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Myalgic encephalomyelitis/chronic fatigue
syndrome and encephalomyelitis disseminata/
multiple sclerosis show remarkable levels of
similarity in phenomenology and neuroimmune
characteristics
Gerwyn Morris1,2* and Michael Maes2,3
Abstract

Background: ‘Encephalomyelitis disseminata’ (multiple sclerosis) and myalgic encephalomyelitis/chronic fatigue
syndrome (ME/CFS) are both classified as diseases of the central nervous system by the World Health Organization.
This review aims to compare the phenomenological and neuroimmune characteristics of MS with those of ME/CFS.

Discussion: There are remarkable phenomenological and neuroimmune overlaps between both disorders. Patients
with ME/CFS and MS both experience severe levels of disabling fatigue and a worsening of symptoms following
exercise and resort to energy conservation strategies in an attempt to meet the energy demands of day-to-day
living. Debilitating autonomic symptoms, diminished cardiac responses to exercise, orthostatic intolerance and
postural hypotension are experienced by patients with both illnesses. Both disorders show a relapsing-remitting or
progressive course, while infections and psychosocial stress play a large part in worsening of fatigue symptoms.
Activated immunoinflammatory, oxidative and nitrosative (O+NS) pathways and autoimmunity occur in both
illnesses. The consequences of O+NS damage to self-epitopes is evidenced by the almost bewildering and almost
identical array of autoantibodies formed against damaged epitopes seen in both illnesses. Mitochondrial
dysfunctions, including lowered levels of ATP, decreased phosphocreatine synthesis and impaired oxidative
phosphorylation, are heavily involved in the pathophysiology of both MS and ME/CFS. The findings produced by
neuroimaging techniques are quite similar in both illnesses and show decreased cerebral blood flow, atrophy, gray
matter reduction, white matter hyperintensities, increased cerebral lactate and choline signaling and lowered
acetyl-aspartate levels.

Summary: This review shows that there are neuroimmune similarities between MS and ME/CFS. This further
substantiates the view that ME/CFS is a neuroimmune illness and that patients with MS are immunologically
primed to develop symptoms of ME/CFS.
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Background
‘Encephalomyelitis disseminata’/multiple sclerosis (MS)
and myalgic encephalomyelitis/chronic fatigue syn-
drome (ME/CFS) are both classified as diseases of the cen-
tral nervous system by the World Health Organization
(WHO). MS exhibits an almost bewildering radiological,
clinical, and pathological heterogeneity. Evidence reveals
that different processes, such as autoimmunity, inflamma-
tion and virus infection, may induce the pathology charac-
teristic of the disease and suggests that MS is an illness
involving the presence of different causative mechanisms.
Distinct patterns of demyelination have been repeatedly
documented. Two patterns bear a very close resemblance
to autoimmune encephalomyelitis induced either by T cells
alone or T and B cells in combination. The other patterns
are highly indicative of virus infection or demyelination
generated by exposure to environmental toxins rather
overt autoimmune mechanisms. Pathological, biochemical
and immunological data indicate that different path-
ways are generating the distinct pathology visible in differ-
ent MS patients [1]. Research repeatedly demonstrates a
proinflammatory milieu in MS patients as reflected by ele-
vated levels of proinflammatory cytokines [2,3].
Patients with ME/CFS experience disabling levels of

fatigue, as do people with MS, and they also have a
wide range of neurological signs. The latter involve
neurocognitive and autonomic symptoms, for example,
postural hypotension and orthostatic intolerance [4,5] and
a wide range of abnormalities on brain scans indicating
elevated levels of lactate, cerebral hypoperfusion, and glu-
cose hypometabolism [5]. Evidence shows that different
trigger factors, such as infections and (auto)immune disor-
ders, may be associated with the onset of ME/CFS [6].
ME/CFS patients display numerous immune abnormalities
indicating an activated but dysregulated immune system,
including chronically elevated levels of cytokines, signs of
immune activation, loss of T cell homeostasis, decreased
natural killer cell activity and autoimmune responses [6].
This review aims to compare the diseases of MS and

ME/CFS on several different dimensions. These dimen-
sions will include phenomenological similarities, including
symptoms and course, elevated oxidative and nitrosative
stress (O+NS), the existence of autoimmunity, cell medi-
ated immunity and cytokine abnormalities and abnormal-
ities in T cell activation and homeostasis, and a comparison
of brain imaging findings. It is worth noting at the onset,
however, that although CFS is recognized as an alternative
term to myalgic encephalomyelitis there are many instances
in the literature where the term is used as a synonym for
fatigue of a psychiatric or idiopathic origin and pa-
tients are selected who only experience fatigue [7]. In
this review we only consider data from studies where
patients are recruited using CDC criteria and eschew
studies where patients are selected because they meet
arbitrary criteria produced by unvalidated or invalidated
symptom questionnaires or generic fatigue scales. Trying
to synthesize results where selection criteria are major
confounding variable is virtually impossible, and in any
event can lead to false conclusions [8].

Discussion
Phenomenological similarities between MS and ME/CFS
Many patients with MS have symptoms that are character-
istic for ME/CFS. We will first discuss the typical symp-
toms of ME/CFS and then show that many patients with
MS also have ME/CFS symptoms in conjunction with typ-
ical neurological deficits. People with ME/CFS can have a
wide range of symptoms [9]. Typical symptoms include
chronic fatigue, hyperalgesia, migraine-type headaches,
unrefreshing sleep or even sleep/wake cycle reversal. Pa-
tients also present with symptoms consistent with a
chronic influenza-like syndrome. These symptoms include
unrelenting severe disabling fatigue in the physical and
mental domains combined with incapacitating levels of
muscle fatigability. Problems with memory retrieval and
formation are also frequently observed. Problems with
word retrieval mean that patients are frequently unable to
finish sentences. These symptoms are all made worse by
increases in cognitive and or physical activity. An inability
to tolerate even trivial increases in physical or mental activ-
ity above individual norms is the hallmark symptom of
ME/CFS [5]. This intolerance manifests itself in disease ex-
acerbation, which may be short lived or prolonged [10,11].
ME/CFS patients display abnormalities in parameters
appertaining to sympathetic and parasympathetic nervous
system activity [12,13]. Orthostatic intolerance, and neur-
ally mediated hypotension are commonly reported cardio-
vascular symptoms [4,14]. Postural orthostatic tachycardia
syndrome (POTS) is another common finding. Exagger-
ated postural tachycardia and enhanced sympathetic activ-
ity have been reported [12,15]. Autonomic symptoms also
include an intolerance of wide temperature fluctuations
and grossly impaired thermostatic stability. A diminished
cardiac response to exercise has also been demonstrated
[16]. Resting sympathetic overactivity coupled with re-
duced vagal modulation appears to be a reproducible find-
ing in ME/CFS [17]. De Becker et al. [18] reported a
sympathetic drive increased heart rate (HR) on tilt com-
pared to controls. Another study demonstrated impaired
HR responses indicating the existence of attenuated car-
diac sympathetic responsiveness. These lower HR re-
sponses could not be reconciled with an explanation
based on patient deconditioning or prolonged inactivity
[19]. Those authors reported that hemodynamic responses
in patients with ME/CFS were significantly impaired dur-
ing exercise compared to healthy controls. A number of
other workers have reported autonomic dysregulation in
people with ME/CFS [20-27]. Patients with ME/CFS



Table 1 Phenomenological similarities between
encephalomyelitis disseminata/multiple sclerosis (MS)
and myalgic encephalomyelitis/chronic fatigue syndrome
(ME/CFS)

