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Abstract

Background: We developed a Monte Carlo Markov model designed to investigate the effects of modifying
cardiovascular disease (CVD) risk factors on the burden of CVD. Internal, predictive, and external validity of the
model have not yet been established.

Methods: The Rotterdam Ischemic Heart Disease and Stroke Computer Simulation (RISC) model was developed using
data covering 5 years of follow-up from the Rotterdam Study. To prove 1) internal and 2) predictive validity, the
incidences of coronary heart disease (CHD), stroke, CVD death, and non-CVD death simulated by the model over a 13-
year period were compared with those recorded for 3,478 participants in the Rotterdam Study with at least 13 years of
follow-up. 3) External validity was verified using 10 years of follow-up data from the European Prospective Investigation
of Cancer (EPIC)-Norfolk study of 25,492 participants, for whom CVD and non-CVD mortality was compared.

Results: At year 5, the observed incidences (with simulated incidences in brackets) of CHD, stroke, and CVD and
non-CVD mortality for the 3,478 Rotterdam Study participants were 5.30% (4.68%), 3.60% (3.23%), 4.70% (4.80%),
and 7.50% (7.96%), respectively. At year 13, these percentages were 10.60% (10.91%), 9.90% (9.13%), 14.20%
(15.12%), and 24.30% (23.42%). After recalibrating the model for the EPIC-Norfolk population, the 10-year observed
(simulated) incidences of CVD and non-CVD mortality were 3.70% (4.95%) and 6.50% (6.29%). All observed
incidences fell well within the 95% credibility intervals of the simulated incidences.

Conclusions: We have confirmed the internal, predictive, and external validity of the RISC model. These findings
provide a basis for analyzing the effects of modifying cardiovascular disease risk factors on the burden of CVD with
the RISC model.
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Background
Decision models are being increasingly used to guide deci-
sions on medical interventions in healthcare [1-3]. Both
for healthcare policy-makers who have to make decisions
for specific populations and weigh both benefits and costs,

and for a general practitioner facing a medical decision for
a particular patient, decision models can provide valuable
information to aid the decision at hand. Empirical and
trial-based studies on (cost-)effectiveness of medical inter-
ventions often evaluate a limited number of strategies, and
typically cover a limited period of follow-up. Decision
modeling can overcome these limitations by synthesizing
the available information and extrapolating short-term
study results, providing policy-makers with information
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on expected long-term outcomes and accompanying
uncertainties [4]. However, because decision models are
based on a necessarily simplified representation of the
underlying disease and the intervention being studied, the
validity of the model is not automatically guaranteed. Ear-
lier research has shown that importance of model valida-
tion before the results of a simulation study can be used
for medical decisions [5-8].
Three types of validity have been described. With inter-

nal validation, the output of the model is compared with
the data that was used to build the model [9,10].
Although model output and data are inherently depen-
dent on each other with this type of validation, internal
validity is a necessary condition, and provides an indica-
tion of how well the model output represents the data.
Whereas the follow-up period in observational studies
and clinical trials is necessarily limited, medical decisions
often require long-term outcomes. A common approach
is to extrapolate the results of a simulation model beyond
the period on which it was originally based. The validity
of a model with regard to its accuracy to simulate results
beyond the original timeframe is called ‘predictive’ or
‘prospective’ validity [11,12], and constitutes the second
form of validity. In evaluating predictive validity, the
model output is compared with data from the new

follow-up period, which has become available after the
model was developed. The extent to which the results of
a model can be applied to other populations different
from the original one is the third form of validity, exter-
nal validity [9,10]. Because potential differences between
populations affect many of the parameters used in a
model, external validity is a more rigorous test of model
validity than the other two validity measurements.
The objective of this study was to assess the internal,

predictive, and external validity of the Rotterdam
Ischemic Heart Disease and Stroke Computer Simulation
(RISC) model [13]. The RISC model was designed to
investigate the effects of modifying cardiovascular disease
(CVD) risk factors on the CVD burden in a general
population. The model is based on data from the Rotter-
dam Study, a cohort follow-up study of 7,983 adults aged
55 years and older. Validation of the RISC model is
required before the results produced by the model can be
used for decision-making.

