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Abstract

Graft-versus-host disease is one of the major
transplant-related complications in allogeneic
hematopoietic stem cell transplantation. Continued
efforts have been made to prevent the occurrence of
severe graft-versus-host disease by eliminating or
suppressing donor-derived effector T cells.
Conventional immunosuppression does not
adequately prevent graft-versus-host disease,
especially in mismatched transplants. Unfortunately,
elimination of donor-derived T cells impairs stem cell
engraftment, and delays immunologic reconstitution,
rendering the recipient susceptible to post-transplant
infections and disease relapse, with potentially lethal
consequences. In this review, we discuss the role of
dynamic immune regulation in controlling graft-
versus-host disease, and how cell-based therapies are
being developed using regulatory T cells and other
tolerogenic cells for the prevention and treatment of
graft-versus-host disease. In addition, advances in the
design of cytoreductive conditioning regimens to
selectively target graft-versus-host disease-inducing
donor-derived T cells that have improved the safety
of allogeneic stem cell transplantation are reviewed.
Finally, we discuss advances in our understanding of
the tolerogenic facilitating cell population, a
phenotypically and functionally distinct population of
bone marrow-derived cells which promote
hematopoietic stem cell engraftment while reducing
the risk of graft-versus-host disease.

Review

Regulatory T cells in graft-versus-host disease-prevention

Graft-versus-host disease (GVHD) remains a major obsta-
cle for the clinical application of hematopoietic stem cell
(HSC) transplantation [1]. GVHD is initiated by
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alloreactive donor T cells which recognize the host minor
and major histocompatibility (MHC) antigens, proliferate,
and damage target tissues. Donor T cells have been shown
to enhance engraftment of HSC, reconstitute T cell immu-
nity, and mediate a potent beneficial anti-tumor effect,
known as graft-versus-leukemia (GVL) effect. Depletion of
donor T cells impairs engraftment of HSC and abrogates
the T cell-mediated GVL effect. In addition, administra-
tion of immunosuppressive drugs to prevent GVHD after
HSC transplantation impairs T cell function and increases
the risk of opportunistic infection and tumor relapse.
Therefore, recent approaches have focused on tailored
approaches to maintain the desirable effect of GVL yet
avoid GVHD after HSC transplantation. Recent preclinical
novel cell-based therapies have been developed to achieve
these outcomes. They are currently being translated to the
clinic.

The mechanisms of donor T cell (CD4" T cell and
CDS8" T cell)-mediated GVHD are multifactorial and
include activation of macrophages and antigen-present-
ing cells (APC) by transplantation conditioning regimens
to damage host tissue, releasing soluble cytokines such
as TNF-o and IL-1; alloreactive T cell activation, prolif-
eration and differentiation in response to host or donor
APC; and alloreactive T cell infiltration and release of
pro-inflammatory cytokines which leads to damage of
the target tissue [2]. Over the past two decades, the
importance of regulatory populations of lymphocytes in
controlling immune responses has been increasingly
appreciated. Although different cell subsets with regula-
tory activity have been described, including CD4"/CD25
"/forkhead/winged helix transcription factor * (FoxP3"),
CD8"/CD28", T/natural killer (NK) cells, and TCR
"/CD4°/CD8’, most studies have concentrated on CD4
*/CD25"/FoxP3™ T cells [3]. Among the CD4" T cell
population, CD4"/CD25"/FoxP3" regulatory T cells
(Tyeg) have been demonstrated to suppress a variety of
immune responses dependent on effector T cells.

