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Abstract

Background: Chemosensitivity and tumor metastasis are two primary issues in cancer management. Cancer cells
often exhibit a wide range of sensitivity to anti-cancer compounds. To gain insight on the genetic mechanism of
drug sensitivity, one powerful approach is to employ the panel of 60 human cancer cell lines developed by the
National Cancer Institute (NCI). Cancer cells also show a broad range of invasion ability. However, a genome-wide
portrait on the contributing molecular factors to invasion heterogeneity is lacking.

Methods: Our lab performed an invasion assay on the NCI-60 panel. We identified invasion-associated (IA) genes
by correlating our invasion profiling data with the Affymetrix gene expression data on NCI-60. We then employed
the recently released chemosensitivity data of 99 anti-cancer drugs of known mechanism to investigate the gene-
drug correlation, focusing on the IA genes. Afterwards, we collected data from four independent drug-testing
experiments to validate our findings on compound response prediction. Finally, we obtained published clinical and
molecular data from two recent adjuvant chemotherapy cohorts, one on lung cancer and one on breast cancer, to
test the performance of our gene signature for patient outcome prediction.

Results: First, we found 633 IA genes from the invasion-gene expression correlation study. Then, for each of the
99 drugs, we obtained a subset of IA genes whose expression levels correlated with drug-sensitivity profiles. We
identified a set of eight genes (EGFR, ITGA3, MYLK, RAI14, AHNAK, GLS, IL32 and NNMT) showing significant
gene-drug correlation with paclitaxel, docetaxel, erlotinib, everolimus and dasatinib. This eight-gene signature
(derived from NCI-60) for chemosensitivity prediction was validated by a total of 107 independent drug tests on 78
tumor cell lines, most of which were outside of the NCI-60 panel. The eight-gene signature predicted relapse-free
survival for the lung and breast cancer patients (log-rank P = 0.0263; 0.00021). Multivariate Cox regression yielded a
hazard ratio of our signature of 5.33 (95% CI = 1.76 to 16.1) and 1.81 (95% CI = 1.19 to 2.76) respectively. The
eight-gene signature features the cancer hallmark epidermal growth factor receptor (EGFR) and genes involved in
cell adhesion, migration, invasion, tumor growth and progression.

Conclusions: Our study sheds light on the intricate three-way interplay among gene expression, invasion and
compound-sensitivity. We report the finding of a unique signature that predicts chemotherapy survival for both
lung and breast cancer. Augmenting the NCI-60 model with in vitro characterization of important phenotype-like
invasion potential is a cost-effective approach to power the genomic chemosensitivity analysis.
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Background
Gene-expression profiling of tumors from patient cohorts
has been used to develop gene signatures for clinical out-
come prediction. Recently, a signature combining estrogen
receptor (ER) status and predicted chemo/endocrine re-
sponsiveness succeeded in identifying patients with high
probability of survival following taxane and anthracycline
chemotherapy [1]. However, the biological mechanism of
the genes involved in such cohort-initiated genomic pre-
dictors may not be easy to elucidate. On the other hand,
in vitro chemosensitivity experiments on cancer cell lines,
such as the NCI-60 cell line panel, are helpful in elucidat-
ing the complex relationship between drug responsiveness
and gene expression. Despite this, the more challenging
problem of how to translate the elucidated relationship
for clinical outcome prediction still awaits more studies.
In addition to chemosensitivity, metastasis is another

major issue in studying treatment efficacy for many
cancers, including invasive breast and lung cancer. Like
the drug-sensitivity heterogeneity, tumor cells often ex-
hibit a wide range of invasion ability. Such invasion het-
erogeneity may exist not only between different cancer
types, but also among the individual cells from the
same malignant neoplasm of a patient. More subtly, it
is possible that the clinical outcome of chemotherapy
may hinge on the growth-inhibition of the more inva-
sive cells rather than the less invasive cells in the neo-
plasm. However, a characterization of genes associated
with both the invasion potential and drug-sensitivity
heterogeneity is lacking.
There are four aims in this study:

(a) Molecular markers of tumor invasion potential: to
identify the set of IA genes whose expression levels
are likely to be indicative of the invasion potential
of a tumor;

(b) Drug sensitivity prediction by tumor-invasion
markers: to evaluate how the expression levels of IA
genes in a tumor are likely to be indicative of the
tumor’s resistance or responsiveness to an
anti-cancer drug;

(c) Drug discovery with predictable sensitivity: to find
anti-cancer drugs whose efficacies correlate with
tumor-invasion potential and can be predicted by
tumor-invasion markers;

(d) Clinical validation: to demonstrate the use of the IA
gene signature for predicting clinical outcome.