Methods
The model
The RISC model is a Monte Carlo state-transition model
(schematically presented in Figure 1) with six states: 1) the
CVD death state, 2) the non-CVD death state, 3) the

Figure 1 Schematic presentation of the Rotterdam Ischemic Heart Disease and Stroke Computer Simulation (RISC) model. CHD,
coronary heart disease; CVD, cardiovascular disease. Arrows indicate transitions between the health states.
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coronary heart disease (CHD) state, 4) the stroke state, 5)
the CHD and stroke state, and 6) the well state (being
alive without CHD or stroke). The model simulates inci-
dent CVD events in individuals with and without previous
CVD based on risk-actor-dependent transition probabil-
ities, using Cox regression equations.
Individual risk-factor profiles are modeled and tracked

over time. Incident CVD events are counted using tracker
variables during the period of simulation. CHD is defined
as: acute myocardial infarction (International Classifica-
tion of Diseases, 10th edition (ICD-10) code I21), percuta-
neous transluminal coronary angioplasty (PTCA) and
coronary artery bypass graft (CABG). Stroke is limited to
non-hemorrhagic and unspecified strokes (ICD-10 codes
I63, I64). Cardiovascular death is defined as mortality due
to hypertensive diseases (ICD-10 codes I10 to 15),
ischemic heart disease (ICD-10 codes I20 to I25), sudden
cardiac death (ICD-10 codes I46, I49), congestive heart
failure (ICD-10 code I50), cerebrovascular disease (ICD-10
codes 160 to 167), other arterial disease (ICD-10 codes I70
to I79), or sudden death (ICD-10 code R96). Non-cardio-
vascular death is defined as mortality due to all other
causes (all other ICD-10 codes). The model was built
using TreeAge software (version Data Professional release
2009; TreeAge Software, Inc., Williamstown, USA).
Detailed information about the model has been given in
an earlier publication [13] (see also Additional file 1).

Ethics approval
In the RISC model, the risk-factor profiles and transition
probability functions were based on data from the Rotter-
dam Study population. The Rotterdam Study was origin-
ally approved by the institutional review board of the
Erasmus Medical Center and by the review board of The
Netherlands Ministry of Health, Welfare and Sports [14].

Data sources
This population consisted of 7,983 respondents from a
random sample of adults aged 55 years and older, who
were recruited between 1990 and 1993 and were residing
in Ommoord, the Netherlands. Of these 7,983 respon-
dents, 6,871 both visited the research center and signed
an informed consent document. These individuals were
followed up from 1990 to 2000; the follow-up consisted
of three physical examinations with interviews, and the
surveillance of hospital admissions, death registries, and
other available medical sources ensured accurate follow-
up of death and clinical manifestations of CVD.
In 3,501 of the participants, all important characteristics

for prediction of CVD were known, and the RISC model is
based on 5-year follow-up data from these 3,501 indivi-
duals. The risk factors considered for the transition prob-
ability functions were age, sex, smoking status, systolic and
diastolic blood pressure, body mass index, waist-to-hip

ratio, ankle-brachial index; levels of plasma glucose,
plasma total cholesterol, high-density lipoprotein (HDL)
cholesterol, and plasma creatinine; family history of CVD,
presence of hypertension (blood pressure over 160/90 or
use of anti-hypertensive medication) or diabetes mellitus;
manifestations of intermittent claudication, angina pec-
toris, atrial fibrillation or transient ischemic attacks; and
prevalent CVD. Details about the assessment of these risk
indicators have been described in earlier publications [15].
The Cox regression equations that described the state-
transition probabilities were centered around the mean of
the risk factors of these 3,501 participants. This enabled
the analysis of populations other than the original one, by
substituting the centered cumulative baseline hazard and
the average values of the risk factors by the values from
the other population(s).

Simulation of parameter uncertainty
The RISC model allows for the evaluation of parameter
uncertainty [16]. The majority of the parameter uncer-
tainty in the model stems from the b-coefficients underly-
ing the transition probability functions, and these
b-coefficients are potentially dependent on each other. To
model the uncertainty of the coefficients, 100 bootstrap
samples of the study population were drawn. All the tran-
sition probability functions were fitted for every bootstrap
sample, resulting in 100 sets of linked transition probabil-
ity functions, which allowed for the dependency between
them. The transition probabilities were based on Cox
regression equations, and parameter uncertainty around
the baseline hazards of the CVD events, CVD death, and
non-CVD death was also included.