Phenomenology MS ME/CFS

Disabling fatigue ✓ ✓

Severe exercise intolerance ✓ ✓

Mental fatigue ✓ ✓

‘Pacing’ as an energy conservation strategy ✓ ✓

Worsening of symptoms following exercise ✓ ✓

Orthostatic intolerance ✓ ✓

Gastrointestinal dysfunction ✓ ✓

Cardiac dysrhythmias ? ✓

Postural hypotension ✓ ✓

Diminished cardiac response to exercise ✓ ✓

Relapsing-remitting nature ✓ ✓

Chronic course ✓ ✓

Disease exacerbated by infections ✓ ✓

Disease exacerbated by psychological stress ✓ ✓

Disease worsened or precipitated by infections ✓ ✓
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typically use energy conservation strategies or pacing as a
method of minimizing the effects of their fatigue on daily
living [28].
Around 53% to 92% of MS patients experience disabling

levels of fatigue [29]. Patients with MS frequently report
that their fatigue is unremitting and relentless [30-32],
and causes daytime sleepiness [33] and an irresistible urge
to rest [32]. Clinically, fatigue presents as exhaustion, loss
of energy, daytime somnolence, or exacerbation of symp-
toms. Activity usually acts to increase fatigue levels in MS
[34]. Thus, the experience of permanent exhaustion is
magnified by exacerbations leading to complete absence
of energy after physical or cognitive activity [35,36]. Rapid
exhaustion and markedly reduced exercise tolerance is a
source of profound disability in patients with MS [36].
People with MS not only report a lack of energy, but also
a profound intolerance of even minor physical activities
[31,33,37]. MS patients often have concentration difficul-
ties or an inability to complete mental tasks [30,33,37]. Re-
ports of malaise are also commonplace [32,37].
The most frequent symptoms of autonomic dysfunc-

tion in MS patients are impotence, gastrointestinal dys-
function, sleep disturbances, disordered micturition and
orthostatic intolerance [38,39]. Patients may develop
POTS as a result of their underlying autonomic dysfunc-
tion [40]. A number of different groups have reported
orthostatic dysregulation, neurocardiogenic syncope and
cardiac dysrhythmias [41-44].
People with MS also use pacing strategies to minimize

the effects of their fatigue on daily living. Such strategies
include planning daily routines, ensuring that periods of
higher activity take place in the mornings and budgeting
time for rest or even sleep between such periods of in-
creased activity [37]. A number of studies have empiric-
ally examined the effectiveness of pacing by enrolling
patients in a course where they were given instructions
in various pacing techniques [45-47]. These courses
resulted in significant reductions in fatigue.
In summary (see Table 1), patients with ME/CFS and

MS both experience severe levels of disabling fatigue
and a worsening of symptoms following exercise and re-
sort to energy conservation strategies in an attempt to
meet the energy demands of day-to-day living. Debilitat-
ing autonomic symptoms are experienced by people with
both illnesses. Diminished cardiac responses to exercise
are a common finding as are reports of orthostatic in-
tolerance and postural hypotension. It appears, however,
that ME/CFS patients may be more sensitive to physical
or cognitive activities than patients with MS.

Similarities in the course and other disease characteristics
of MS and ME/CFS
There are four MS types, outlined below. (1) Patients
with relapsing-remitting type MS endure relapses or
episodes of acute impairment of neurologic function. Re-
lapses may be replaced by times of partial or complete
remissions without further exacerbations. This is easily
the most common presentation of MS and people with
relapsing-remitting MS make up about 85% of the MS
population. (2) Patients with primary-progressive type MS
endure a continuous deterioration of their disease typic-
ally, but not exclusively, without a pattern of relative
relapse or remission. This phenotype is relatively rare
comprising about 10% of the MS population. (3) Patients
with secondary-progressive type MS endure an initial pat-
tern of relapsing-remitting disease followed by a progres-
sive deterioration of disease activity amidst a pattern of
minor relapses and remissions. Around half of those with
the relapsing-remitting course of disease will go on to de-
velop secondary-progressive MS in the absence of treat-
ment. (4) Patients with progressive-relapsing type MS
experience a progressive worsening of symptoms from
onset coupled with acute exacerbations with or without
recovery. There is no period of remission in this form of
MS. The frequency of this phenotype is approximately 5%
of the total MS population.
In addition, ME/CFS is a chronic, relapsing-remitting

disease involving the waxing and waning of symptoms
[48-51]. The majority of studies examining longitudinal
changes in disease activity using internationally agreed
diagnostic criteria report a relapsing-remitting or progres-
sive pattern of disease in the patients monitored [52-55].
Recovery from ME/CFS is extremely rare [53-55]. The
average figure reported in studies using 1988 or 1994 Cen-
ters for Disease Control and Prevention recruitment
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criteria is some 4% [53,55,56]. Peterson et al. [57] reported
a relative remission in some 40% of patients monitored
over 12 months while 20% of patients demonstrated pro-
gressive worsening of their disease and 40% remained
stable. Unfortunately, none recovered. Saltzstein et al. [58]
reported very similar statistics.
Different trigger factors such as infections and other

environmental factors play a role in the onset of MS and
ME/CFS. Infections have been implicated in relapse of
MS. Activation of immune pathways, mostly via cyto-
kines, is believed to be responsible for the occurrence of
severe relapses during or following infection [59]. Stress
also increases the frequency of relapses or a general
worsening of symptoms [60]. Stress leads to elevated cy-
tokines and increases in general proinflammatory states,
which may well create the environment fostering in-
creased disease activity [61,62].
The vast majority of ME/CFS patients endure multiple

persistent bacterial and viral infections [63-70]. The ex-
istence of these infections correlates positively with the
total number of symptoms and the severity of those
symptoms including the neurological symptoms [66].
Concurrent infections appear to worsen symptoms glo-
bally [71]. Stress is also related to worsening symptoms
of ME/CFS [72,73].
The incidence and prevalence of MS demonstrates

considerable geographic variability [74,75]. High fre-
quency areas (prevalence of 60 per 100,000 or more) in-
clude Europe, the area encompassing the northern USA
and Southern Canada, the antipodes including all of
New Zealand, the south eastern part of Australia. In the
US, the prevalence is 100 per 100,000. At a rate of 300/
100,000, the residents of the Orkney Islands in the UK
have a disproportionately heavy burden.
Estimating the prevalence of ME/CFS is a difficult ex-

ercise however. Although the disease was first reported
in 1934, the introduction of new descriptive terminology
in 1988 following an outbreak of ME in the USA led
many physicians to equate the disease with idiopathic
chronic fatigue. The presence of chronic fatigue in a
population is common, ranging from just under 3,000 to
just over 6,000 cases per 100,000 [76]. While disabling
fatigue is certainly present in most people it is just one
of an array of disabling neurological and neuroendocrine
symptoms experienced by patients with ME/CFS. With
that proviso in mind, the figures would indicate that
some 0.2% of the people in the USA have ME/CFS
[76-80], which is twice the prevalence of MS. As in
many autoimmune disorders, ME/CFS and MS are more
prevalent in women than in men [9,81].
Table 1 shows the phenomenological similarities be-

tween both disorders. Both MS and ME/CFS show a
chronic and/or relapsing-remitting course, while infec-
tions and stress appear to play a large part in worsening
of symptoms in both illnesses. Immune activation fol-
lowing infection is believed to trigger relapses in MS and
ME/CFS. Patients with ME/CFS have more concomitant
infections and the number of different infections corre-
lates with the severity of symptoms. Stress is related to
worsening of symptoms of fatigue in both MS and ME/
CFS.

