decrease of 1 s.d. volume value of 
the CA1-3 in the right hemisphere was associated with 
32% higher odds of PD (IVW OR = 0.68, 95% CI of 0.56 
to 0.82, P = 7.28 ×  10−5). Similar volumes decreased in 
the right hippocampal body were also associated with 
a higher risk of PD (IVW OR = 0.70, 95% CI of 0.58 to 
0.84, P = 8.46 ×  10−5). However, at a nominal threshold 
of P < 0.05, we observed more hippocampal subfields that 
were suggestively causally associated with PD.

To ensure that these findings were robust and not 
influenced by pleiotropy, we evaluated several pleiotropy 
indicators, including the MR-Egger intercept, Cochran’s 
Q statistic, and MR-PRESSO Global Test, all of which 

Table 1 (continued)

Hippocampus Neuropsychiatric 
traits

rg se P value for LDSC PM11 PAR P value for GPA Either significant

Right hippocampal tail BIP  − 0.0195 0.0301 5.17E-01 0.0267 0.1337 6.62E-07 GPA

Right hippocampal tail Insomnia  − 0.0833 0.0398 3.62E-02 0.0294 0.1342 1.09E-04 GPA

Right hippocampal tail PD  − 0.1666 0.0503 9.00E-04 0.0039 0.0703 4.95E-06 GPA

Right hippocampal tail SCZ 0.0282 0.0295 3.38E-01 0.0332 0.1549 6.86E-15 GPA

Right subiculum BIP  − 0.0052 0.0321 8.71E-01 0.0325 0.1655 1.13E-09 GPA

Right subiculum PD  − 0.1851 0.0508 3.00E-04 0.0029 0.0510 4.07E-06 GPA

Right subiculum SCZ  − 0.0411 0.0274 1.34E-01 0.0365 0.1702 5.41E-19 GPA

Right CA1-3 AD 0.0252 0.0766 7.42E-01 0.0005 0.0086 5.31E-05 GPA

Right CA1-3 BIP  − 0.0034 0.0320 9.15E-01 0.0381 0.1930 7.12E-11 GPA

Right CA1-3 PD  − 0.2136 0.0554 1.00E-04 0.0031 0.0481 1.62E-04 LDSC, GPA

Right CA1-3 SCZ  − 0.0383 0.0282 1.75E-01 0.0454 0.2184 1.43E-26 GPA

Right CA4-DG BIP  − 0.0122 0.0307 6.92E-01 0.0547 0.2689 5.25E-14 GPA

Right CA4-DG Insomnia  − 0.0822 0.0353 1.97E-02 0.0507 0.2147 1.35E-05 GPA

Right CA4-DG PD  − 0.1838 0.0527 5.00E-04 0.0040 0.0511 1.68E-05 GPA

Right CA4-DG SCZ  − 0.0279 0.0304 3.58E-01 0.0524 0.2307 1.56E-17 GPA

Right molecular layer HP body ADHD  − 0.0155 0.0480 7.47E-01 0.0496 0.2597 1.49E-05 GPA

Right molecular layer HP body BIP  − 0.0380 0.0348 2.75E-01 0.0416 0.2054 3.86E-08 GPA

Right molecular layer HP body SCZ  − 0.0250 0.0333 4.53E-01 0.0447 0.2002 1.16E-10 GPA

Right molecular layer HP head BIP 0.0225 0.0315 4.75E-01 0.0299 0.1477 1.52E-05 GPA

Right molecular layer HP head Insomnia  − 0.0529 0.0378 1.62E-01 0.0324 0.1518 3.37E-06 GPA

Right molecular layer HP head PD  − 0.1929 0.0576 8.00E-04 0.0027 0.0491 7.21E-05 GPA

Right molecular layer HP head SCZ  − 0.0149 0.0303 6.23E-01 0.0260 0.1140 9.11E-05 GPA

Right fimbria PD  − 0.1362 0.0606 2.46E-02 0.0053 0.0953 3.32E-06 GPA

Right fimbria SCZ  − 0.0011 0.0335 9.74E-01 0.0460 0.2035 3.05E-06 GPA

Right hippocampal fissure SCZ 0.0523 0.0322 1.04E-01 0.0329 0.1539 8.21E-08 GPA

Right HATA SCZ  − 0.1155 0.0336 5.89E-04 0.0476 0.2070 6.45E-08 GPA

Genetic correlation and genetic overlap were estimated by LDSC and GPA methods, respectively. Bonferroni-corrected significance threshold was set at P < 2.08 ×  10–