CD4" T,q have been divided into two major groups:
the naturally occurring T,e; and inducible T..,. Both
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types of T\, have proven effective in preventing GVHD
in murine models of GVHD [4,5] and, to a lesser extent,
in human HSC transplantation [6-8]. Although studies
have suggested that T,., downregulate both T helper 1-
and T helper 2-mediated immune responses, mainly
through IL-10 and transforming growth factor beta
(TGE-B) production, direct cell-cell contact has also
been postulated to be required as a mechanism of
action. Natural T,., are generated in the thymus and are
nonspecific in their suppressive capability [3,9].
Although natural T,., must encounter antigens to exert
their suppressive effects, once activated they suppress in
an antigen-nonspecific manner, presumably through the
release of immunosuppressive cytokines such as IL-10
and TGF-B [10]. Because of their nonspecific mechan-
ism of action, there is concern regarding their clinical
relevance. Importantly, antigen-specific T,cq are induci-
ble and need to be activated through their TCR in order
to mediate their suppressive activities. The expression of
receptors of chemokines, such as C-C chemokine recep-
tor type 5 (CCR5) and CXC chemokine receptor 3
(CXCR3), on antigen-specific T s support a role for
proper trafficking of T,., to target tissue in the preven-
tion of acute GVHD in murine models [11,12]. A recent
study showed that tolerant patients without GVHD after
HSC transplantation expressed significantly higher levels
of CCR5 and CXCR3 compared with patients with acute
GVHD early after HSC transplantation [8], suggesting
that homing of T,e, to secondary lymphoid tissues and
sites of inflammation may play an important role in the
control of GVHD.

Several studies in experimental murine models have
shown that T,., can suppress proliferative activity of
conventional CD4" T cells and CD8" T cells to alloanti-
genic stimulation in vitro and induce transplantation
tolerance and reduce acute GVHD occurrence in vivo
[13-15]. Donor CD4"/CD25" T,.q isolated from the
spleen or bone marrow of C57BL/6 mice can suppress
lethal GVHD induced by transplanted donor CD4
T/CD25™ T effector cells after allogeneic T cell-depleted
bone marrow transplantation (BMT) [14]. Importantly,
the beneficial effect of adoptively transferred CD4
"/CD25" T,y does not abrogate the beneficial effect of
donor T cell-mediated GVL [13]. Ianni et al. recently
evaluated the impact of early infusion of freshly isolated
human donor CD4*/CD25" T,., followed by conven-
tional T cells in human leukocyte antigen (HLA)-haploi-
dentical HSC transplantation [16]. Adoptive transfer of
human donor T,., prevented acute as well as chronic
GVHD in the absence of immunosuppressive drug ther-
apy after transplantation. Moreover, T,.; promoted
immune reconstitution of CD4" T cells, CD8" T cells, B
cells, and NK cells, and improved protective immunity
against cytomegalovirus infection.
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The major limitation for the clinical application of
T,eg-based therapy to prevent GVHD is obtaining suffi-
cient numbers of antigen-specific T, and maintaining
their regulatory properties after infusion [17]. Studies
showed that ex vivo expansion of mouse recipient-speci-
fic CD4"/CD25" T,g can be obtained using donor T,eq
stimulation with allogeneic recipient APC [18,19]. Ex
vivo expansion of T,., resulted in specific tolerance for
recipient-type alloantigens, but not for third-party anti-
gens. Moreover, the T,., effectively controlled GVHD
while favoring immune reconstitution and maintaining
GVL in a murine model [18]. Another study showed
that rapamycin-induced T,e, from human CD4"/CD257/
CD45RA™ cells exhibit a potent suppressive function in
vitro compared with natural T,.,, and suppress acute
GVHD in a xenogeneic NOD/SCID mouse model [20].
Clinical trials of therapeutic cell transfer using T,.g for
the prevention and/or treatment of GVHD have recently
been described. Ianni et al. reported that the adoptive
transfer of freshly isolated, donor-derived natural T,
followed by conventional donor-derived T cells (Tcon)
at the time of full-haplotype-mismatched adult HSC
transplantation in patients being treated for hematologic
malignancies prevented acute or chronic GVHD while
favoring Tcon-mediated post-transplantation immune
reconstitution [16]. Brunstein et al. detailed a ‘first-in-
human’ phase 1 clinical trial of nonspecific (CD3/CD28
bead)-based ex vivo expanded umbilical cord blood-
derived T, in patients after umbilical cord blood trans-
plantation and noted a reduced incidence of severe
acute GVHD [21].