Oxidative and nitrosative stress
Accumulating data demonstrates that O+NS plays a sig-
nificant role in the pathophysiology of MS [82,83]. Stud-
ies have revealed the existence of lipid peroxidation in
MS as evidenced by elevated levels of the alkanes pent-
ane and ethane, hydrocarbons produced by peroxidation
of unsaturated fatty acids [84]. O+NS likely make a
major contribution to the pathophysiology of lesions in
patients with MS [85]. Peroxinitrite for example is cap-
able of modifying lipid, protein, DNA and mitochondrial
structures and functions via the production of oxidizing
and nitrating free radicals. Evidence supporting the pres-
ence of O+NS in demyelinating and inflammatory le-
sions includes the existence of nitrotyrosine together
with lipid and protein peroxides [86,87]. Increased nitric
oxide (NO) and inducible nitric oxide synthase (iNOS)
production have been detected in peripheral blood
mononuclear cells caused by raised levels of oxidative
stress [87,88]. Isoprostanes, isomers of prostaglandins,
are generated by peroxidation of fatty acids and can be
detected in the urine as well as in the plasma from
people with MS [89-91]. Elevated levels of isoprostane 8-
epi-prostaglandin are found in the cerebrospinal fluid
(CSF) of patients with MS [92].
Many studies using peripheral blood measures have

shown increased O+NS in patients with ME/CFS,
including increased levels of malondialdehyde (MDA),
isoprostane, 8-OH-deoxyguanosine, 2,3 diphosphoglyceric
acid, thiobutyric acid, and protein carbonyls [93-101]. The
production of iNOS is significantly increased in ME/CFS
patients as compared with normal controls [102]. As we
will discuss below, there is also evidence that there is a
chronic hyperproduction of NO [93]. Raised oxidative
stress levels also occur in response to exercise in ME/CFS
[103] potentially explaining one of the mechanisms under-
lying post-exertional malaise. In ME/CFS patients, exer-
cise induces striking changes in the excitability of muscle
membranes [104]. Skeletal muscle oxidative imbalance
contributes to increased muscle fatigability [105]. Several
authors have reported that O+NS measures demonstrate
a significant and positive correlation with symptom sever-
ity [93-96,99,101,106,107].
Both MS and ME/CFS are accompanied by signifi-

cantly depressed levels of crucial antioxidants and anti-
oxidant enzymes. Syburra and Passi [108] reported low
levels of vitamin E, ubiquinone (coenzyme Q10) and
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glutathione (GSH) peroxidase in MS. de Bustos et al.
[109], however, did not find significant differences in
serum levels of coenzyme Q10 between patients with
MS and controls. There are reports on lowered levels of
glutathione in the brains of MS patients [110]. Lowered
zinc levels have been observed in MS [111].
Lowered levels of zinc, coenzyme Q10 and glutathione

have been reported in ME/CFS [95,107,112]. A recent
proton magnetic resonance spectroscopy study reported
decreased cortical glutathione levels in the brain in ME/
CFS that inversely correlated with lactate levels [107]. A
study examining blood vitamin E levels showed that
amelioration of oxidative stress occurs when ME/CFS
patients enter remission [100].
Table 2 shows the similarities in O+NS pathways

between both disorders. Markers of elevated O+NS are
found in both illnesses. Moreover, the abnormalities
reported are virtually identical in both illnesses and in-
clude elevated levels of peroxinitrite, NO and iNOS. Evi-
dence of nitrosatively modified amino acids and proteins
and oxidatively modified lipids are found in both ill-
nesses. Reduced levels of antioxidants, including vitamin
E, zinc and glutathione are also found in both diseases.
While coenzyme Q10 is clearly related to fatigue in ME/
CFS, the findings in MS are less evident.

Cytokine levels in MS and ME/CFS
Studies have repeatedly reported elevated levels of the
proinflammatory cytokines, IL-1β [113-115], TNFα
[115,116] and IL-6 [117,118] in the CSF and plasma
of people with MS. Moreover, the cytokine pattern ob-
served in the CSF of patients with relapsing-remitting
MS varies depending on the stage of the disease [119].
Table 2 Similarities in oxidative and nitrosative stress
(O+NS) pathways and antioxidant levels between
encephalomyelitis disseminata/multiple sclerosis (ED/MS)
and myalgic encephalomyelitis/chronic fatigue syndrome
(ME/CFS)

Oxidative and nitrosative stress (O+NS) ED/MS ME/CFS

Lipid peroxidation ✓ ✓

Increased malondialdehyde ? ✓

Elevated peroxynitrite ✓ ✓

Nitrated amino acids ✓ ✓

Elevated nitric oxide (NO) ✓ ✓

Elevated inducible NO synthase (iNOS) ✓ ✓

Raised isoprostane levels ✓ ✓

Low vitamin E ✓ ✓

Reduced levels of glutathione ✓ ✓

Low zinc levels ✓ ✓

Low coenzyme Q10 concentrations ? ✓

O+NS implicated in pathology ✓ ✓
Th1-like cytokines, such as IL-2, and interferon (IFN), and
interleukin (IL)-12, are increased during active disease. T
helper (Th)2 cytokines, such as the anti-inflammatory IL-
10, transforming growth factor (TGF)-β and IL-4, are ele-
vated during relative remission [120-123]. Th1 and Th2
cytokines are present in the CSF and lesions [124,125]
during relapse and remission. The high concentrations of
tumor necrosis factor (TNF)α and IL-10 (both in serum
and CSF), which accompany an MS attack, suggest a con-
comitant expression of Th1 and Th2 cytokines and not to
the sequential expression of Th1 cytokines followed by
Th2 cytokines [126].
A number of studies have found increased levels of the

major proinflammatory cytokines TNFα and IL-1β in
ME/CFS (for a review see Maes et al. [127]). Recent evi-
dence has challenged the view that patients with ME/
CFS display an activated Th2 dominated immune system
[5,128]. Proinflammatory and anti-inflammatory cyto-
kines are known to coexist also in ME/CFS, although in
many patients proinflammatory cytokines are dominant
[127,129,130]. Studies examining the Th cytokine profiles
in people with ME/CFS also show a large number of dif-
ferent findings almost certainly for methodological incon-
sistencies, including patient selection [5]. Rose et al. [131]
reported that there was a significant upregulation of
cyclo-oxygenase 2 (COX2), usually accompanied by in-
creased iNOS, in MS lesions and opined that COX2 pro-
moted excitotoxic death and damage of oligodendrocytes
by coupling with iNOS. The involvement of COX2 in
oligodendrocyte death was confirmed by Carslon et al.
[132] using histopathological techniques. Upregulation of
nuclear factor (NFκB in lesion-based macrophages
amplifies the inflammatory reaction by stimulating the
production of adhesion molecules and proinflammatory
cytokines [133]. Activated NFκB is found at high levels
in microglia of active lesions [134]. These authors
proposed that high NFκB levels explains the relative
rarity of oligodendrocyte death in MS. Generally it
seems that upregulation of NFκB in neurons is pro-
tective but activation of NFκB in microglia stimulates
neuronal degeneration [135,136]. Maes et al. [102]
reported significantly elevated levels of COX2 and
NFκB in patients with ME/CFS compared to healthy
controls. Moreover, the severity of the illness corre-
lated significantly and positively with the elevation in
concentrations COX2 and NFκB.
Table 3 displays the similarities in immunoinflammatory

pathways between MS and ME/CFS. Overall, proinflammatory
cytokines are elevated in MS and ME/CFS but the results
of investigative trials depend on methodology and can
vary according to the state of the disease. Th1 and Th2 cy-
tokines coexist in both illnesses. COX2 and NFκB are
upregulated in both disorders and may play a role in the
pathophysiology of both MS and ME/CFS.



