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Drug-induced dyskinesia in Parkinson’s disease.
Should success in clinical management be a
function of improvement of motor repertoire
rather than amplitude of dyskinesia?
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Abstract

Background: Dyskinesia, a major complication in the treatment of Parkinson’s disease (PD), can require prolonged
monitoring and complex medical management.

Discussion: The current paper proposes a new way to view the management of dyskinesia in an integrated
fashion. We suggest that dyskinesia be considered as a factor in a signal-to-noise ratio (SNR) equation where the
signal is the voluntary movement and the noise is PD symptomatology, including dyskinesia. The goal of clinicians
should be to ensure a high SNR in order to maintain or enhance the motor repertoire of patients. To understand
why such an approach would be beneficial, we first review mechanisms of dyskinesia, as well as their impact on
the quality of life of patients and on the health-care system. Theoretical and practical bases for the SNR approach
are then discussed.

Summary: Clinicians should not only consider the level of motor symptomatology when assessing the efficacy of
their treatment strategy, but also breadth of the motor repertoire available to patients.

Keywords: LID, DID, Levodopa, Deep brain stimulation, DBS, Treatment, Quality of life, Motor complication, Motor
fluctuations, Algorithm

Background
Parkinson’s disease (PD) is a progressive neurodegenera-
tive disease characterized by a predominant loss of dopa-
minergic neurons in the substantia nigra pars compacta
[1] leading to the development of motor symptoms. Four
cardinal motor symptoms are associated with PD: tremor,
muscle rigidity, postural instability and akinesia/bradyki-
nesia [2]. PD is also associated with the development of
non-motor symptoms stemming from the pathological
involvement of particular brain structures and complex
neurochemical imbalances [3]. These symptoms include
psychiatric manifestations [4], rapid eye movement and
other sleep disturbances [5,6], mood disturbance [7,8],
bradyphrenia and cognitive deficits [9-12], anosmia [13],

fatigue, autonomic system dysfunction and pain [14].
Although both motor and non-motor symptoms can be
disabling for patients, current treatments target predomi-
nantly the motor dysfunction using mainly dopaminergic
therapies. Prolonged use of dopaminergic agents can lead
to drug-induced dyskinesia.
Dyskinesia may have deleterious effects on the quality of

life of both patients and their caregivers, and create an
additional strain on the health-care system. While several
approaches are taken by movement disorder specialists to
delay or manage dyskinesia, neurologists not specialized in
the treatment of movement disorders and general practi-
tioners may find it difficult to control dyskinesia while
maintaining clinically significant reductions in typical PD
symptoms. In this paper, we propose a novel way to view
the clinical management of dyskinesia, which could benefit
patient care. In order to comprehend fully the complexity
of the problem of dyskinesia, we first provide an overview
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of the treatments for PD and how they can induce dyski-
nesia. We then provide a review of the impact of dyskine-
sia on quality of life and health-care costs.

Discussion
How prominent is the problem of PD?
The prevalence rate of PD was estimated a few years ago
to be between 100 to 200/100,000 population [15-19],
with an incidence rate of 10 to 20/100,000 population
[20,21]. However, the number of PD cases is increasing
and will have grown from 10 million worldwide in the
late 1980s [22] to 40 million in 2020 [23] due mainly to
the aging population. While most patients with PD are
diagnosed after the age of 55 (see [24,25]), about 10% of
patients are diagnosed before the age of forty [26,27] and
characterized as ‘young-onset PD’ [22]. While most
young-onset patients exhibit typical parkinsonian symp-
toms [28], they appear to display slower disease progres-
sion [25] and show a tendency for increased prevalence
and severity of motor fluctuations and dyskinesia with
prolonged L-3,4-dihydroxyphenylalanine (L-DOPA) ther-
apy [22,29-32]. Early onset of motor complications may
be especially relevant in these patients as they will live
with the disease for longer periods [33] with a diminished
quality of life [34] and impaired social and economic pro-
ductivity [34,35].