T,es as diagnostic and prognostic cellular biomarkers
for acute GVHD have been investigated in mouse and
rat models and human HSC transplantation [22-25].
Studies reported that the level of FoxP3 mRNA expres-
sion in peripheral blood mononuclear cells from
patients with either acute GVHD or chronic GVHD was
significantly decreased compared with patients without
GVHD [25,26], suggesting that a regulatory mechanism
is involved in the development of GVHD. The number
of FoxP3" T,q in skin biopsies from GVHD patients
was significantly higher in patients responding to
GVHD treatment and with a lower grade of GVHD
compared with those with more severe GVHD [23].
Taken together, these observations indicate that T,g
can regulate immune responses and induce tolerance to
alloantigen after HSC transplantation. These findings
provide evidence for the use of T,., as a useful biologic
to improve GVHD diagnosis and treatment.

Cyclophosphamide and prevention of graft-versus-host
disease

In GVHD, functional immune cells in the donor bone
marrow recognize the recipient as foreign and mount an
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immunologic attack on the patient’s organs and tissues,
impairing their ability to function [1]. Strict HLA
matching between donors and transplant patients has
been proven to reduce the incidence and severity of
GVHD [27]. However, approximately 50% of patients
still develop GVHD even if they undergo allogeneic
HSC transplantation with HLA-matched donors [28].
The challenge facing HSC transplantation is to achieve
better allogeneic engraftment without graft rejection and
GVHD. The common reagents of GVHD prophylaxis
comprise cyclosporine, or tacrolimus, methotrexate,
mycophenolic acid, or sirolimus [29-31]. However,
cyclophosphamide has been found more recently in ani-
mal and clinical studies to be a better and potent pro-
phylactic agent of GVHD without obvious aplasia due to
toxicity to donor stem cells [32-36]. When it is used in
high dose after allogeneic BMT in mouse models, cyclo-
phosphamide targets alloreactive proliferating T cells
and enhances alloengraftment without causing GVHD
[32-34]. Therefore, in order to gain the effect of cyclo-
phosphamide in enhancing alloengraftment, it has to be
used 48 hours after BMC infusion but not before [32].
High-dose cyclophosphamide given on day 2 after trans-
plantation mitigated both the incidence and severity of
acute GVHD in an MHC-mismatched donor-recipient
combination [37]. The effect of post-transplantation
cyclophosphamide in GVHD prevention has been
demonstrated by inhibiting graft-versus-host reactions
and selectively eliminating activated T cells in response
to donor antigens in minor histocompatibility disparity
[38] and MHC-mismatched [33] mouse models. Clini-
cally, post-transplantation cyclophosphamide has
reduced the incidence and severity of GVHD across
MHC barriers after BMT [33-35,39,40]. High expression
of aldehyde dehydrogenase in HSC allows for the
prompt inactivation of cyclophosphamide and helps
explains their relative resistance to the effects of this
alkylating agent. In contrast, activated lymphocytes
express low levels of aldehyde dehydrogenase and are
particularly susceptible to cyclophosphamide. Impor-
tantly, these preclinical studies demonstrated the specific
safety profile of cyclophosphamide in stem cell-sparing
activity, thus provided the preclinical rationale to pro-
ceed with a clinical trial of partially HLA-mismatched or
HLA-haploidentical BMT with high-dose post-trans-
plantation cyclophosphamide for patients with poor
prognosis hematologic malignancies.