Table 3 Similarities in immunoinflammatory pathways
between encephalomyelitis disseminata/multiple sclerosis
(ED/MS) and myalgic encephalomyelitis/chronic fatigue
syndrome (ME/CFS)

Immunoinflammatory pathways ED/MS ME/CFS

Raised levels of proinflammatory cytokines,
for example, interleukin (IL) 1 and tumor
necrosis factor-α

✓ ✓

Increased nuclear factor κB ✓ ✓

Increased cyclo-oxygenase 2 ✓ ✓

Raised IL-2 ✓ ✓

Raised IL-10 ✓ ✓

Raised transforming growth factor β ✓ ✓

Coexistence of a T helper (Th)1 and Th2 response ✓ ✓

Elevated osteopontin levels ✓ ✓

Temporal variation in cytokine profile ✓ ✓

Elevated neopterin ✓ ✓

T regulatory (Treg) dysfunction ✓ ✓

Forkhead box P3 (FOXP3) dysfunction ✓ ✓

Clonal exhaustion of T cells ✓ ✓

Elevated CD26 ✓ ✓

CD69 expression ↑ ↓

Low natural killer cell activity ✓ ✓

Chronic activation of immunoinflammatory pathways ✓ ✓
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Cell mediated immunity in MS and ME/CFS
Neopterin
Levels of neopterin have been reported as being higher
in CSF of MS patients during exacerbations in compari-
son with remissions [136]. Increased urinary neopterin
to creatinine ratio is an accurate surrogate marker of
cell-mediated immune activation in MS [137]. Relapses
and disease activity are related to increased neopterin
levels [138-140]. Many studies have detected high levels
of serum neopterin in ME/CFS [127,141-144].

Regulatory T cells
T cells are anergized in patients with MS in remission
[145] indicating functioning regulatory T (Treg) cells.
The situation in active disease is quite different however.
Programmed death 1 (PD-1)-regulatory T cells are ele-
vated in the peripheral blood of relapsing-remitting MS
with active disease [146] and these Treg cells appear to
be clonally exhausted [146,147] and only a small fraction
express PD-1 receptors which are needed for their sup-
pressive function [146]. An absence of PD-1 expression on
forkhead box P3 (FOXP3) + CD4+ T cells greatly reduces
their ability to suppress the activity of effector T cells,
which is essential if self-tolerance is to be maintained and
autoimmunity to be prevented [148]. A number of studies
report impaired function of Tregs in active disease
[149,150]. Tregs can react to inflammation by increasing
numbers in active disease in an attempt to restore
homeostasis [151]. PD-1 also has a key role in the
modulation of T cell function during a prolonged
viral infection. The functional impairment of T cells
that occurs during chronic viral infections is consid-
ered to be due to T cell exhaustion promoted by acti-
vation of the PD-1 pathway and elevation of Tregs as
the infection progresses [148,152,153]. Defective Treg
function in people with MS is shown by the existence
of Th17 lymphocytes in the peripheral circulation and
the CNS [154-156]. Patients with relapsing-remitting
MS display a Th1/Th17 phenotype in active disease
[157,158]. Reduction in Treg function leads to a Th1/
Th17 phenotype resulting from activation of naive T
cells [159,160].
Compared to healthy controls, ME/CFS patients dis-

play statistically significant increases in CD4(+)CD25(+)
Treg cells and FOXP3 expression [161]. Interestingly,
chronically elevated IL-2 expression leads to the exhaus-
tion of FOXP3 expression on CD25 + CD4+ Treg cells
over time [159]. IL-2 is found chronically activated in
MS [162-165] and ME/CFS [166,167]. This also indicates
that a chronically activated immune system may exist in
both diseases caused by a failure of the FOXP3/IL-2
feedback mechanism [168]. The pattern of raised IL-2
levels and chronic immune activation with disrupted
homeostasis [169,170] coupled with raised levels of Treg
cells seen in patients with ME/CFS strongly suggests Treg
cell exhaustion as a feature of this disease as well. Strong
evidence of T cell exhaustion has been reported in ME/
CFS patients by many different researchers [171-175].

CD26+ and CD69+ T cells
Further evidence of an activated or dysregulated im-
mune system is provided by a consideration of the data
relating to the CD26 and CD69 T cell receptors in both
MS and ME/CFS. CD26 is a T cell activation antigen
with dipeptidyl peptidase 4 (DPPIV) activity [176]. CD26
as a surrogate marker of T cell activation correlates well
with the activity of a number of autoimmune diseases
[177,178]. CD26 is a marker of T cell activation and auto-
immunity [179,180] and a key modulator of immune re-
sponsiveness [181]. CD26 expression is associated with
Th-17 cells and IL-17 production is related to the CD26 +
CD4+ T cell subset [182]. Memory CD4+ T cells with high
expression of CD26+ correlate with clinical severity of MS
[183,184]. The likelihood of a relapse is approximately
three times higher in MS patients with high CD26 levels
[185]. Importantly, elevated CD26 + CD4+ T cell numbers
have been reported in people with ME/CFS compared to
controls [186].
Another inhibitory regulator of Th17 cell differentiation

is CD69, an early activation marker that promotes activa-
tion of the signal transducer and activator of transcription
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5 (STAT5) pathway [187]. Patients with MS show an in-
creased CD69 expression on T Lymphocytes [188]. The
less pronounced IFN-induced effects on CD69 expression
in MS versus controls is evidence of a defect in immuno-
regulation [189]. In ME/CFS, significantly lower CD69 ex-
pression on mitogen stimulated T cells has been detected
[190]. This decreased expression of CD69 upon stimula-
tion was strongly associated with inflammatory markers
and indicates a defect in the initial activation of T lympho-
cytes and natural killer (NK) cells [112,190].

NK cells in MS and ME/CFS
Both MS and ME/CFS are accompanied by reduced and
impaired activity of NK cells (NKCs). NKCs have a key
role in immunoregulation. Crosstalk between NKCs and
dendritic cells acts as a rheostat for the immune system
and hence NKCs play a pivotal role in maintaining im-
mune homeostasis [191] and in the suppression of T cell
responses. In addition, NK CD56 bright cells have also a
major role in combating autoimmunity. Benczur et al.
[192] reported that NKC function was reduced in people
with active disease compared with those in remission.
Enhancement of NKC CD56 function leads to an ameli-
oration of symptoms in MS [193]. Longitudinal disease
activity, determined both clinically and by serial mag-
netic resonance imaging (MRI), correlates with natural
killer cell activity (NKCA) and phenotype. Mean NKCA
is significantly reduced in patients with MS as compared
to normal controls. In relapsing-remitting MS, there is a
significant association between lowered NKCA and the
onset of new lesions on MRI [194]. In patients with MS,
CD56 bright NKCs mediate immunoregulation [193].
Takahashi et al. [195] reported that a subset of NKCs
was responsible for the maintenance of remission in
relapsing-remitting MS and the development of relapses
[192,195] and expansion corresponds with remission
[196]. In ME/CFS, reduced and impaired NKC function-
ing has been a consistent finding reported by many au-
thors [173,197,198].
It is tempting to speculate that gender-related differ-

ences in immune responsiveness may be associated with
the higher prevalence of ME/CFS and MS in women as
compared to men. The immunological processes occur-
ring in the effector phase and induction of T cell prim-
ing are much stronger in female mice [81].