NCI-60 is a diverse panel of 60 cell lines used by the
Development Therapeutics Program (DTP) of the Na-
tional Cancer Institute (NCI) to screen more than
100,000 compounds since 1990 [2-5]. These human can-
cer cell lines are derived from patients with leukemia,
melanoma, lung cancer, colon cancer, central nervous
system cancer, ovarian cancer, renal cancer, breast cancer
and prostate cancers. The molecular characteristics of
these cell lines have been subjected to various DNA
microarray studies using both Affymetrix (Santa Clara,
CA, USA) and spotted cDNA array technology [2].
Both drug sensitivity and gene expression profiles of

the NCI-60 panel are available from the public domain;
however, there is no public invasion phenotype data for
NCI-60. So we conducted the invasion assay for 53 solid
tumor cell lines from the NCI-60 panel in our lab.
We then conducted a series of statistical analysis to

combine information from invasion profiling, gene expres-
sion and compound-sensitivity profiling. Figure 1 outlines
how we approached each of our four aims. We identified a
set of 633 IA genes as the likely marker candidates of
tumor invasion potential. For each of the 99 anticancer
compounds of known mechanism, we studied the gene-
drug correlation to identify IA genes that can be predictive
of a cell’s responsiveness to the compound. A final set of
eight IA genes for chemosensitivity prediction on five
selected compounds was obtained. We then validated the
gene signature with additional cell lines. To show the clin-
ical relevance of our finding, we searched for published
chemotherapy clinical cohorts with related regimens to
test the performance of our gene signature. We found two
recent studies containing anti-microtubule chemotherapy,
one on lung cancer and the other on breast cancer. Our
signature succeeded in predicting the clinical outcome for
both cohorts.

Methods
Matrigel invasion assay
We purchased the panel of NCI human cancer cell
lines (NCI-60) to conduct tumor invasion assays. The
suspension leukemia cancer cell lines were excluded.
All cells were grown in tissue culture flasks at 37°C in
5% CO2 in RPMI 1640 with 2 mM L-glutamine, and
10% fetal bovine serum, all from Invitrogen, Eugene,
OR. The invasion capacities for cell lines were exam-
ined by using membrane invasion culture system. The
HTS FluoroBlok inserts containing 8-μm pores (Falcon,
Becton Dickinson, Franklin Lakes, NJ) were coated 30
μg matrigel (BD Biosciences, San Jose, CA, USA). The
cells were suspended in RPMI containing 10% FBS and
seeded into the upper wells of the chamber (2.5 × 104

cells/well). After incubating for 24 hours at 37°C, the
membrane of the transwell was fixed for 10 minutes at
room temperature with methanol and stained for 30
minutes with 50 μg/ml propidium iodide (Sigma, St.
Louis, MO). The number of cells in each blot was
counted under a microscope with Analytical Imaging
Station system (Imaging Research Inc., St. Catharines,
ON, Canada). For each cell line, we reported the aver-
age invasion cell count after three repeats (n = 3).



Figure 1 A schematic diagram illustrating the design of this study.

Hsu et al. BMC Medicine 2013, 11:106 Page 3 of 14
http://www.biomedcentral.com/1741-7015/11/106
Cell line gene expression data
Two gene expression datasets for NCI-60 cell lines,
produced by Gene Logic (Gaithersburg, MD, USA) using
Affymetrix U95, and U133plus2, respectively, were
downloaded from the DTP [6]. Probe mapping between
U133plus2 and U95 was provided by Affymetrix.
The independent gene expression data of 78 cell lines

used in the drug response validation were obtained either
from the GEO website, GSE6569 (n = 23, breast cancer)
[7], GSE9633 (n = 16, prostate cancer) [8], and GSE4127
(n = 29, lung cancer) [9] or by e-mail request (n = 10,
lung, Balko et al.) [10]. All but nine cell lines were outside
of the NCI-60 panel (Additional file 1: Table S1).
Chemosensitivity data
We downloaded the NCI-60 chemosensitivity data for
anti-cancer drugs with known molecular mechanisms,
including those used in targeted therapy [5]. Drug sensi-
tivity was measured by the negative of log10 GI50
(−logGI50). Seven compounds, inactive in all cell lines,
were excluded. A total of 99 drugs were analyzed.
The drug sensitivity in the 78 independent cell lines