What are the current treatments of PD?
Based on the classical model of basal ganglia movement
disorders [36-38], the loss of dopaminergic neurons
associated with PD results in depletion of dopamine
content into the neostriatum. This translates into altered
basal ganglia neural activity, producing a change in the
output of the basal ganglia-thalamo-cortical pathways.
The cardinal hypokinetic symptoms of PD result from a
change in the activity of thalamo-cortical inputs to
motor cortical areas which impairs voluntary movement
[36,39,40]. Consequently, the primary goal of PD treat-
ment is to counteract the depletion of dopamine. Since
dopamine causes severe nausea, and cannot easily cross
the blood brain barrier, other means of counteracting
this dopaminergic deficiency have been developed (see
[41] and [42] for comprehensive reviews of current
treatment options). In brief, the current gold standard
for the treatment of PD motor symptoms is L-DOPA
[24,25,41,43-46] associated with a decarboxylase inhibitor
such as carbidopa [47-49]. Over the years, several com-
pounds were developed to be used as adjuncts to L-DOPA
or as replacement therapy. Catechol-O-methyltransferase
(COMT) inhibitors such as entacapone and tolcapone are
used as adjuncts to L-DOPA in order to enhance its bioa-
vailability [26,50,51]. Monoamine oxidase-B (MAO-B)
inhibitors, on the other hand, are used to extend the dura-
tion of action of L-DOPA by decreasing the metabolic

degradation of dopamine in the synaptic cleft [1,22,29,
46,52-55]. Another class of drugs that can be used as an
adjunct or replacement to L-DOPA is dopamine agonists
as they bind to dopaminergic receptors, mimicking the
action of dopamine. They were initially used to reduce the
dose of L-DOPA to control motor complications [24,41]
and may be considered for initial monotherapy [56,57],
especially in younger patients to delay the onset of
dyskinesia.
While medications are the main therapeutic avenue

for the alleviation of PD symptoms, surgical procedures
can also provide symptomatic relief in some patients.
Ablative surgeries have been used in the treatment of
motor dysfunction in PD for several decades and can be
very effective [58]. Several nuclei of the basal ganglia-
thalamo-cortical pathways are targeted using this techni-
que, such as the thalamus [58-69], the globus pallidus
internus (GPi) [70-80] and the subthalamic nucleus
(STN) [76,81-90]. More recently, deep brain stimulation
(DBS) has become an invaluable clinical management
tool for medically intractable motor symptoms. Interest-
ingly, DBS targets the same structures that are targeted
in ablative surgeries [91]. DBS therapy has the advantage
that it is reversible and can be titrated but it suffers
from complications and inconveniences related to pros-
thetic implants [92-98]. In recent years, STN and GPi
DBS [95,99-109] have become the targets of choice for
effective relief of many motor symptoms associated with
PD, including marked reduction of dyskinesia [110,111].
Other structures were recently investigated for the alle-
viation of specific symptoms [112]. For example, the
pedonculopontine nucleus (PPN) [113-116] was targeted
for DBS in patients with gait and postural imbalance
issues. The centro-median-parafascicular (CM/Pf) com-
plex [117] and the zona incerta [118-121], on the other
hand, were targeted in patients with tremor, as an alter-
native to the well-established thalamic ventrolateral (VL)
nucleus. However, whether DBS within these alternative
structures has an impact on dyskinesia has yet to be
assessed.
Novel and experimental treatments of motor symptoms

of PD, some of which are potentially disease-modifying,
have also been introduced. One promising avenue is the
development of novel drugs for the treatment of PD symp-
toms. For instance, Adenosine A2A-receptor antagonists
offer the potential to provide benefits that are not deliv-
ered by traditional dopaminergic medications and might
avoid dopaminergic side effects through a reduction of the
over-activity in the striatopallidal pathway [122]. Many of
these drugs are currently in development and are at differ-
ent phases of clinical trials. Prodrugs are another class of
medication currently under development. They are inac-
tive or poorly active compounds that undergo in vivo che-
mical or enzymatic activation that transforms them into

Daneault et al. BMC Medicine 2013, 11:76
http://www.biomedcentral.com/1741-7015/11/76

Page 2 of 18



an active drug [123]. They have better pharmacokinetic
and pharmacodynamic properties than active drugs, thus
having the potential of improved oral absorption, stability
and passage of the blood brain barrier. For instance, differ-
ent prodrugs are under development for dopamine, dopa-
mine receptor agonists, better use of the endogenous
transport systems of the blood brain barrier as well as
different peptide and glutamatergic transport systems
[124]. Cell transplant approaches for PD have been con-
sidered for several decades with equivocal initial results,
especially when compared to currently available treat-
ments. However, recent work has highlighted the potential
of this treatment for dopaminergic neuron replacement
[125-127]. Finally, there are many potential uses for gene
therapy in PD. For example, it can be used to promote the
expression of agents which cannot cross the blood-brain
barrier, such as neurotrophins [128-131]. Preclinical mod-
els using neurotrophic factors provided promising neuro-
protective or neuroregenerative outcomes, but initial trials
in humans have been mainly disappointing. Gene therapy
can also be used to modify the inherent properties of neu-
rons within specific anatomical structures. For example,
gene therapy was used to modify the phenotype of STN
neurons from predominantly excitatory to predominantly
inhibitory in order to restore balance within the basal
ganglia-thalamo-cortical network [132-134]. While these
are all promising treatments for PD, much work is
required with regard to therapy and side effects prior to
clinical application to larger patient groups. Relevant to
the present paper, it is mainly unknown whether these
emerging therapies may delay, treat or worsen dyskinesia.