Summary
Table 3 shows that markers of immune activation are
comparable in both illnesses. Elevated neopterin levels
and elevated expression of the CD26 antigen on T cells
demonstrate chronic immune activation while chronically
elevated IL-2 levels indicate dysfunctional T cell activation
and disordered homeostasis. Defective functionality of
Treg cells is evidenced in both illnesses and clonal
exhaustion of T cells is found in patients with MS and
ME/CFS. There are, however, also differences between
both disorders. Thus, clonal exhaustion may be limited to
Treg cells in the active stage of MS, while the T cell ex-
haustion in patients with ME/CFS may be more global.
While MS is characterized by increased in vivo expression
of CD69, a decreased ex vivo CD69 expression is found in
ME/CFS. Both MS and ME/CFS are accompanied by re-
duced NKCA.

B cells and autoimmunity in MS and ME/CFS
B cells
Increased numbers of B cells are observed in ME and
ME/CFS. CD80+ B cells numbers are increased in relapse
phases of MS, relative to the values found in patients in
remission or healthy controls [199]. Increases in the num-
ber of mature CD19 B cells have been reported in ME/
CFS patients [200-202]. Klimas et al. [173] reported ele-
vated numbers of CD20+ and CD21+ B cells in ME/CFS.
Activated B cells possess a high capacity to generate in-
flammatory and regulatory cytokines and have a regula-
tory function in autoimmune diseases [203].

Autoimmunity
MS is widely considered to be at least in part an auto-
immune disorder. Autoimmune reactions are also highly
prevalent in ME/CFS. The presence of anti-nuclear anti-
bodies and antibodies directed against cardiolipin and
other phospholipids has been reported in some patients
with MS [204-206]. Anti-neuronal antibodies, anti-muscle
antibodies, anti-ganglioside antibodies [207-209] and anti-
serotonin antibodies [210] are also active in MS.
Many individuals with ME/CFS show several indica-

tors of autoimmune responses. Anti-cardiolipin anti-
bodies have been reported in people with ME/CFS
[211,212]. Konstantinov et al. [213] reported the pres-
ence of autoantibodies to nuclear envelope antigens.
Anti-neuronal antibody levels are elevated in ME/CFS
patients with neurologic abnormalities [214]. Other indi-
cators include elevated antibody titers towards phospho-
lipids, gangliosides and serotonin; anti-lamine SS DNA
as well as anti-68/48 kDa and microtubule-associated
proteone [215-217]. In addition to these increased anti-
body levels that are also observed in MS, patients with
ME/CFS show various other markers of autoimmunity.
Thus, autoantibodies against the muscarinic cholinergic re-
ceptor, mu-opioid receptor, 5-hydroxytryptamine (5-HT;
serotonin) receptor 1A and dopamine receptor D2
have all been detected in ME/CFS patients [218] (for a re-
view see [9]).
Both MS and ME/CFS are also accompanied by auto-

immune reactions sometimes described as secondary.
These reactions are directed against neoantigenic deter-
minants (neoepitopes), which are created as a result of
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damage to lipids and proteins by O+NS [93,219]. Thus,
the organisms may mount IgM and IgG mediated auto-
immune reactions against oxidatively modified epitopes,
such as fatty acids or byproducts of oxidative processes
(for example, azelaic acid and malondialdehyde) and
nitrosatively modified proteins [93]. Antibody titers
against azelaic acid are higher during acute relapses in
MS [220]. Anti-oleic acid conjugated antibodies have
also been found in the sera of patients with MS when in
acute relapse [221]. There is also a considerable amount
of direct evidence of elevated protein S-nitrosation and
nitrite content together with markedly increased levels
of lipid peroxidation in the serum of patients with MS
[222,223]. Specific IgM antibodies towards NO-modified
amino acids and azelaic acid and malodialdehyde have
been reported in MS patients [219]. The basic principle
underpinning these data is that self-epitopes may be
damaged by exposure to prolonged O+NS and thus lose
their immunogenic tolerance and become a target for
the hosts immune system.
The same IgM-related autoimmune responses can be

detected in patients with ME/CFS, including autoimmune
responses directed against disrupted lipid membrane com-
ponents (palmitic, myristic and oleic acid), and residue
molecules of lipid peroxidation, such as azelaic acid and
malondialdehyde, IgM responses against the S-farnesyl-L-
cysteine, and amino acids, modified by nitrating species
such as nitrotyrosine, nitrophenylalanine, nitrotryptophan,
nitroarginine and nitrocysteine, have all been reported
[93,224]. These molecules have been damaged undergoing
conformational change because of high levels of O+NS
damage and have thus become immunogenic. The levels
of these corrupted entities correlate positively and signifi-
cantly with the severity of the ME/CFS symptoms [93].

Rituximab
The contribution of B cells to pathology in MS has been
underlined by the evidence that rituximab, a monoclonal
antibody that depletes CD20+ B cells in particular, has
proven to be effective in the treatment of MS [225,226].
Rituximab has demonstrated efficacy in peripheral
neurological diseases [227] by producing a sustained de-
pression of pathogenic B cells [228]. In cerebrospinal
fluid of MS patients, rituximab reduces not only B cells
but also T cells [229]. This suggests that rituximab may
well have properties other than as a monoclonal antibody
to CD20+ B cells. T lymphocytes from relapsing-remitting
MS patients demonstrate an impaired response to antigen
stimulation following treatment with rituximab [230]. This
finding supports the hypothesis that B cell activity is
needed to maintain disease activity in MS [230,231]. The
effectiveness of rituximab is not dependent on secreted
antibody, as rituximab does not alter plasma cell frequen-
cies in CSF or serum [232].
Rituximab has also some efficacy in the treatment of
ME/CFS [233]. Thus, 30 patients with ME/CFS were ran-
domized to rituximab or placebo in a placebo-controlled
study and monitored for a calendar year. Positive re-
sponses were seen in 67% of the rituximab treated patients
and 13% of the placebo group. The treatment improved
symptoms globally. There were no serious side effects.
The delayed nature of the responses (beginning from 2 to
7 months following rituximab treatment) lead the authors
to conclude that ME/CFS was, at least in part, an auto-
immune disease.
Rituximab is gathering momentum as a treatment in a

variety of autoimmune diseases [234,235] especially
where the patients are refractory to first and second line
therapies [236]. When taken as a whole the trial data
reveals that the vast majority of patients respond posi-
tively to rituximab. This benefit applies to people with
rheumatoid arthritis [237,238], which is a licensed indi-
cation and other autoimmune conditions such as sys-
temic lupus erythematosus [239] and Sjögren’s syndrome
[240] where the drug is used off license. Rituximab ap-
pears to have a number of additional benefits in addition
to CD20 B cell depletion which all act to normalize
immune homeostasis. Rituximab has several effects on
the immune system. One of the most potentially surpris-
ing effects is the reduction of Th17 T cell production
[241,242]. These T cells are the cause of T cell induced
autoimmunity and neurotoxicity in autoimmune diseases
such as MS. Rituximab has a direct effect on reducing
IL-2 levels and thus potentially inactivating a chronically
activated immune system [243]. Rituximab achieves this
by inhibiting the production of NFκB [244,245], which is
another key mediator of autoimmunity. Rituximab also
raises the function of Treg cells [246,247].

Summary
Table 4 displays the similarities in B cells and auto-
immune responses between MS and ME/CFS. In all, the
range of autoantibodies produced in both illnesses is vast
and once again virtually identical. Antibodies are found
against nuclear and neuronal antigens, cardiolipin, phos-
pholipids, serotonin, and gangliosides. IgM responses are
detected against oleic, palmitic and myristic acid in pa-
tients with ME/CFS, and oleic and palmitic acid in pa-
tients with MS. Antibodies towards the byproducts of
lipid peroxidation, that is, azelaic acid and MDA, and S-
farnesyl-L-cysteine, are found in patients with ME/CFS
but only towards azelaic acid and MDA in patients with
MS. Autoantibodies to nitrotyrosine are found in both
illnesses but a wider range of autoantibodies to other
nitrated amino acids are found in ME/CFS which have not
been reported in MS. This hints at the fact that O+NS-
induced autoimmune responses may be higher in pa-
tients with ME/CFS than in those with MS.