was measured either by -logGI50 value [9] or by the
negative of log10 half maximum inhibitory concentra-
tion (IC50) value [7,8,10].
The real-time reverse transcription quantitative PCR analysis
The expressions of eight signature genes and a control
gene TBP in nine lung cancer cell lines of NCI-60 were
measured by reverse transcription qPCR(RT-qPCR)
with specific Taqman probes and primer sets (Additional
file 1: Table S2). The transcripts were amplified with
Taqman One-Step RT-PCR Master Mix Reagent (Applied
Biosystems) and a detection system (ABI Prism 7900HT,
Applied Biosystems). Gene expression was quantified in
relation to the expression of the control gene with the use
of sequence detector software and the relative quantifica-
tion method (Applied Biosystems).
Statistical analysis
The comparison of the tumor invasion ability between
tissue types was performed by ANOVA. We applied the
normal score transformation to preprocess the gene ex-
pression data before computing the Pearson correlations.
The invasion-associated genes were obtained by comput-
ing the Pearson's correlation coefficients between gene
expression profiles and invasion ability profile in NCI-60
cell lines. Clustering was used to order the IA probes.
Student’s t-test was used in validating the drug sensitiv-
ity prediction of gene signatures. All statistical analyses
were performed in the R language environment [11].
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Cancer chemotherapy cohorts
Two chemotherapy cohorts were used in this study. The
lung cancer cohort came from JBR.10, a randomized
controlled trial of adjuvant vinorelbine/cisplatin versus
observation alone [12]. We used the adjuvant cisplatin/
vinorelbine therapy arm where after surgery (n = 71).
The breast cancer cohort of 508 patients came from a
prospective multicenter study, conducted at the M. D.
Anderson Cancer Center, of which the patients were
those with newly diagnosed Human Epidermal Growth
Factor Receptor 2 (HER2)–negative breast cancer
under chemotherapy containing sequential taxane and
anthracycline–based regimens (followed by endocrine
therapy if ER positive) [1].

Control cohorts
Four cohorts where the patients were systemically un-
treated after surgery were used. Three of them were the
breast cancer cohorts (GSE2034 n = 286 [13], GSE7390
n = 198 [14] and GSE11121 n = 200 [15]). The fourth, a
lung cancer cohort, was the OBS arm where patients
were under observation after surgery (n = 62).

Survival analysis
We calculated the patients’ risk scores from the eight IA
genes and classified them into the high-risk or the low-
risk groups with the mean of risk score as the threshold
value. We calculated the eight-gene risk score for each
patient via simple averaging:

Risk score ¼ ðGEGFR þ GITGA3 þ GNNMT þ GMYLK

þ GIL32 þ GGLS þ GAHNAK þ GRAI14Þ=8;

Kaplan-Meier survival curves were obtained and com-
pared by log-rank tests. Multivariate Cox proportional
hazard regression analysis was used to evaluate inde-
pendent prognostic factors, such as age, gender, tumor
stage nodal status and histological grade.

Results
Invasion heterogeneity
The matrigel invasion assay of the 53 NCI-60 solid
tumor cell lines shows a great variation between differ-
ent cell lines, with the invaded cell counts (ICC) ranging
from 129 to 5,514 (Figure 2). According to the tissue ori-
gins, the 53 cancer cell lines are classified into eight
groups: melanoma (ME), lung cancer (LC), colon cancer
(CO), central nervous system cancer (CNS), ovarian can-
cer (OV), renal cancer (RE), breast cancer (BR) and
prostate cancer (PR) [16-18]. Even within the same tis-
sue group, there are substantial differences between the
ICCs of different cell lines. Additional file 1: Figure S1
gives the overall distribution for the deviation of an indi-
vidual cell line’s ICC from its group mean. The wide
range of this distribution shows that the within-group
variation means are greater than the between-group vari-
ation means. This suggests that the tissue of origin may
not be an essential factor in characterizing invasion het-
erogeneity between cancer cell lines. We tested the equal-
ity of the ICC group means by ANOVA and found that
the significance barely passes the 5% mark (P = 0.048).

Identification of 633 IA genes
We identified the IA genes from Affymetrix U133plus2
NCI-60, and U95 NCI-60 microarray gene expression
datasets by a two-stage procedure which required that (a)
the gene expression profile must be significantly corre-
lated with the invasion profile in both datasets, and (b) the
sign of correlation must be consistent in both datasets
(see the Additional file 1, Supplementary information). A
total of 744 probes, which represented 633 distinct genes,
were obtained. We estimated the false discovery rate
(FDR) at the confirmation stage to be 0.08 (FDR =
(2,417*0.025)/744; where 2,417 = total number of probes
considered at the confirmation stage and 0.025 = the
P-value cutoff with the sign consistency criterion).
We show the expression levels of the 744 probes (Affy

U133plus2) in the 53 cell lines with a heat map
(Figure 3). The ordering of cell lines in this figure is
based on their invasion abilities, the higher ones being
on the left. The ordering of the genes is the output of
the hierarchical clustering algorithm applied to the 744
expression profiles. The top panel of genes contains 341
probes that correlate negatively with the invasive ability,
while the bottom panel of 403 probes correlates posi-
tively with the invasion ability.