Simulation of heterogeneity
The RISC model was designed to simulate individuals who
each had a unique risk-factor profile for CVD [17]. Model
outcomes are expected to be different for individuals with
high-risk profiles (older age, male, high blood pressure,
high lipid levels, diabetes mellitus) than for those with
more favorable profiles. To allow for differences in out-
comes resulting from individual differences in risk-factor
profiles (that is, heterogeneity), we used the RISC model
to simulate different individuals one at a time.

Simulation of the history for each individual
The risk factors used in the RISC model reveal trends
over time. As an example, total cholesterol levels were
found decline with age in the Rotterdam Study. To take
these trends in risk factors over time into account, each
risk-factor profile for a particular individual was updated
every 5 years during their simulated life in the model,
based on the trends seen during the first 5 years in the
Rotterdam Study. Therefore, the development of the risk
factors needed to be tracked over time.
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Events occurring during an individual’s simulated life
could influence the occurrence of other events. As an
example, a CHD event increases the risk of dying in
subsequent years. All cardiovascular events in the RISC
model were therefore tracked and linked to the transi-
tion probabilities. The inclusion of variables used to
track CVD events and changes in risk factors over time
for each individual required the simulation of each indi-
vidual multiple times to account for stochastic uncer-
tainty [17].

Internal and predictive validation
From our cohort of 3,501 individuals from the Rotterdam
Study on which the RISC model was based, we selected
3,478 who had at least 13 years of follow-up as of 1 Janu-
ary 2007. The remaining subjects were lost to follow-up
because they had moved out of the area or had discontin-
ued their participation. We calculated the cumulative
incidences for total mortality, CVD mortality, non-CVD
mortality, CHD, and stroke as defined previously for the
13-year period of follow-up (beginning of year 1 until
end of year 13). We then compared this with the simu-
lated cumulative incidences of the same events during
the 1st year until the end of the 13th year by the RISC
model. We furthermore stratified the analyses for the
internal and predictive validity for CVD mortality by ter-
tiles of age for the 3,501 participants, and for men and
women separately. We choose CVD mortality because it
is one of the most important clinical outcomes, and there
would be enough events for it in each stratum to obtain
stable results.

External validation
For the external validation, we used data from the EPIC-
Norfolk study [18], which is a prospective population
study of 25,663 men and women aged 45 to 79 years old
residing in Norfolk, UK. This study had been approved by
the Norwich District Health Authority ethics committee,
and all participants gave signed informed consent [18].
Participants were originally recruited from age and gender
registers of general practices in Norfolk as part of the 10-
country collaborative EPIC study designed to investigate
dietary and other determinants of cancer. Additionally,
characteristics including anthropometry, blood pressure,
and lipid levels were obtained for the assessment of deter-
minants of other diseases. For the baseline survey from
1993 to 1997, participants completed a detailed health and
lifestyle questionnaire and attended a clinic visit. All parti-
cipants were followed up and mortality, linked to the UK
Office of National Statistics, was recorded. Participants
admitted to hospital were identified by their unique
National Health Service number by data linkage with the
East Norfolk Health Authority (ENCORE) database, which

identifies all hospital contacts throughout England and
Wales for Norfolk residents.
The EPIC data did not contain all variables used in the

RISC model. In particular, the following information was
not readily available: ankle-brachial index, serum glucose
levels, and a history at baseline of angina pectoris, atrial
fibrillation, intermittent claudication, or transient
ischemic attack. Consequently, we imputed the missing
data in the EPIC dataset based on the multiple variables
that were available [19]. All major risk factors such as
age, sex, cholesterol levels, and blood pressure were avail-
able and did not need to be imputed.
We used EPIC-Norfolk mortality data from 1993 until