Table 4 Similarities in autoimmune responses between
encephalomyelitis disseminata/multiple sclerosis (ED/MS)
and myalgic encephalomyelitis/chronic fatigue syndrome
(ME/CFS)

Autoimmune responses ED/MS ME/CFS

Increased numbers of B cells ✓ ✓

Anti-nuclear antibodies ✓ ✓

Anti-cardiolipin antibodies ✓ ✓

Anti-phospholipid antibodies ✓ ✓

Anti-neuronal antibodies ✓ ✓

Anti-muscle antibodies ✓ ✓

Anti-ganglioside antibodies ✓ ✓

Anti-serotonin (5-hydroxytryptamine (5-HT))
antibodies

✓ ✓

Anti-muscarinic cholinergic receptor antibodies - ✓

Anti-mu-opioid antibodies - ✓

Anti-5-HTA receptor antibodies - ✓

Anti-D2 receptor antibodies - ✓

IgM against oxidatively modified neoepitopes,
for example, malondialdehyde, oleic and myristic
and palmitic acid

✓ ✓

IgM against nitrosatively modified neoepitopes,
for example, NO adducts

✓ ✓

Response to rituximab ✓ ✓
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Mitochondrial dysfunctions in MS and ME/CFS
Many studies report changes in the levels of circulating
compounds related to impaired energy metabolism, ele-
vated O+NS, and impaired antioxidant status occurring
in MS [248]. Biochemical abnormalities in levels of py-
rimidines, creatine, malondialdehyde ascorbic acid, ni-
trate and nitrite strongly suggest a profound alteration
in redox balance and energy metabolism in patients with
MS [248,249]. Elevated levels of oxypurines in the serum
are a product of abnormal purine nucleotide metabolism
when adenosine triphosphate (ATP) production is insuf-
ficient to meet cellular demand [250,251]. Nuclear mag-
netic resonance imaging (NMRI) techniques allow the
direct measurement of mitochondrial functioning, rate
of glycolysis and availability of energy, and this approach
is being increasingly used in MS research. For example,
Lazzarino et al. [252] reported a significant degree of
central ATP depletion in their MS patients and concluded
that an increased energy demand and mitochondrial
failure was the cause of that depletion. Mitochondrial
damage may be driven by free radicals produced by ac-
tivated microglia [253]. Damage to mitochondria and
the ensuing energy failure are well known drivers for tis-
sue injury [254]. In MS lesions, conformational changes
are observed in proteins of the mitochondrial respiratory
chain [255,256]. Deletions in mitochondrial DNA may
be observed in neurons [257]. Mitochondrial DNA and
proteins are both very vulnerable to damage by O+NS
[258]. Therefore, it is likely that O+NS drive injuries to
mitochondria and mitochondrial DNA in patients with
MS [254,259,260].
The evidence that mitochondrial dysfunction and ab-

normally high lactate levels play a pivotal role in the
pathophysiology of ME/CFS is expansive and expanding
[261-264]. Vermeulen et al. [265] reported that in two
exercise tests held 24 h apart, patients with ME/CFS
reached their anaerobic threshold at a significantly lower
oxygen consumption than healthy controls in the first
test. This finding also applied to their maximal exercise
capacity, which was also attained at a much lower oxy-
gen capacity than the control group. This difference was
even greater on the subsequent test. The researchers
concluded that these findings demonstrated an increase
in lactate production and decrease in ATP production
relative to controls. Arnold et al. [266] using 31P nuclear
magnetic resonance spectroscopy, revealed an abnormal
increase in the level of intracellular lactic acid in the
exercised forearm of a ME/CFS patient. This was propor-
tional to concomitant changes in high-energy phosphates.
Behan [261] reported finding structural mitochondrial
abnormalities in the skeletal muscle of ME/CFS pa-
tients. ME/CFS patients display a significant increase
in intracellular lactate levels following exercise compared
to controls [263,267]. They display a significantly lower
ATP resynthesis rate during recovery from exercise than
normal controls stemming from impaired oxidative phos-
phorylation [263]. ME/CFS patients display an abnormal
rise in lactate with even minor exercise and an extremely
slow recovery from this state [262,263,265]. Fatigue can
result from an accumulation of reactive oxygen species
(ROS) and depletion of available ATP in muscle cells
[268]. Patients with ME/CFS reach exhaustion at a much
earlier time point than healthy controls. Upon the
point of exhaustion, ME/CFS patients also have re-
duced intracellular levels of ATP indicating a defect
of oxidative metabolism combined with an acceleration of
glycolysis in the working skeletal muscles [269]. ME/CFS
is accompanied by significantly increased ventricular
lactate, indicating mitochondrial dysfunctions in the
illness [107,270,271].
Table 5 displays the similarities in mitochondral dys-

functions between MS and ME/CFS. In all, there is con-
siderable evidence that mitochondrial dysfunction is
heavily involved in the pathophysiology of both MS and
ME/CFS. Production of ATP is suboptimal and levels
are depleted in the brain and/or striated muscles. De-
creased phosphocreatine synthesis rates following exer-
cise is indicative of abnormal metabolic responses to
exercise in MS and ME/CFS. Impaired oxidative phos-
phorylation is an issue in both disorders but accelerated
glycolysis in muscles has been reported in people with



Table 5 Similarities in mitochondral and brain
dysfunctions between encephalomyelitis disseminata/
multiple sclerosis (ED/MS) and myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS)

Mitochondrial dysfunctions ED/MS ME/CFS

Depleted ATP production (muscle and brain) ✓ ✓

Decreased phosphocreatine resynthesis
following exercise

✓ ✓

Impaired oxidative phosphorylation ✓ ✓

Acceleration of glycolysis ? ✓

Damage to mitochondrial respiratory chain in
neurons

✓ ?

Oxidative mitochondrial damage ✓ ✓

Mitochondrial energy failure ✓ ✓

Brain dysfunctions:

Cerebral hypoperfusion ✓ ✓

Reduced cerebral glucose metabolism ✓ ✓

Gray matter atrophy ✓ ✓

Increased cerebral lactate ✓ ✓

Increased cerebral choline ✓ ✓

Reduced levels of N-acetyl aspartate ✓ ✓
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ME/CFS but not in people with MS. Conversely, damage
to the mitochondrial respiratory chain in neurons has
been reported in MS but not in ME/CFS.