The major clinical rationale for HLA-haploidentical
BMT is to extend the potential benefits of HSC trans-
plantation and the graft-versus-tumor effect to patients
who lack an HLA-matched donor. The major challenge
is to reduce the incidence of fatal graft rejection, severe
GVHD and treatment-related mortality while promoting
engraftment. Luznik et al. recently reported the
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outcomes of 68 patients with poor-risk hematologic
malignancies who were conditioned with fludarabine,
cyclophosphamide and 2 Gy total body irradiation prior
to receiving T cell-replete bone marrow from HLA-hap-
loidentical, first-degree relatives [36]. Donors and recipi-
ents were mismatched at a median of four out of five
HLA alleles, indicating substantial donor-recipient his-
toincompatibility. GVHD prophylaxis comprised intrave-
nous cyclophosphamide 50 mg/kg on day 3 (n = 28) or
on days 3 and 4 (n = 40) after transplantation, followed
by tacrolimus and, mycophenolic acid. These two drugs
were included to provide extra protection against graft
failure and GVHD. They were started after the comple-
tion of cyclophosphamide in light of preclinical data
indicating that calcineurin inhibitors block cyclopho-
sphamide-induced transplantation tolerance by blocking
the activation and proliferation of alloreactive T cells
[41]. Recovery of neutrophils and platelets occurred at a
median of 15 and 24 days, respectively, after transplan-
tation. Graft failure occurred in nine patients (13%).
Acute grades II to IV occurred in 34% and III to IV
GVHD in 6% of patients, and chronic GVHD developed
in 15% of patients. These rates of GVHD development
are comparable to or below the incidences of acute and
chronic GVHD after HLA-matched HSC transplantation
without post-transplantation cyclophosphamide [42].
One year after transplantation, the cumulative incidence
of relapse mortality was 51% and non-relapse mortality
was 15%, and overall survival and event-free survival at
2 years after transplantation were 36% and 26%, respec-
tively. Only six patients died, four of infection and two
of GVHD. These data support the safety and potential
efficacy of post-transplantation cyclophosphamide in
preventing GVHD and fatal graft rejection after HLA-
haploidentical HSC transplantation.

Based upon the results of Luznik and Fuchs [35,36,39],
we have included the use of post-transplant cyclopho-
sphamide (50 mg/kg day, 3 days after BMT) as part of a
non-myeloablative conditioning regimen being used in
an ongoing phase 2 trial of tolerance induction in recipi-
ents of mismatched kidney and stem cell transplants.
Durable donor chimerism has been achieved in five of
the first eight participants and no patient has developed
GVHD [43].

The facilitating cell: a key regulator of stem cell
engraftment

T cell depletion (TCD) of allogeneic bone marrow is
extremely effective at reducing the risk of GVHD, but
greatly increases the risk of engraftment failure. Three
possible reasons for TCD-associated-engraftment failure
have been hypothesized. First, HSC can engraft across
MHC-matched but minor disparate barriers, but fail to
engraft in allogeneic recipients because they are harmed



Leventhal et al. BMC Medicine 2012, 10:48
http://www.biomedcentral.com/1741-7015/10/48

or removed during TCD. Second, T cells act as essential
partner cells to promote allogeneic HSC engraftment.
Third, an additional bone marrow population that
shares some T cell markers protects the HSC from
rejection or ‘facilitates” HSC engraftment, but is inadver-
tently removed as an ‘innocent bystander’ during TCD.
Investigations in different laboratories have provided
strong evidence in support of the latter hypothesis.
Initial studies in mice using different cell subsets sorted
from donor bone marrow identified a distinct popula-
tion of CD8"/TCR’ facilitating cells (FC) capable of pro-
moting allogeneic HSC engraftment and establishment
of mixed chimerism [44]. The addition of 30,000 MHC-
matched purified FC to as few as 10,000 donor HSC
into ablated MHC-disparate B10 recipients resulted in
stable allogeneic engraftment across both class I and
class II barriers, without causing GVHD [44]. Trans-
plantation of FC alone failed to rescue recipients, indi-
cating that FC are not an HSC. Importantly, FC + HSC
reconstituted animals exhibit donor-specific tolerance
for skin, cardiac and islet grafts.