Functional enrichment analysis of IA genes
We use the MetaCore™ (Thomson Reuters, New York,
NY), a web-based computational platform designed for
system biology and drug discovery, to conduct functional
enrichment analysis of IA genes. We input the set of
633 IA genes (744 probes) and used the Functional
Ontology Enrichment tool with the default settings.
The results show that our IA genes were enriched in
cell adhesion and cytoskeleton remodeling pathways
(Additional file 1: Table S3).
Additional file 1: Table S3 list the significantly enriched

pathways and networks (P <0.0001). The results indi-
cate the involvement of cell adhesion and cytoskele-
ton remolding actin cytoskeleton network (ACTN1,
ACTN4, ATCB, ACTG1, ZYX, VCL and CFL), integrin
signaling (ITGA3, ITGB1, CAV1 and CAV2), matrix
metalloproteinase signaling (CDH2, CD44, TGFB2,
TGFBR2, JAK1, SMAD1 and SMAD3), microtubule
cytoskeleton (TUBB and TUBB6), and myosin signaling
(MYLK1, LIMK1, MYL6 and MYH9). We further exam-
ined the Integrin-mediated cell adhesion and migration



Figure 2 Invasion profiling of NCI60 cancer cell lines. Cell lines are divided into groups by their tissue origin. Each dot in each tissue group
gives the invaded cell counts by the matrigel invasion assay for one cell line (n = 3). Dotted lines indicate the mean of invasion cell counts for all
cell lines in each tissue group.

Figure 3 Heat map for the expression of IA genes. Cell lines are ordered according to the invasion ability (measured by ICC) with the highest ICC
placed leftmost. The genes in the top panel have negative correlations with invasion while the genes in the bottom panel have positive correlations.
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pathway, (P = 5.49E-8, input/total nodes = 11/48), which
has a much higher ratio of root to total nodes and signifi-
cant P-value. The Integrin-mediated cell adhesion and mi-
gration pathway shows that ITGA3 promotes focal
adhesion kinase (FAK) autophosphorylation and creates a
binding site for c-Src. EGFR signaling also activates the
FAK/Src pathway [19,20]. FAK activation regulates the
ERK-mediated phosphorylation and activation of Myosin
light chain kinase (MYLK) contributes to cell-matrix adhe-
sion dynamics [21]. Integrin recruits FAK and a cytoskel-
etal protein vinculin and alpha-actin to focal contacts.
c-Src and ERK2-mediated phosphorylation of FAK1 pro-
motes its release from focal contacts and ERK2-mediated
phosphorylation of paxillin promotes the association of
non-phosphorylated FAK1 with paxillin at new or growing
focal contact sites [22]. Activation of MYLK together with
inactivation of PAK1 contributes to cell-matrix adhesion
dynamics. PAK1 phosphorylation leads to the activation of
LIM-kinase 1 (LIMK1) [23], inhibition of MYLK, activa-
tion of myosin regulatory light chains (MRLC) [24]. FAK
is a tyrosine kinase which interacts with the important
oncogene c-Src. FAK signaling is important for integrin
regulated cell adhesion and migration. Notably, this path-
way is the target of dasatinib [25], a drug we address
further in this paper. A simplified version of the Integrin-
mediated cell adhesion and migration pathway is shown
Additional file 1: Figure S2, which features three IA genes,
EGFR, ITGA3, MYLK.

Association of drug sensitivity with IA gene expression
To evaluate how the abundance of the IA gene transcripts
in a cancer cell correlates with the cell’s response to each
of the 99 anti-cancer drugs for which the drug-sensitivity
profiles on NCI-60 were available, we computed Pearson's
correlation between the gene expression profile of each IA
gene and the chemosensitivity profile of each compound.
A positive correlation means that cell lines with higher
gene expression are more sensitive to the drug, while a
negative correlation indicates the opposite. The gene-drug
correlation results are shown in a heat map (Additional
file 1: Figure S3A). We identified all the significant corre-
lations (P <0.05), and displayed the findings in Additional
file 1: Figure S3B. An IA probe showing a significant cor-
relation with a drug would be called a drug-sensitivity-cor-
related probe for that drug. We counted the number of
drug-sensitivity-correlated IA probes for each compound.
A higher count indicates the availability of more IA genes