31 March 2008. From the 25,663 participants, we selected
25,492 who had a follow-up of at least 10 years. For the
external validation, we calculated the cumulative incidence
of CVD and non-CVD mortality in the EPIC dataset. We
compared this with the simulated cumulative incidences
of the same events after year 1 until year 10 by the RISC
model, using the 25,492 EPIC profiles as input.
We did not calculate or simulate CHD and stroke events

in the external validation, because the EPIC study did not
document CABG and PCI events and furthermore, non-
fatal events were only recorded if the patient was hospita-
lized. In the Rotterdam Study, both CABG and PCI were
counted as CHD events, and all CHD and stroke events
were recorded whether or not the patient was hospitalized,
making the definition of CHD and stroke inherently differ-
ent between the two cohorts [20,21].

Statistical analysis
Important baseline characteristics for the baseline 3,478
Rotterdam Study participants and 25,492 EPIC partici-
pants were calculated and tabulated to evaluate their
differences.
To take into account parameter uncertainty, the hetero-

geneity of the participants, and the stochastic uncertainty,
we performed a three-level simulation [16,17]. We calcu-
lated the mean and distribution around the mean of the
cumulative incidences by drawing from 100 second-order
sets of linked b-coefficients from the state-transition prob-
abilities and values for the baseline hazards of the events
(outer simulation loop for parameter uncertainty). For
each set of linked b-coefficients and baseline hazards, we
consecutively simulated 2,000 randomly drawn risk-factor
profiles from the 3,478 Rotterdam profiles for the internal
and predictive validation, and 2,000 from the 25,492 EPIC
profiles for the external validation (middle simulation loop
for heterogeneity). For each profile, 200 random walks
were simulated, needed for the tracking of the individual
cardiovascular histories (microsimulation, inner simulation
loop for stochastic uncertainty). This implies 100 × 2,000
× 200 runs per analysis. We did not model any particular
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intervention or treatment in this study; only the observed
history (current practice) was simulated for purposes of
validation. For the stratified analyses we aggregated on the
individual level (n = 3,501 × 200 × 100 runs per analysis).
For the internal and predictive validation, we determined

the average simulated cumulative incidences of CVD
death, non-CVD death, CHD, and stroke for the 13-year
period. For the external validation, we determined the
average simulated cumulative incidences of CVD death
and non-CVD death for year 1 until year 13. Because the
Rotterdam Study and EPIC-Norfolk population are poten-
tially different with respect to the distribution of risk fac-
tors and incidence of CVD, we subsequently recalibrated
the RISC model by substituting the centered cumulative
baseline hazards and mean values of the risk factors from
the original model based on the Rotterdam data with the
corresponding ones from the EPIC-Norfolk cohort [22].
We then ran again 2,000 randomly drawn participants
from the 25,492 EPIC participants.
For all cumulative incidences, we calculated the 2.5%

and 97.5% percentiles of the variation around the aver-
age incidences (credibility intervals) from the RISC
simulations, to quantify the influence of parameter
uncertainty. We compared the observed with the simu-
lated incidences for all events.

Results
Compared with the Rotterdam Study, the the EPIC-Nor-
folk study participants were 10 years younger on average,
and there were more men in the EPIC-Norfolk study
(Table 1). On average, EPIC participants had lower total
cholesterol levels and higher HDL levels (Table 1). The
number of Rotterdam Study participants with a history of
CVD at baseline exceeded that of the EPIC participants.

Internal and predictive validation
During the 13 years of follow-up, 367 CHD events, 343
stroke events, 494 CVD deaths, and 846 non-CVD deaths
occurred in the 3,478 Rotterdam Study participants, The
cumulative incidences of CVD and non-CVD mortality
during the13 years of follow-up for the Rotterdam Study
participants were compared with the incidences generated
by the RISC model (Figure 2, Figure 3). The observed
values, both during the first 5 years (internal validation)
and for the extrapolated period (predictive validation),
were consistent with the simulated ones. The cumulative
incidences of CHD and stroke events during the 13-year
follow-up were compared with the incidences generated
by the RISC model (Figure 4, Figure 5). The observed
values were again consistent with the simulated events.
For the cumulative incidences of CVD mortality, stratified
by tertiles of age, for men and women respectively, the
observed values were also consistent with the simulated
values (see Additional file 1, Figure S2, Figure S3).