In light of the fact that FC function is distinct from
that demonstrated by bone-marrow-derived mature T
cells, much research has gone into identifying the resi-
dent cell subpopulations that constitute this rare facili-
tating population. Previous studies have shown that the
CD8"/TCR" FC population shares phenotypic character-
istics with CD8a. plasmacytoid precursor dendritic cells
(p-preDC) and that total FC are heterogeneous in mor-
phology [45]. A comprehensive assessment of FC surface
markers using flow cytometric analysis of sorted FC
populations by Fugier-Vivier et al. [46] revealed a broad
heterogeneity in subpopulations with facilitating poten-
tial. The majority of CD8"/TCR™ FC were positive for
CD11c" (65% to 70%) and B220* (75% to 88%) expres-
sion. While only 15% of the B220" population was com-
posed of B cells, 55% co-expressed CD11c (CD11c
"/B220%), suggestive of a dendritic cell component.
Further analysis into this CD11c" dendritic subset
revealed that a p-preDC phenotype (CD119™/B220
"/CD11b") is the predominant cell type (93% to 95%)
within this CD11c" subset (Figure 1). The functionality
of this p-preDC-like subset of FC has been assessed by
transplanting these cells with HSC into ablated murine
allogeneic recipients. The co-transplantation of p-preDC
rescues allogeneic recipients from radiation aplasia, sig-
nificantly enhancing alloengraftment and survival com-
pared with ablated recipients that received HSC alone.
However, facilitation by this p-preDC component alone
was inferior to that observed when the entire FC popu-
lation was utilized. This observation suggests that the p-
pre DC subset is necessary, but not sufficient, for HSC
facilitation and cannot fully replace the total FC popula-
tion. Other elegant studies by Taylor et al. indicate that
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CD3e expression by FC and the association of CD3e
with TCRp chain and a novel 33 kDa protein termed
FCp33 is critical for the HSC engraftment enhancing
properties of FC [47].

Recent studies have focused on exploring FC and
seeking to understand their role in generating tolerance.
One such study completed on mice consisted of three
groups of purified bone marrow inocula, which con-
tained different subsets of CD8" cells that were adminis-
tered to semi-allogeneic recipient mice [48]. The first
group was af3-TCR" splenic T cells, the second group
was the CD8"/TCR" bone-marrow-derived T cells, and
the third group was the bone-marrow-derived CD8
*/TCR™ FC population. The purpose behind this experi-
mental setup was to determine which group of cells
would induce GVHD in the recipient mice. There were
several important findings that resulted from this study
[48]. The first was disproving the common belief that
administering donor CD8" T cells would enhance
engraftment and prevent the development of GVHD.
This idea is supported by the fact that mice in the first
and second groups of the experiment developed lethal
GVHD, while mice in the group that received FC failed
to develop clinical symptoms or histological evidence of
GVHD [48]. Additionally, the researchers reported fail-
ure of FC to induce GVHD in mice when the number
of FC transplanted was increased from 50,000 to
400,000, confirming that FC lack GVHD effector activ-
ity. Researchers also explored the mechanism behind the
lack of GVHD development with transplantation of FC
versus transplantation of the CD8"/TCR" bone marrow
cells [48]. The results from such studies found an
increase in the expression of T-cell-mediated immuno-
suppression factors. In particular, mice that received
HSC with FC showed a significant increase in the tran-
scription of TGF-B, a cytokine known to be a key player
in the induction and development of T,.,. There was
also a considerable increase in the expression of the
cyte-associated antigen 4, glucocorticoid-induced TNF
receptor and FoxP3 genes, which are associated with
T.eg and suppressor T cell function. It was concluded
that FC induce the formation of immunoregulatory T
cells in vivo, since the FC is not a T,e; and does not
express the genes linked to T, [48].

The ability of FC to induce the formation of CD4
T/CD25" T\eq from naive CD4"/CD25™ T cells, as shown
in one recent study, is another proposed mechanism of
how FC promote tolerance [49]. CD4"/CD25" T, cells
have been found to promote bone marrow engraftment
and chimerism when transplanted into irradiated recipi-
ents [49]. Additionally, CD4"/CD25" cells are thought
to prevent the development of GVHD after allogeneic
transplantation. Both of these observations are similar to
those observed with BMT containing FC. This has lead
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Figure 1 CD8*/TCR’ facilitating cells. Flow cytometric analysis of bone marrow FC stained with CD8a phycoerythrin, a-TCR fluorescein
isothiocyanate, and y3-TCR fluorescein isothiocyanate mAb. (A) FC comprised approximately 0.4% (range, 0.04% to 0.62%) of the total bone
marrow and less than 1.6% of cells in the lymphoid gate. (B) The majority of cells in the FC are CD11¢*/B220"/CD11b" p-preDC. FC: facilitating
cells; p-preDC: plasmacytoid precursor dendritic cells; TCR: T cell receptor.

researchers to consider an association between FC and
CD4"/CD25" T, in inducing tolerance and preventing
GVHD [49].