for the sensitivity prediction of that drug. Such a drug
would be more likely to have differential anti-cancer effects
among the tumors showing differential invasion potential.
Drugs with higher counts are this study’s primary interest.
Individually speaking, the compound with the highest

count is zoledronic acid, a bisphosphonate drug used
to prevent skeletal fractures in cancer patients and to
treat osteoporosis. Interestingly, recent studies indicate
zoledronic acid can prevent skeletal metastases through
inhibition of invasion and angiogenesis of cancer cells
[26,27]. However, we were unable to find the drug sensi-
tivity validation and gene expression data outside the
NCI panel for zoledronic acid.
To investigate Additional file 1: Figure S3B further, we

present each drug’s count of the drug-sensitivity-correlated
IA probes by grouping according to the drug’s action
mechanism (Figure 4A).
We find that on average, the group of tubulin-binding

agents ranks the highest, followed by the targeted ther-
apy. The count for each compound in these two groups
is given in Figure 4B. We continued our study on the 17
drugs from these two groups.

Gene-drug heat map for 17 drugs
We represent the 744 by 17 gene-drug correlations as a
heat map after clustering the genes (Figure 5A). We kept
the ordering of compounds to be the same as in Figure 5B.
Interestingly enough, we found that the top three com-
pounds in the group of target therapy agents, everolimus,
dasatinib and erlotinib, showed a color pattern almost
completely opposite to the tubulin-binding agents
(Figure 5). This means that cells with higher expressions
of genes, such as MYB and TOB1, tend to be more sensi-
tive to tubulin-binding agents but they also tend to be
more resistant to the three-target therapy drugs. Likewise,
cells with lower expression of genes, such as EGFR and
ITGA3, tend to be more resistant to tubulin-binding
agents but they also tend to be more sensitive to the
three-target therapy drugs. In other words, the efficacy of
the two groups of compounds tends to be in the opposite
direction. The clustering pattern in Figure 5A can also be
easily detected from the column-to-column correlations
(Additional file 1: Table S4). The correlations among
everolimus, dasatinib and erlotinib are much higher than
other correlations in the target agents. Similarly, the cor-
relation between paclitaxel and docetaxel is much higher
than other correlations in the tubulin-binding agents.
Dasatinib is a clinically studied SRC inhibitor for cancer

therapy [28]. Our functional enrichment analysis of IA
genes shows that the Src signaling pathway played an im-
portant role in integrin-mediated cell adhesion and migra-
tion pathway (Additional file 1: Figure S2). Erlotinib
inhibits the intracellular phosphorylation of tyrosine kin-
ase associated with the EGFR [29]. Everolimus is an
mTOR inhibitor [30]. In the anti-tubulin group, docetaxel
is a semisynthetic side chain analog of paclitaxel.

Selection of drug-sensitivity-correlated IA genes for five
compounds
In addition to the mechanism sharing and the clustering
pattern observed, we also noticed that the numbers of



Figure 4 The distribution of drug-sensitivity-correlated IA probes. (A) The number of IA probes with significant (P <0.05) gene-drug
correlation with each anti-cancer compound is plotted according to the grouping of the drug mechanism. The dotted line gives the mean of the
probe counts in each group. (B) The numbers of significant IA probes in tubulin-binding agents and targeted therapy agents.
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sensitivity-correlated IA genes that these five com-
pounds had are higher than other drugs in the respective
mechanism groups (Figure 4A).
This prompted us to ask if these five compounds might

share any drug-sensitivity-correlated IA genes that could
be used for drug-sensitivity prediction. By inspecting the
drug-sensitivity-correlated IA gene list for these five com-
pounds, 26 common probes are identified (Additional file
1: Table S5). Among them, 19 probes are in the Affy HG
U-133A chip and 7 probes are in the HG U-133B chip.
Because most microarray data are available in the public
domain used only the U-133A chip, we exclude the seven
U133-B probes. We use the standard deviation (SD) of the
expression across all 53 cell lines to further exclude probes
showing low expression variation. Only those probes with
SD ranking within the top 10% are retained. Finally, we
check the sign of correlation between gene expression and
drug sensitivity to ensure the consistency in predicting
sensitivity or resistance.
A final set of eight IA genes (EGFR, AHNAK, GLS, IL32,

ITGA3, MYLK, NNMT, and RAI14) are obtained. We con-
firm the quality of the microarray gene expression data by
performing the qPCR assay for these eight genes on nine
lung cancer cell lines in NCI-60 (Additional file 1:
Figure S4). A total of 72 data points are plotted, each dot
representing the expression level of a gene measured by
qPCR (horizontal axis) and the microarray (vertical axis).
A significant positive trend (Pearson correlation = 0.69,
2.129e-11) is observed, confirming the consistency of the
two assays.