External validation and recalibration
During the 10-year follow-up of the 25,492 EPIC-Norfolk
participants, 943 CVD deaths and 1,661 non-CVD deaths
occurred. The cumulative incidence of CVD and non-
CVD mortality during the 10-year follow-up of the 25,492
EPIC participants were compared with the incidences gen-
erated by the RISC model, using the EPIC-Norfolk profiles
as input (Figure 6, Figure 7). The observed values were
within the 95% credibility intervals of the simulated values,
but the RISC model overestimated the incidences for all
years, for both CVD and non-CVD mortality. We then
estimated the cumulative incidences of CVD and non-
CVD mortality, after substituting the centered cumulative
baseline hazards and average values of the risk factors with
those based on the EPIC data, which recalibrated the

Table 1 Baseline characteristics of the risk factors used in
the Rotterdam Ischemic Heart Disease and Stroke
Computer Simulation (RISC) model for the 3,478
Rotterdam study participants and 25,492 European
Prospective Investigation of Cancer (EPIC)-Norfolk study
participants

Variable RISC (n = 3,478) EPIC (n = 25,492)

Age 69.0 (62 to 75) 59.2 (51 to 67)

Male subjects, % 39% 45%

Smoker

Never 34.5% 46.0%

Former 41.9% 42.3%

Current 23.6% 11.7%

BMI 26.3 (23.8 to 28.5) 26.3 (23.7 to 28.4)

WHR 0.91 (0.84 to 0.97) 0.86 (0.78 to 0.93)

Systolic BP 140.0 (124 to 155) 135.5 (122.5 to 146.5)

Diastolic BP 74.1 (66 to 82) 82.5 (74.5 to 89.5)

Hypertension 36.4% 29.9%

Total cholesterol 6.67 (5.8 to 7.4) 6.19 (5.4 to 6.9)

HDL cholesterol 1.34 (1.1 to 1.5) 1.41 (1.1 to 1.6)

Glucoseb 6.93 (5.5 to 7.5) 6.67 (5.5 to 7.3)

Creatinine 82.5 (72 to 91) 86.7 (76 to 97)

Diabetes mellitus 10.7% 12.2%

Angina pectorisb 10.4% 9.2%

Atrial fibrillationb 2.5% 2.9%

Intermittent claudicationb 2.1% 1.5%

TIAb 5.1% 4.8%

CVD 17.8% 4.3%

Family history of MI 16.3% 18.4%

Family history of CVD 23.0% 23.3%

Abbreviations: BMI, body mass index; BP, blood pressure; CVD, cardiovascular
disease; MI, myocardial infarction; TIA, transient ischemic attack; WHR, waist-
to-hip ratio.
aAverage values and inter-quartile ranges (brackets) are given for continuous
variables, while categorical variables are given as percentages.
bIndicates imputed risk factors for the EPIC-Norfolk dataset.
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Figure 2 Cardiovascular disease (CVD) mortality during 13 years of follow-up. The first 5 years refer to the internal validation, the
remaining years to the predictive validation. Simulated versus observed values for the Rotterdam Study data.

Figure 3 Non-cardiovascular disease (CVD) mortality during 13 years of follow-up. The first 5 years refer to the internal validation, the
remaining years to the predictive validation. Simulated versus observed values for the Rotterdam Study data.
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Figure 4 Coronary heart disease (CHD) events during 13 years of follow-up. The first 5 years refer to the internal validation, the remaining
years to the predictive validation. Simulated versus observed values for the Rotterdam Study data.

Figure 5 Stroke events during 13 years of follow-up. The first 5 years refer to the internal validation, the remaining years to the predictive
validation. Simulated versus observed values for the Rotterdam Study data.
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model (Figure 8, Figure 9). After this recalibration, the
observed CVD and non-CVD mortality incidences
matched the simulated incidences from the RISC model.