3(0.05/240), producing a final union set of 75 pairwise traits with significant genetic correlation or genetic overlap for subsequent analysis. We introduced PAR as PM 
11/(PM10 + PM01 + PM11) to represent the proportion of pleiotropic SNPs associated with both traits against the proportion of SNPs associated with at least 1 trait. 
Asterisk denotes statistically significant differences, *P < 0.05; **P < 2.08 ×  10–4(0.05/240, Bonferroni corrected). LDSC linkage disequilibrium score regression, GPA 
genetic analysis incorporating pleiotropy and annotation method, PAR pleiotropy association ratio, PM11 proportion of genetic variants associated with both traits, 
AD Alzheimer’s disease, ADHD attention-deficit hyperactivity disorder, AN anorexia nervosa, ANX anxiety disorder, BIP bipolar disorder, PD Parkinson’s disease, PTSD 
post-traumatic stress disorder, SCZ schizophrenia
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confirmed that the results were not biased by horizontal 
pleiotropic effects (Additional file 1: Table S22). However, 
while these methods address horizontal pleiotropy, we 
also considered the possibility of correlated pleiotropy, 
where shared biological pathways might influence both 
HASV traits and PD. To account for this, we employed 
CAUSE (causal analysis using summary effect estimates) 
to compare nested competing models. Results were con-
sidered consistent with a causal effect if the model with 

a causal effect parameter (causal model) provided a sig-
nificantly better fit than the reduced model fit with only 
a shared effect parameter for correlated horizontal plei-
otropy (sharing model). Our analyses supported causal 
effects of HASV on PD, with the ΔELPDCausal vs. Sharing-
values for all four trait pairs were significantly negative 
(P < 0.05) (Additional file  1: Table  S23). We note that 
the causal effect estimates of these models were compa-
rable in magnitude (overlapping 95% CIs) to the IVW 

Fig. 6 Causal effects between HASV traits and brain disorders using Mendelian Randomization. A This heatmap presents the results of two-sample 
Mendelian randomization (MR) analyses for the 75 trait pairs (direction is HASV to brain disorders) using the IVW method. Statistically significant 
differences are denoted by asterisks: *P < 0.05; **P < 6.67 ×  10−4 (0.05/75, Bonferroni corrected). B Forest plots for the four HASV traits that were 
Bonferroni corrected significant, showing causal effects on PD using two MR methods: IVW and CAUSE. IVW inverse variance weighted, CAUSE 
causal analysis using summary effect estimates, OR odds ratio, AD Alzheimer’s disease, ADHD attention-deficit hyperactivity disorder, AN anorexia 
nervosa, ANX anxiety disorder, BIP bipolar disorder, PD Parkinson’s disease, PTSD post-traumatic stress disorder, SCZ schizophrenia
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estimates (Fig.  6B). These findings align with previous 
research, underscoring the significant role of HASV traits 
in contributing to the pathogenesis of PD.

Polygenic score associated with neuropsychiatric traits
To validate the previously established causal associa-
tions involving the four HASVs, we formulated PRS 
by incorporating genetic dosage weights based on the 
effect sizes of independent genetic variants (P < 1 ×  10–7, 
r2 = 0.1, kb = 250) derived from the corresponding GWAS 
results (Additional file  1: Table  S24). We meticulously 
assessed the predictive abilities of these PRS on PD in a 
cohort of 441,731 UK Biobank participants, who had not 
undergone brain MRI scans and had no prior diagno-
ses of the respective diseases at the time of enrollment. 
As expected, PRS derived from all four HASVs demon-
strated significant predictive capacity for PD incidence 
(Fig.  7 and Additional file  1: Table  S25). The most pro-
nounced results were observed in the right hippocam-
pus, where individuals classified as high risk based on 
the PRS showed a notable 1.30-fold increased risk com-
pared to their low-risk counterparts (95% CI: 1.18–1.43, 
P = 6.15 ×  10–8; Fig.  7B). A similar trend was observed 
with the remaining HASV PRSs. In summary, our find-
ings suggest that increased genetically determined 
HASVs are associated with elevated risks of both PD, 
offering the potential for the identification of high-risk 
individuals and enabling timely intervention strategies.