Figure 5 Heatmap of gene-drug correlation. (A) Heatmap showing the gene-drug correlations for tubulin-binding and targeted therapy
agents. (B) The specific pattern for the eight-gene signature enlarged from A. Blue, negative correlation; red, positive correlation.
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Biological functions of eight invasion-associated genes
The eight IA genes we identified are associated with cellu-
lar cytoskeleton, cell invasion and oncogenetic signaling,
including the well-known cancer driver EGFR, and FAK-
Src signaling (ITGA3, MYLK); ITGA3 (integrin, alpha 3)
mediates cell survival and invasion through FAK-Src sig-
naling [31-33]. MYLK is a key target of FAK–Src signaling
[34]. Glutaminase (GLS) was shown to be up-regulated
in MYC induction cancer cells and inhibition of GLS
decreased the cancer cell growth [35,36]. Retinoic acid in-
duced 14 (RAI14) is an actin cytoskeleton protein regu-
lated by retinoic acid [37]. High expression of interleukin
32 (IL32) was shown to cause a worse clinical outcome
in lung cancer patients [38]. AHNAK nucleoprotein
was reported as pseudopod-specific proteins in different
Figure 6 Plots of the eight-gene risk scores between drug-sensitive a
mean of each group.
metastatic human tumor cell lines [39]. The activity of
nicotinamide N-methyltransferase (NNMT) in catalyzing
the N-methylation of nicotinamide is important for bio-
transformation of drug and xenobiotic compounds [40].
NNMT was identified as a tumor biomarker [41-43], pro-
moting cell migration [44] and cell invasion [45].

Validating gene signature with independent cell lines
We used the simple averaging to combine the expressions
of eight IA genes into an eight-gene score. We searched
the public domain extensively for drug response experi-
ments involving any of the five featured compounds. Four
experiments were found. In the first two experiments
[9], two standard anti-microtubule agents, paclitaxel
and docetaxel, were applied separately to 29 lung cell
nd drug-resistant groups of cell lines. The dotted line indicated the



Figure 7 Kaplan–Meier survival curves for survival analysis of
the eight-predicted genes in (A) lung cancer and (B) breast
cancer cohorts.
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lines, which were then divided into drug-resistant and
drug-sensitive groups according to the IC50 value of the
experiment outcome. From the gene expression data,
we calculated the eight-gene score for each cell line and
found a significant difference between the drug-resistant
group and the drug-sensitive group (t-test P = 0.009 in
paclitaxel-treated group, and P = 0.013 in docetaxel-
treated group, Figure 6). In the third experiment [8],
dasatinib was applied to 16 prostate and 23 breast cancer
cell lines [7], which were then divided into dasatinib-
sensitive and dasatinib-resistant groups according to the
experiment outcome. The eight-gene scores show a sig-
nificant difference between the dasatinib-sensitive group
and dasatinib-resistant group (t-test P = 0.0044 for breast
cancer and P = 0.0044 for prostate cancer, Figure 6). The
fourth experiment applied erlotinib to 10 lung cancer cell
lines. Again, the difference between erlotinib-sensitive
and erlotinib-resistant was significant (t- test P = 0.025,
Figure 6). It should be noted, however, that these plots
also showed an overlapping pattern in the distributions
between the drug-resistant group and drug-sensitive
group. This indicates that the eight gene biomarkers still
cannot accurately classify cell lines into a resistant group
versus a sensitive group.
In these validation experiments, we found nine cell lines

from the NCI-60 panels. We removed these cell lines from
the validation data and conducted the comparison again
(Additional file 1: Figure S5). All significant differences in
the first three experiments were still valid. For the fourth
experiment, the P-value increased to 0.0788, mainly be-
cause the sample size (n = 8) was too small.