Discussion
In this study, we evaluated the internal, predictive, and
external validity of the RISC model. The simulated
cumulative incidence of CVD and non-CVD deaths,
CHD events, and strokes adequately represented the
data during the original follow-up period of 5 years on
which the RISC model was based. Extrapolation of the
simulated results beyond this period proved to be valid
for 13 years of follow-up, the maximum length that we
analyzed in this paper. Although the results of the RISC
model overestimated the CVD and non-CVD mortality
compared with the observed 10-year incidences in the
EPIC-Norfolk population, recalibrating the model with
the cumulative baseline hazards and mean values of the
risk factors substantially improved performance.
Other decision models used to evaluate preventive and

treatment strategies for CVD have been well established.
A recent review by Unal et al. identified forty-two such
models, of which six major ones have been described in

detail [23]. Although some of the forty-two models
reported assessment of validity, most did not. Of the six
major models, three have not been validated [24-26],
two models had information on internal validity
reported [27,28], and an external validation had been
performed fo two models [29,30].
In the present study, the predictive validity of the

RISC model was tested against follow-up data for more
than twice the length of the period on which the model
was originally based. The fact that the observed and
simulated incidences matched closely even when extra-
polated beyond the original data makes it plausible to
expect projections beyond 13 years to be valid as well.
The trends in risk factors over time and their effects on
the incidence of events, which are jointly modeled in
the RISC model, seem to provide a valid basis to extra-
polate results, without the need to recalibrate the model
for the Rotterdam Study population. We furthermore
showed the robustness of the internal and predictive
validity by providing results for the stratified analyses by
tertiles of age and sex. As for the external validation, the
EPIC-Norfolk population was on average younger and
healthier than the Rotterdam Study population. It was

Figure 6 Cardiovascular disease (CVD) mortality during 10 years of follow-up. Simulated versus observed values for the European
Prospective Investigation of Cancer (EPIC)-Norfolk data.
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to be expected that an unadjusted model, using the
baseline hazards and mean of the risk factors from the
Rotterdam Study, would overestimate the observed inci-
dences in the EPIC-Norfolk study. In the recalibrated
model, we updated only the baseline cumulative hazards
of the events and the mean values of the risk factors, a
method very commonly used when applying models to
other populations than that for which the model was
originally developed in [22,31]. This result suggests that
the relative strengths of the associations of the risk fac-
tors with the incidence of the events in the RISC model
are the same for both the EPIC-Norfolk population and
Rotterdam Study. The resulting external validity of the
RISC model after this adjustment strongly supports this
assumption.
Our analysis does have some limitations. The RISC

model was designed to investigate the effects of modifying
cardiovascular risk factors on the burden of CVD in the
middle-aged and older general population. We validated
the model in the EPIC-Norfolk data, which included peo-
ple aged from 45 years upwards. Although most current
guidelines on the primary prevention of CVD mostly start
at the age of 45 years and older, some do (or in the future
potentially will), suggest that CVD prevention should

begin at an earlier age Whether the RISC model also per-
forms well in a younger population remains to be deter-
mined. The RISC model is intended to be used for
projections during the remaining lifetime of an individual.
The model proved to be valid for projections during 13
years of follow-up, and for most older people this is suffi-
ciently long to cover their remaining lifespan. For younger
people, this is less likely, and model extrapolation beyond
this period therefore has to be made, which currently has
not been validated. Because the Rotterdam Study is
ongoing, and longer follow-up data are being collected, we
will be able to test whether this additional extrapolation is
valid as well.
A number of risk factors used for the RISC model were

not documented in the EPIC-Norfolk study. To make the
EPIC-Norfolk dataset suitable for the RISC model, we
imputed missing data based on the correlations between
the missing risk factors and the documented variables.
These correlations stemmed from the Rotterdam Study
data, thereby introducing dependency between the
(imputed) EPIC-Norfolk data and the RISC model. How-
ever, the major traditional risk factors such as age, sex,
cholesterol level, and blood pressure were available in
EPIC. The prevalence of a number of missing risk factors