Brain dysfunctions
Single photon emission computed tomography (SPECT),
used to examine cerebral perfusion in MS patients,
showed significant decreases in blood flow in areas of
cortical gray and white matter [272,273]. Cerebral
hypoperfusion in MS patients relative to controls is evi-
dent in both the cortex and deep gray matter, and is es-
pecially pronounced in the thalamus and caudate nuclei.
Generalized reduction in cerebral oxygen utilization and
blood flow in white and gray matter correlates with cog-
nitive impairment [274]. Raschid et al. [275] demon-
strated reduced perfusion, particularly in the gray matter
of MS patients belonging to the primary and secondary-
progressive subgroups. The reduction was observed
in both deep gray and cortical matter and suggests
depressed neuronal metabolic activity or actual neur-
onal loss [275].
Patients with ME/CFS display a global reduction of brain

perfusion, with a characteristic pattern of hypoperfusion in
the brainstem [276,277]. SPECT abnormalities occur sig-
nificantly more frequently and in greater numbers than
MRI abnormalities do in patients with ME/CFS [278].
Using SPECT, a reduced cerebral blood flow was observed
in the brain in 80% of ME/CFS patients [279]. Significant
brain stem hypoperfusion has also been revealed in ME/
CFS patients compared to healthy controls [276,280].
Fischler et al. [277] demonstrated a positive and significant
association between neurocognitive impairments experi-
enced by patients and reduced frontal blood flow.
Positron emission tomography (PET), using a labeled

native glucose analogue, that is, [18F]fludeoxyglucose
(FDG-PET), has revealed a positive correlation between
clinical progression of MS and cerebral glucose metabolism
[281,282]. Paulasu et al. [283] reported lowered glucose
metabolism in the basal ganglia and frontal cortex of MS
patients reporting severe levels of fatigue. The use of FDG
PET in ME/CFS has revealed glucose hypometabolism in
various areas of the brain [280,284].
Traditionally 1.5 T-weighted, T1-weighted and T2-

weighted, non-contrast or gadolinium, and enhanced
T1-weighted hyperintense MRI images have been used
to monitor disease progress in the white matter of MS
patients [285]. Both gray matter atrophy [285,286] and
lesions [287,288] have also been revealed in the cerebral
cortex and deep gray matter structures using MRI. Atro-
phy in the brains of people with MS is related to gray
matter hypointensity [289]. However, sensitivity of the
conventional MRI methods for gray matter lesions is
low compared to white matter lesions [288,290]. MRI
techniques are not sufficiently sensitive to detect purely
cortical MS lesions [291]. This sensitivity can be im-
proved using higher field strength [292,293] or voxel-
based morphometry [294,295].
MRI involving voxel-based morphometry in patients

with ME/CFS has revealed gray matter volume reduction
[296-298]. These reductions are apparently unrelated to
the duration of illness or the age of the person examined.
Subcortical white matter hyperintensities have been re-
peatedly recorded in ME/CFS [299,300].
The use of proton magnetic resonance spectroscopy

(MRS) has revealed abnormally high levels of cerebral lac-
tate in patients with MS [301,302]. Using choline MRS,
abnormally high choline was detected in the basal ganglia
of patients [303-305]. Richards [306] using MRS demon-
strated elevated concentrations of choline, lactate and
lipids. In another study, proton MRS revealed significantly
lower N-acetyl aspartate levels in the hippocampal areas
of MS patients [307]. MS patients with active disease have
high levels of lactate levels in CSF. This elevation in lactate
levels may result from anaerobic glycolysis in activated
leukocytes during active disease [308].
Brooks et al. [309] examined a cohort of ME/CFS pa-

tients using MRI and nuclear MRS. Using proton MRS,
significantly reduced N-acetyl aspartate levels were ob-
served in the hippocampal areas of ME/CFS patients.
Chaudhuri et al. [310], using the same technique, demon-
strated increased choline signaling in the basal ganglia of
ME/CFS patients. The choline peaks in the basal ganglia
most likely are related to ‘increased cell membrane turn-
over due reparative gliosis’ [310]. In addition, Puri et al.
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[311] established a significant choline/creatine signal in
the occipital cortex of patients with ME/CFS. In children
with ME/CFS, significant increases in the choline/creatine
ratio as measured by MRS were observed [312].
Table 5 shows the similarities in brain dysfunctions be-

tween MS and ME/CFS. In summary, using SPECT, PET,
and MRI, it was found that both disorders display cerebral
hypoperfusion, reduced cerebral glucose metabolism and
gray matter atrophy. Nuclear MRS has revealed abnormal
choline signaling in the basal ganglia in both diseases
coupled with elevated levels of lactate and reduced con-
centrations of N-acetyl aspartate.

Mechanistic explanations of typical ME/CFS symptoms in
MS and ME/CFS
Above, we have already discussed that many patients with
MS have typical ME/CFS symptoms, including fatigue and
post-exertional malaise. In this section we will discuss the
mechanistic explanations of the typical symptoms of ME/
CFS that may occur in patients in MS. Fatigue in MS has
both central (perception) and peripheral (impaired metab-
olism) components [313,314]. Figure 1 shows a diagram
that integrates the numerous pathways into a mechanistic
model emphasizing the shared and interactive immune
signaling and metabolic pathways that explain the symp-
tomatic similarities in both diseases.
Figure 1 Diagram integrating immune signaling and metabolic pathw
between both multiple sclerosis (MS) and myalgic encephalomyelitis/
dysfunctions in intracellular signaling pathways, for example, nuclear factor
and T regulatory (Treg) cells, cyclo-oxygenase 2 (COX2), and proinflammato
pathways. These in turn may induce increased damage by O+NS to protein
defects. There is evidence that these dysfunctions together with brain diso
appear in ME/CFS and MS. PEM = post-exertional malaise.
A number of authors have suggested a role for the im-
munological abnormalities seen in people with MS in
the production of the severe fatigue endured by so many
patients. Flachenecker et al. [315] found that TNFα
levels were significantly higher in people with fatigue
than those without fatigue. Further support for this con-
cept is found in studies that posit a mediative role for
IL-6 as well as TNFα in the generation of fatigue in MS
[316,317]. Pokryszko-Dragan et al. [318] reported that
the severity of fatigue experienced by MS patients is
significantly correlated to the stimulated production of IFNγ
by T lymphocytes. Increased levels of proinflammatory
cytokines are likely involved in the development and main-
tenance of fatigue in MS [319]. Raised levels of O+NS and
mitochondrial dysfunctions could also conspire together to
cause fatigue and the post-exertional malaise experienced
by people with MS [8,128].
MS patients demonstrate an exaggerated metabolic re-

sponse to exercise compared to controls, and thus metab-
olism appears to be a major contributing factor in creating
the excessive muscle fatigue experienced by people with
MS [320]. Patients with MS display objective and clinically
significant levels of impaired functional capacity indicated
by lower maximal oxygen consumption and maximal
workload compared to sedentary controls. These objective
abnormalities correlate positively and significantly with
ays, which together explain the symptomatic similarities
chronic fatigue syndrome (ME/CFS). Shared pathways are
κB (NFκB); immunoinflammatory pathways, for example, T helper (Th)
ry cytokines (PICs); and oxidative and nitrosative stress (O+NS)
s and lipids, secondary autoimmune responses and mitochondrial
rders are associated with the onset of ME/CFS symptoms, which
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measures of fatigue [321]. Fatigability of striated muscle
not related to central nervous system activity is a frequent
manifestation of MS [322]. In addition, it has been shown
that individuals with MS have a markedly lowered rate
of phosphocreatine resynthesis after depletion com-
pared with controls [323]. The reduced phosphocreatine
resynthesis results from impaired oxidative ATP produc-
tion, probably stemming from impaired oxidative enzyme
activities [324]. Muscle in MS patients is significantly
smaller than that found in healthy individuals and relies
more on anaerobic than aerobic respiration [324]. Several
studies have found abnormalities relating to defects in
maximal voluntary contraction during exercise or after
during the facilitation period in MS patients with muscle
weakness [325] and the magnitude of the defects corre-
lates with the degree of nerve damage [326]. Motor
evoked potentials (MEPs) in MS tend to be abnormal in
MS if people have disabling fatigue [327,328]. Impaired
motor performance has been demonstrated in people with
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MS [329]. Ng et al. [330] reported that maximal voluntary
contraction was 27% lower in MS patients than in the
control group. The motor changes however were not re-
lated to fatigue but impaired walking ability. It is worthy
of note that MS patients with a modest level of disability
display gross reductions in exercise capability [331]. Savci
et al. [332] noted that weakness in respiratory muscles,
impaired lung function and degree of neurological impair-
ment are not factors contributing to lowered functional
exercise capability in MS patients.
Functional brain imaging research using SPECT and