Clinical outcome prediction in adjuvant chemotherapy
lung and breast cancer patients
To test if the eight genes have the predictive power in clin-
ical outcome evaluation, we searched the public domain for
chemotherapy cohort studies involving any of the two anti-
microtubule compounds we used in obtaining the eight
genes. Two recently published studies on the vinorelbine
containing regimen for lung cancer [12] and the taxane-
containing regimen for treating invasive breast cancer [1]
were obtained. We use the simple average expression of the
eight-genes as the risk score to dichotomize patients into
two groups.
We found that the low-risk group has a significantly

longer relapse-free survival time than the high-risk
group in the lung cancer cohorts (P = 0.0263, Figure 7A)
and similarly, the low-risk group shows significantly lon-
ger distant relapse-free survival in the breast cancer co-
horts (P = 0.00021, Figure 7B).
We further conducted multivariate Cox proportional

hazard regression analysis with our gene signature and
other prognostic factors (including age and tumor stage)
as the predictors. The result shows that the effect of our
gene signature is still significant. The adjusted hazard ratio
(HR) is 5.33 (P = 0.003) for the lung cancer cohort, and
1.81 (P = 0.006) for the breast cancer patients (Table 1).
This shows that our eight-gene signature is an independ-
ent predictor for patient outcome. To demonstrate that
the predicative capacity of the eight-gene signature is spe-
cific to chemotherapy, we applied it to four control co-
horts (three for breast cancer and one for lung cancer) of
which the patients were systemically untreated after sur-
gery. The eight gene signature failed to predict clinical
outcome (Additional file 1: Figure S6).
Discussion
The invasive or metastatic potential of a malignant neo-
plasm and the growth-inhibition of tumor cells by a thera-
peutic agent are two common denominators of patient
survival in cancer systemic therapy. While cell line models
have been used to predict treatment response or patient



Table 1 Multivariate Cox regression analysis of the eight-
gene signature for predicting relapse-free survival in
cancer patients

Variable Hazard ratio 95% CI P-value

Lung cancer (n = 71)

Eight-gene signature 5.33 1.76 to 16.1 0.003

Age 1.05 1.00 to 1.11 0.060

Gender (Male vs Female) 1.33 0.48 to 3.68 0. 581

Stage (1 vs 2) 2.69 1.12 to 6.45 0.027

Histology Type 1.45 0.56 to 3.73 0.443

Breast cancer (n = 462)

Eight-gene signature 1.81 1.19 to 2.76 0.006

Age (>50 vs ≦50) 1.04 0.70 to 1.56 0.834

Clinical nodal status
(positive vs negative)

2.47 1.45 to 4.18 0.0008

Clinical tumor stage
(T3 or T4 vs T1 or T2)

1.80 1.20 to 2.70 0. 004

ER status
(IHC positive vs negative)

0.44 0.29 to 0.67 0.0001

* A total of 46 patients were excluded from the multivariate analysis due to
incomplete data in the breast cancer cohort.
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survival by genes associated with drug sensitivity in the
cancer cell lines [46-49], these studies have not considered
the varying metastasis potential of a tumor. To weigh in
the interplay of both factors directly, our pre-clinical gene
signature discovery method features the co-integration of
invasion phenotypes and compound-sensitity profiles with
gene expression at the full genome scale.
Our approach is based on the observation that inva-

sion ability and drug sensitivity are both phenotypes of
the cell lines available for study. Each phenotype is nat-
urally associated with its own set of molecular determi-
nants. We hypothesize the potential overlap between the
set for invasion ability phenotype and the set for drug
responsiveness phenotype. By identifying these common
determinants, then we may use these shared determi-
nants to estimate the overall invasion potential of the
cancer cells in a tumor and also use it to predict the drug
response at the same time. However, because the tumor
microenvironment in a patient is different from the growth
environment of cancer cell lines monitored in a lab, the
robustness of an invasion molecular marker becomes an
important factor for increasing the chance of success in
clinical applications.
An alternative strategy of analyzing the three-way inter-

action of invasion, gene expression and drug response
would be to correlate invasion with drug response first.
Once the most correlated drugs are identified, then genes
correlated with response to these drugs can be used to
predict the drug sensitivity. However, we did not pursue
this line of analysis further because the phenotye-
phenotype correlation is often weaker than phenotype-
genomic determinant correlation. As a matter of fact,
our data show that most drug-invasion correlations
appear weak; only four drugs pass the statistical signifi-
cance and the best two correlations are only 0.39
and −0.35 (Additional file 1: Table S6). Our approach
overcomes the limitations of weak phenotype-phenotype
correlation by looking for statistical evidence of corre-
lations directly from the genomic determinant. This
helps improve the robustness of the genetic marker
thus obtained.
Previously, without considering drug sensitivity, our

team performed invasion profiling for the nine lung
cancer cell lines of NCI-60 to obtain a four gene signa-
ture for clinical outcome prediction [50]. We find that
among the four genes ANKRD49 and LPHN1 are in the
IA gene list and only ANKRD49 has a significant correl-
ation with paclitaxel and docetaxel. The four-gene sig-
nature failed to predict the survival outcome for the
two validation cohorts receiving adjuvant chemother-
apy (Additional file 1: Figure S7).
To gain robustness of our gene signature, instead of using