Discussion
By leveraging the finely delineated subfields of the hip-
pocampus based on the rigorous quality control of brain 
MRI data from a cohort of over 40,000 individuals, we 
shed light on the shared biological mechanisms involved 
in neuropsychiatric traits. In our study, we identified 
several regions, including 12q14.3 [45, 46], 17q21.3 [45], 
12q24.22 [45, 46], 9q33.11 [47], and 2q24.23 [46, 47], that 
have been associated with hippocampal volume and are 
known to play important roles in neuropsychiatric traits. 
These loci have been implicated in various biological pro-
cesses, such as cell proliferation, synaptic plasticity, and 
neuronal apoptosis. For example, MSRB3, located in the 
chromosomal region 12q14.31, has been suggested to 
contribute to the reduction of methionine sulfoxide resi-
dues in proteins, potentially affecting processes related to 
AD and hippocampal atrophy [63–66]. HRK, situated in 
the chromosomal region 12q24.22, plays a crucial role in 
neuronal apoptosis [67] and exhibits the highest expres-
sion levels in hippocampal tissue, as observed in the 
genotype–tissue expression (GTEx) project [68]. These 
findings suggest the involvement of HRK in regulating 
hippocampal volume and may provide insights into the 
molecular mechanisms underlying neurodegenerative 

diseases. Furthermore, the 17q21.31 region, which has 
been widely recognized for its role in hippocampal 
development and neurodegenerative diseases, includ-
ing PD and AD, was also confirmed to influence hip-
pocampal volume in our study. We identified several 
genes within this region, including well-studied genes 
such as CRHR118, MAPT [45, 69], STH1, and KANSL1 
[70], which have been extensively investigated for these 
diseases. Additionally, our study also unveiled a range 
of recently reported genes in the 17q21.31 region, such 
as ARL17A [71], ARL17B [71], LRRC37A2 [71, 72], NSF 
[71], PLEKHM1 [73], SPPL2C [71], and LRRC37A [71, 
72], which may contribute to the pathogenesis of neuro-
degenerative diseases.

Furthermore, our study also validates two recently 
reported regions, 6q21 and 6q25.1, which have a signifi-
cant impact on multiple HASVs [48]. At the 6q21 locus, 
we observed that the G allele of rs1062034 (minor allele 
frequency = 0.36), located in the UTR3 region within 
FOXO3, was associated with a decrease in hippocampal 
volume (β =  − 0.08; P = 6.9 ×  10−23). FOXO3 functions 
downstream of the insulin/IGF signaling pathway and 
plays a crucial role in maintaining adult neural precursor 
cell homeostasis [74–76]. Studies [77] have demonstrated 
that FOXO3 can trigger axonal degeneration upon the 
withdrawal of neurotrophic factors, suggesting its poten-
tial involvement in regulating hippocampal volume and 
establishing a link between neurotrophic signaling and 
structural changes in the hippocampus. In contrast, at 
the 6q25.1 locus, the C allele of rs60424881 (minor allele 
frequency = 0.36), which lies in an intronic region within 
NUP43, was associated with an increase in hippocampal 
volume (β = 0.05; P = 6.1 ×  10−12). The NUP43 gene is a 
constituent of the nuclear pore complex (NPC). Recent 
studies have revealed a close association between abnor-
malities in the NPC and various neurodegenerative dis-
eases [78], including AD, Huntington’s disease, and PD. 
Future research endeavors are expected to elucidate the 
potential role and underlying mechanisms of NUP43 in 
neurodegenerative diseases.

The heritability estimates we found for the HASVs, 
which ranged from 0.15 to 0.32, are in line with earlier 
large-scale studies [79, 80]. These findings highlight the 
significant contribution of genetic factors in shaping the 
variability of hippocampal subregions. In addition, we 
found weaker genetic relationships between the HATA 
subregions, hippocampal fissure, hippocampal fimbria, 
and the remaining regions of the hippocampus in our 
analysis. Stronger genetic relationships, on the other 
hand, were seen in the remaining hippocampal regions. 
This disparity reflects the complex interplay of genetic 
factors and the distinct physiological functions that gray 
matter and white matter play within the hippocampus. 
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Fig. 7 Cumulative incidence of Parkinson’s disease stratified by PRS. A–D These survival curves include 441,731 individuals who had not undergone 
brain MRI scans and had no prior diagnosis of Parkinson’s disease at the time of enrollment. The y-axis represents the cumulative incidence (1 
minus the Kaplan–Meier survival estimate) of a Parkinson’s disease diagnosis, while the x-axis indicates the number of years since enrollment 
in the UK Biobank. Individuals with a high polygenic score are depicted in red, those in the intermediate tertiles are in orange, and those in the low 
tertiles are in green. The 95% confidence intervals, derived from the cumulative hazard standard error, are represented with lighter shades
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Moreover, we conducted a comprehensive exploration of 
the genetic associations between the hippocampal sub-
regions and 97 other subregions of the brain. The results 
revealed widespread connections between the hippocam-
pus and brain regions [23], particularly the amygdala. 
Building upon this, we further investigated the relation-
ships between the HASVs and ten common neuropsychi-
atric traits.