PET indicate that MS fatigue is connected to global glu-
cose hypometabolism in the prefrontal cortex and the
basal ganglia [282,333-336]. Other researchers [337,338]
demonstrated that hypoperfusion correlates with dis-
ease and fatigue severity in MS. PET studies show that
hypometabolism of particular brain areas, especially the
frontal and subcortical circuits, is associated with fatigue
[37,339,340]. MRI, PET and functional MRI studies
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indicate that fatigue is related to gray matter disease, in
the thalamus and caudate areas and particularly the cere-
bral cortex [341].
In addition, the fatigue, fatigability and post-exertional

malaise in ME/CFS have central and peripheral compo-
nents [5,128]. As explained elsewhere and above, fatigue
in ME/CFS is associated with and may be explained by
increased levels of proinflammatory cytokines, O+NS
and mitochondrial defects [5,128]. Several studies have
found abnormalities relating to defects in maximal vol-
untary contraction during exercise or after during the
post exercise facilitation period in ME/CFS [342]. MEP
immediately following a period of exercise was signifi-
cantly lower in ME/CFS and MEP facilitation 30 minutes
after exercise was significantly less than in controls
[343,344]. These parameters were also low in another
study [345]. Some authors have proposed the hypothesis
that the fatigue in ME/CFS is entirely of neurological
origin [346,347]. This would however seem to be a mi-
nority viewpoint at this time.
Schillings et al. [348] reported impaired central activa-

tion in ME/CFS during maximal voluntary contraction
and reported similar findings in seven out of the nine
studies reviewed. Kent-Braun et al. [349] also reported
markedly diminished levels of central activation at the
end of a muscle contraction period. Schillings et al.
[348] reported that the apparent central activation failure
at maximal voluntary contraction in ME/CFS is of a simi-
lar magnitude to that reported in stroke and Amyotrophic
Lateral Sclerosis [350,351]. A large number of studies
demonstrate impaired motor performance in people with
ME/CFS [345,352,353].
In patients with ME/CFS, Barnden et al. [297]

reported that the volume of white matter, as measured
using 3 T MRI, correlates significantly and positively
with the severity of fatigue experienced by the patients.
The authors noted hemodynamic abnormalities in the
brainstem, deep frontal white matter, the caudal basal
pons and hypothalamus, suggestive of impaired cerebro-
vascular autoregulation. When taken as a whole, the evi-
dence pointed to astrocyte dysfunction and resetting of
homeostatic norms. Astrocyte activity regulates cerebro-
vascular autoregulation [297] and cerebral blood flow
[354,355]. Astrocyte malfunction is an important cause
of mental fatigue [355]. Thus, dysfunctional astrocyte ac-
tivity reported in ME/CFS would be expected to lead in
a breakdown of mechanisms controlling blood flow in
the brain. Patients with ME/CFS display a global reduc-
tion of brain perfusion, with a characteristic pattern of
brainstem hypoperfusion [276,356]. The severity of dis-
abling fatigue experienced by patients with ME/CFS is
associated with the reduction in basal ganglia activation
[357]. When taken as a whole, the evidence of gray matter
abnormalities and astrocyte dysfunction as contributors to
the fatigue experienced by those with both illnesses ap-
pears substantive.
In summary, fatigue and post-exertional malaise in MS

and ME/CFS may be explained by peripheral and central
mechanisms, including increased levels of proinflammatory
cytokines, O+NS and mitochondrial dysfunctions. In both
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disorders, abnormalities relating to defects in maximal vol-
untary contraction during exercise are detected. Central
disorders, including glucose hypometabolism and cerebral
hypoperfusion, may contribute to fatigue in both disorders.

Summary
MS and ME/CFS show remarkable levels of similarity in
many dimensions. The ever-present disabling fatigue is a
burden for both groups of patients to carry. This burden
is made heavier by severe levels of exercise intolerance,
which induce a worsening of symptoms in people with
both illnesses. Both sets of patients resort to ‘pacing’ as
an energy conservation strategy in an attempt to meet
the energy demands associated with normal living. ME/
CFS and MS are more prevalent in women than in men
and show a chronic or waxing and waning course. In-
creased levels of O+NS occur in both illnesses and pa-
tients share an almost identical range of empirically
determined abnormalities as evidenced by elevated levels
of peroxinitrite, NO and iNOS, lipid peroxidation and
nitration of amino acids. The consequences of O+NS
damage to self-epitopes is evidenced by the almost be-
wildering and almost identical array of autoantibodies
formed against damaged epitopes seen in both illnesses.
Reduced levels of antioxidants, including vitamin E, zinc,
glutathione are also found in both diseases. Evidence of
chronic immune activation coupled with disordered T
cell homeostasis is seen in both diseases. Similar abnor-
malities exist in levels of proinflammatory cytokines,
serum neopterin and T cell antigens. Although reduced
NKC function in ME/CFS has been emphasized over
many years the identical abnormalities in MS has not re-
ceived such widespread attention. The findings produced
by neuroimaging using PET, SPECT and nuclear MRS
are similar in both illnesses and in MS the severity of
the abnormality in glucose metabolism correlates well
with disease activity while MRI findings do not.
There are however also differences in symptomatic

and immune profiles between both diagnoses. Thus, pa-
tients with ME/CFS seem more sensitive to increases in
physical or cognitive activity than patients with MS. ME/
CFS patients may have a worse experience with regard
to infections, while the number of infections is associ-
ated with increasing symptom severity. While MS is
characterized by increased expression of CD69, a de-
creased CD69 expression is seen in ME/CFS. Acceler-
ated glycolysis is reported in ME/CFS but not in MS.
Neuronal damage to the respiratory chain has been
found in MS but not in ME/CFS. T cell exhaustion
seems to be more of an issue in ME/CFS than in MS.
When taken together the range of surrogate markers for
O+NS and the range of autoantibodies are wider in ME/
CFS than in MS and this may be due to an increased se-
verity of O+NS in ME/CFS. While coenzyme Q10 is
related to fatigue in ME/CFS, the findings in MS are less
evident. Finally, while both ME/CFS and MS are chronic
immunoinflammatory diseases, inflammation of the cen-
tral nervous system is clearly more prominent in MS
than in ME/CFS.
Nevertheless, the strong similarities between both dis-

orders in terms of phenomenological, neurobehavior and
neuroimmune characteristics further underscore that
ME/CFS belongs to the spectrum of neuroimmune dis-
orders. In addition, the data show that the comorbidity
between both disorders and the high prevalence of ME/
CFS symptoms in patients with MS may be explained by
neuroimmune mechanisms.
Figure 2 shows that the significant comorbidity between MS

and ME/CFS may be based on shared immunoinflammatory,
O+NS, autoimmune and mitochondrial pathways and
brain dysfunctions.
Figure 3 shows a second model that explains the high

incidence of typical ME/CFS symptoms in patients with
MS. This model suggests that patients with MS are neuro-
logically and immunologically primed for an increased ex-
pression of ME/CFS symptoms. Thus, the activation of
immunoinflammatory, autoimmune, mitochondrial and
O+NS pathways together with brain disorders may prime
MS patients for an increased prevalence of ME/CFS
symptoms. Other possibilities are that ME/CFS could in-
crease the odds to develop MS or when comorbid with
MS could aggravate the severity of MS. It is also possible
that there is a junction in immunoinflammatory progres-
sion that could explain bifurcation to ME/CFS rather than
MS. For example, the initial lesions in ME/CFS could be
smaller than in MS but at the expense of greater bioener-
getic impairments [5].
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