different panels of tissue origins in NCI-60 to obtain differ-
ent sets of IA genes for different types of cancer, we used
the invasion data from all 53 NCI60 solid tumor cell lines
and obtained 633 IA genes. Then a series of statistical
analyses were designed to increase the robustness of the
final eight-gene signature in predicting drug sensitivity for
the selected compounds. The eight-gene score differed be-
tween drug-resistant and drug-sensitive cell lines (Figure 6).
We succeeded in applying our gene signature to one lung
cancer cohort and one breast cancer cohort, of which the
patients received a regimen containing an anti-microtubule
agent. The success in using the same signature to predict
patient outcome for different types of cancer showed the
robustness of this gene signature.
The eight-gene signature showed a positive correl-

ation with the sensitivity of targeted therapy com-
pounds and a negative correlation with the sensitivity
of anti-microtubule compounds (Figure 5B). Because
high values of the eight-gene signature correlate with
high invasion potential in cancer cells, this suggests
that the direct correlation between the invasion profile
and the sensitivity profiles of anti-MT drugs may be
negative. This is indeed the case, but the correlation is
weak (Additional file 1: Table S6, correlation = −0.16, -0
.28 for paclitaxel and docetaxel, respectively). On the other
hand, the correlation between the eight-gene score and
the drug sensitivity is stronger (−0.41, -0.54, respectively).
Similarly, the correlation between the eight-gene score
and the sensitivity for erlotinib, dasatinib and everolimus
is 0.46, 0.52, 0.44, respectively, which is again stronger
than the correlation between invasion and drug sensitivity
(0.26, 0.24, 0.09, respectively). Therefore, despite the weak
correlation between the invasion phenotype and the drug
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sensitivity phenotype, the eight-gene signature is an effect-
ive genomic marker for invasion potential and it can be
used to predict the drug’s differential growth-inhibition ef-
ficacy that varies between cancer cells of higher invasion
potential and those of lower invasion potential.
When applying to the patient’s tumor specimen, the

eight-gene signature provides an averaged profile of the
gene expression by individual cells with varying invasion
potential. A low eight-gene score indicates that the overall
invasion potential of the tumor is low and the chance of
the patient’s favorable response to regimens containing
anti-microtubule compounds increases. On the other
hand, a high eight-gene score predicts the abundance of
the cells of higher invasion potential, which are harder to
eradicate by anti-microtubule compounds, but may be
more likely to succumb to the said targeted therapy. This
suggests the combined use of targeted therapy like
dasatinib or erlotinib with anti-microtubule agents to in-
crease the regimen efficacy of chemotherapy alone. There
have been several studies on augmenting the anticancer
effect of chemotherapy with targeted therapy. Erlotinib
was shown to be more sensitive in the doxorubicin-
resistant human breast cancer cell lines and paclitaxel-
resistant human ovarian cancer cell lines [51] and the
sensitivity was positively correlated with EGFR expression.
More references were provided in Additional file 1,
Supplementary information Text II.
There is room to improve our eight-gene signature for

drug-sensitivity prediction. The overlap in distribution
between the drug-sensitivity group and the drug-
resistant group (Figure 6) suggests that drug response in
cell lines is a very complex phenotype which is not fully
characterized by our gene signature. Other genomic
components, such as DNA copy number, single-
nucleotide polymorphisms, methylation and microRNA,
have not been considered in our study. In addition, dif-
ferences in lab environment may also contribute to the
variations observed in the data.

Conclusions
We have shown that augmenting the NCI-60 model with
in vitro characterization of important phenotypes like
invasion potential is a cost-effective approach to power
the genomic chemosensitivity analysis. Our analysis
delineates the complex three-way interplay of gene
expression, cancer cell’s invasion potential and cancer
cell’s responsiveness to an anti-cancer compound. We
report the identification of a unique eight-gene signature
for both lung and breast cancer, which predicted the
relapse-free survival of adjuvant chemotherapy patients.
The signature features the cancer hallmark EGFR and
genes involved in cell adhesion cell migration, cell inva-
sion, tumor growth and tumor progression. The discov-
ery of prognostic biomarkers for chemotherapy patients
remains critical toward improving the efficacy of cancer
treatment. The eight-gene signature obtained here may
be useful for the development of individualized cancer
therapy. Our method of gene discovery may be applic-
able in studying other cancers.
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anti-microtubule and targeted therapy agents. Figure S1. Histogram of
invaded cell counts (ICC) after subtracting the tissue-group means.
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