Importantly, through the integration of genetic corre-
lation, genetic overlap, and MR analysis, we confirmed 
that atrophy in the left hippocampus, right hippocampus, 
right hippocampal body, and right CA1-3 region is asso-
ciated with an increased risk of developing PD, which 
aligns with previous clinical research. The hippocampus 
is crucial for cognitive functions, and its atrophy is linked 
to memory impairment and other cognitive deficits. 
Multiple clinical studies have observed whole hippocam-
pal atrophy (either bilateral or unilateral) in PD patients 
with mild cognitive impairment or dementia [5, 81–83]. 
Additionally, studies in healthy individuals highlight that 
the CA1-3 subregions play essential roles in episodic 
memory recollection and are strongly correlated with 
learning and recognition scores [84]. This supports our 
finding that atrophy in the CA1-3 regions is associated 
with increased PD risk. Furthermore, Foo and colleagues 
[85] measured hippocampal subfield volumes in PD 
patients and examined their correlation with cognitive 
and motor decline over 18 months. They found reduced 
volumes in the right CA1 at baseline and observed fur-
ther reduction in the right CA2-3 after 18 months. 
This volume reduction was accompanied by significant 
declines in episodic memory and executive function in 
PD converters (patients who transitioned from PD with 
normal cognition to PD with mild cognitive impairment), 
compared to PD-stable patients (those who did not expe-
rience cognitive decline). This longitudinal evidence 
further corroborates our MR findings, underscoring the 
role of hippocampal atrophy—particularly in the CA1-3 
regions—in the progression of cognitive decline in PD.

The utility of PRS in forecasting disease onset has been 
extensively explored, serving as a valuable tool for iden-
tifying high-risk populations and aiding decision-making 
[10]. However, the enduring predictive capabilities of 
PRS derived from HASVs across neuropsychiatric traits 
have remained largely unexplored. In our investigation, 
extending from the insights garnered through MR analy-
sis, we further assess the influence of PRS on the occur-
rence of PD in a follow-up cohort comprising nearly 
450,000 individuals, observed over a median period of 
11.1  years. Remarkably, our findings highlighted the 
substantial predictive potential of four PRSs for PD, dis-
tinctly showcasing their effectiveness in foreseeing the 
occurrence of this disease.

This study has several limitations. Our analyses rely on 
data from the ongoing UK Biobank brain imaging study, 
which includes only about 10% of all UK Biobank partici-
pants (as of 2020) and predominantly represents individuals 
of European ancestry. The UK Biobank is also known for its 
“healthy volunteer” selection bias, which may not fully cap-
ture the broader European population [86]. To better account 
for population-specific variations in genetic effects, future 
research should incorporate expansive and diverse imaging 
datasets from global populations, as recommended by more 
open and large-scale imaging studies [87]. Additionally, using 
overlapping UK Biobank samples for genetic correlation 
estimates of the 24 HASV traits may result in inflated cor-
relations. Despite this, high-quality, large-sample brain MRI 
images are scarce elsewhere, making the UK Biobank dataset 
indispensable. Furthermore, while identifying specific genes 
through multiple strategies provides a strong indication, fur-
ther experimental studies using gene-editing techniques in 
cellular and animal models are needed.

Conclusions
In conclusion, our study sheds light on 352 independ-
ent significant (P < 2.1 ×  10−9) variants intricately linked 
to the 24 HASVs. Notably, the regions 12q14.3, 17q21.31, 
12q24.22, 6q21, 9q33.1, 6q25.1, and 2q24.2 were found to 
influence multiple HASVs. Furthermore, our exploration 
delves deeper, revealing an expansive and intricate genetic 
interconnection that binds HASV traits to a spectrum of 
brain disorders. Significantly, through meticulous observa-
tion of a cohort comprising nearly 450,000 individuals, we 
unveil the potential of utilizing PRS derived from HASVs 
as a potent tool for risk stratification in PD. This approach 
has the potential to significantly enhance our ability to 
effectively manage and intervene in PD in early stages.
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