It was believed that p-preDC were the primary activa-
tors of naive CD4"/CD25™ T cells; however, Taylor et al.
have shown that FC possess this function as well [49].
The Taylor study involved mice receiving an allogeneic
HSC plus FC transplant and measuring the induction of
FoxP3*/CD4"/CD25" by FC. Three major observations
were made by this group that expanded the scientific
knowledge of FC. The first was that donor FC were
observed in the spleen shortly after transplantation and
the induction of donor FoxP3"/CD4"/CD25" T, also
occurred in the spleen. Since p-preDC activate T..g in
the spleen, the presence of FC in the spleen prior to
activation of T, supports the notion that FC activate
Treg. The second was the observation that FC could

induce the formation of FoxP3"/CD4"/CD25" T,., from
CD4%/CD25 T cells in co-culture. The researchers pro-
posed a mechanism of activation of FC similar to that of
p-preDC, to generate FoxP3"/CD4"/CD25" T cells.
However, higher levels of IL4 gene expression were
observed with FC-generated CD4"/CD25" T cells in
comparison with p-preDC-generated T cells [49]. The
last significant observation was that FC required direct
cell-to-cell contact to induce the formation of FoxP3
*/CD4"/CD25" T,e,. Fewer FoxP3"/CD4"/CD25" cells
were produced in the absence of physical contact than
when direct contact occurred between the FC and the
CD4"/CD25 T cells [49]. Recent studies have suggested
that the differentiation of CD4"/CD25™ T cells into CD4
T/CD25" T cells requires stimulation from various
sources [49]. The B7 receptor is one important aspect of
this activation process since studies have demonstrated
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a lower number of CD4"/CD25" T cells in mice with a
B7 deficiency [49]. CD86 is thought be another impor-
tant player in assisting FC to produce FoxP3"/CD4
*/CD25" T,y because its presence is required for differ-
entiation [49]. More recently, FC have been shown to
induce antigen-specific T,eq in vivo (Figure 2) [50].
Transplantation of FC plus HSC into conditioned allo-
geneic mouse recipients followed by harvest of CD4
"/CD25" T,e, from the spleen of chimeras (chimeric
Tieg), and secondary transplantation of the T,., with
donor HSC plus third-party HSC resulted in engraft-
ment of only the donor HSC, demonstrating antigen-
specificity.

In recent years there have been significant advances in
understanding the mechanism of FC function, which
have provided additional support for the promising
potential for FC to be used in the clinic to generate tol-
erance after HSC transplantation. Data collected from
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recent studies have helped to distinguish FC from other
hematopoietic cells such as p-preDC. However, there
are questions that remain to be answered regarding the
role of FC in inducing tolerance, preventing GVHD and
promoting chimerism following BMT. A phase 2 clinical
study approved by the Food and Drug Administration is
currently underway to test the use of FC-based HSC
transplantation in recipients of living donor renal allo-
grafts. Preliminary findings have demonstrated that high
levels of donor macrochimerism without GVHD can be
established in mismatched recipients conditioned with
fludarabine, cyclophosphamide and 200 cGy total body
irradiation [51].

Conclusion

The use of cell-based therapies in the prevention and
treatment of GVHD is now being applied in a number
of clinical protocols, with promising results. Cell-based
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therapies have the potential to promote engraftment,
preserve immunocompetence and prevent GVHD,
thereby avoiding the toxicity of broad acting nonspecific
immunosuppressive agents.
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