Figure 7 Non-cardiovascular disease (CVD) mortality during 10 years of follow-up. Simulated versus observed values for the European
Prospective Investigation of Cancer (EPIC)-Norfolk data.
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such as atrial fibrillation and intermittent claudication were
low in the Rotterdam Study data on which the RISC model
was developed, and the incremental value beyond the tradi-
tional risk factors of the other variables, such as the ankle-
brachial index, has been found to be limited [32]. It is
therefore less likely that the imputation influenced the
external validity in favor of concordance. Although the
EPIC-Norfolk dataset contains information on (hospita-
lized) patients with MI, the RISC model simulates CHD as
a combined endpoint, including CABG and PCI. This is
consistent with most clinical trials using similar combined
endpoints. The design of the RISC model therefore did not
allow for direct comparison of simulated MIs as a sole end-
point. Although acute MI is the major component of CHD,
both CABG and PCI interventions are inherently different
from acute MIs, and we therefore did not externally vali-
date CHD events in the EPIC dataset.
At the time of this paper, we did not have datasets

other than EPIC-Norfolk at our disposal to perform
additional external validation. The fact that the RISC
model, after updating the model with the baseline
hazards and mean values for the risk factors from EPIC,
proved to be valid for the EPIC-Norfolk cohort, does

not automatically imply that it will be valid in other
populations as well. The EPIC-Norfolk cohort was
younger on average, and included more men than the
RISC cohort. However, the fact that the cohort was dif-
ferent with regard to these important risk factors, and
yet RISC still provided valid results, does make a strong
case that the model will be valid for other cohorts as
well. We do intend to validate the model with other
data as they become available. Both the Rotterdam
Study and the EPIC-Norfolk study were population-
based studies and included individuals regardless of pre-
existing risk-factor profiles or disease status. Although
risk-factor distributions of the study participants might
in principle be different from the populations they
intend to represent, it is very likely that the RISC model
is valid for most western European populations in gen-
eral after adjusting for baseline hazards. A simpler
model with a reduced set of parameters, excluding the
less common ones such as atrial fibrillation and ankle-
brachial index, would possibly allow for a more rapid
validation process in other populations. In an ongoing
effort to optimize our model, we also intend to make
efforts to simplify our current model.

Figure 8 Cardiovascular disease (CVD) mortality during 10 years of follow-up in the recalibrated model. Simulated versus observed
values for the European Prospective Investigation of Cancer (EPIC)-Norfolk data.
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We modeled and validated the cardiovascular histories
of the participants of the Rotterdam Study and EPIC-Nor-
folk cohort as they were observed; that is, without any
interventions. Although the results with regard to this
validity seem promising, the RISC model will be used to
evaluate interventions for the primary prevention of CVD.
In that case, the validity of the model to evaluate an inter-
vention depends not only on the observed CVD history,
but also on the extent to which other structural assump-
tions are made, such as modeling the treatment effect of
an intervention [33]. A more extensive framework of
model validation proposed by Kopec et al. [34] also
includes between-model comparisons, and comparisons of
evidence from examining the consequences of model-
based decisions. Between-model comparisons are specifi-
cally useful when analyzing certain interventions com-
pared with the natural history of the disease, as we did in
the current analysis. Being a simplifying abstraction of
reality, a model will be valid with regard to some (but not
necessarily all) mechanisms or relationships seen in real
life. Assumptions made to assure that particular mechan-
isms are characterized can cause the model to be less
valid with regard to other possible mechanisms. This
makes the modeling of complex interrelationships more

of an art than an exact science. For each particular deci-
sion problem, it is important to determine the assump-
tions to which each approach is sensitive, determine the
appropriateness of these assumptions, and judge the rele-
vance of the model sensitivity to them in the context of
the decision problem and the forthcoming decisions that
will result from it.

Conclusions
This study shows that the RISC model accurately pre-
dicts mortality and CVD events during the period of 5
years on which it is based (internal validity) and during
an extended follow-up period up for 13 years (predictive
validity). In addition, after recalibration, it accurately
predicts mortality in the EPIC-Norfolk cohort as well
(external validity). These findings provide a basis to gen-
eralize results from the RISC model.

Additional material

Additional file 1: Technical appendix. Technical appendix with
additional information on the Rotterdam Ischemic Heart Disease and
Stroke Computer Simulation (RISC) model and analyses.

Figure 9 Non-cardiovascular disease (CVD) mortality during 10 years of follow-up in the recalibrated model. Simulated versus observed
values for the European Prospective Investigation of Cancer (EPIC)-Norfolk data.
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