What are the main issues with current treatments?
Long-term use of dopamimetic agents, in combination
with continued dopaminergic denervation, can generate
dyskinesia. Indeed, while dyskinesia are mainly asso-
ciated with functional alterations within the basal gang-
lia pathways related to prolonged exposure to L-DOPA,
dopamine agonists and DBS can also cause the appear-
ance of dyskinesia [135-138]. The exact mechanism
underlying dopamine agonist- or DBS-induced dyskinesia
is still under investigation, but it is believed to stem from
maladaptive mechanisms related to dopaminergic and
glutamatergic systems (see [135] for review). Patients
receiving intra-striatal dopaminergic neural grafts can
also experience dyskinesia, also without the presence of
exogenous dopaminergic agents (off-dyskinesia), possibly
due to inappropriate responses to dopamine release by
grafted neurons [126,139-141].
There are several different classifications or types of dys-

kinesia, such as dystonic, ballistic, choreic and myoclonic,
which can be monophasic or bi-phasic [142-145], occur-
ring at different times in relation to administration of
dopaminergic medication. The most common dyskinesia

remain the monophasic choreic type, which are involun-
tary movements that occur at peak-dose and are consid-
ered to be purposeless, non-rhythmic, abrupt, rapid,
irregular and un-sustained [143]. We have recently pro-
vided the first characterization of the movement patterns
of monophasic choreic dyskinesia based on quantitative
measures of whole-body movements which highlight their
complexity, and variability in amplitude and location over
short periods of time [146-150]. This might explain the
relative difficulty of patients to control or compensate for
their dyskinesia while attempting to either plan or execute
everyday motor activities.
Several risk factors are associated with the occurrence of

dyskinesia including age of onset of PD [151-154], body
weight [155,156], disease duration [157,158], and the level of
exposure to L-DOPA [153,159,160]. A necessary factor in
the development of dyskinesia appears to be the combina-
tion of dopaminergic denervation and long-term exposure
to dopamine replacement therapy that promotes changes in
the receptor environment and results in an altered clinical
response to dopamine [161-164]. Under physiological condi-
tions, striatal and synaptic dopamine levels are maintained at
a relatively constant level [165]. The dopaminergic denerva-
tion observed in PD, in association with the administration
of L-DOPA at intervals during the day, induces oscillations
in the concentration of striatal and synaptic dopamine levels
[166,167]. This pulsatile stimulation of dopaminergic recep-
tor is associated with functional changes within the basal
ganglia [168,169], which results in altered neural activity in
the basal ganglia, thalamus and cerebral cortex [115] with
associated involuntary movements.
Several fundamental functional alterations in the

synaptic environment of the striatum are associated with
development of dyskinesia. Dopaminergic denervation-
induced pre-synaptic modifications occur at the cellular
level which hinders dopamine homeostasis
[153,170-172]. In addition, morphological and functional
alterations occur in serotoninergic neurons, which may
be a homeostatic attempt to counteract the dysregulation
in dopamine levels [173]. Changes also occur at the post-
synaptic level where dopamine receptor trafficking
[158,174], signalling [157] and sensitivity [161,175] are
all altered in dyskinetic PD patients. Furthermore, N-
methyl-D-aspartate (NMDA), a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) [151,152,176,
177] as well as metabotropic glutamate receptors
[178-181] have been implicated in the maladaptive plasti-
city associated with dyskinesia (see [135] for review).
While the definite mechanisms behind their relative
involvement remain to be determined, these receptors
are currently being investigated as potential targets for
the management of dyskinesia.
Aside from these pre- and post-synaptic changes,

other functional and structural changes also play a role
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in the pathogenesis of dyskinesia. Astrocytes modulate
the expression of vascular endothelial growth factor
[182], resulting in microvascular remodelling which may
be an integral part of the changes in the neural environ-
ment that lead to dyskinesia. Over-activity of adenosine
A2A receptors may also play a role in the generation of
dyskinesia [183-188] through facilitation of the striatopalli-
dal pathway [189]. Additionally, modified extracellular
concentrations of glutamate [190-193] as well as an altered
expression of glutamate transporter genes [191,194,195]
have been observed in different basal ganglia structures
when dyskinesia are present. Finally, recent studies sug-
gested that degeneration of inter-hemispheric striatal
mechanisms may play a significant role in the genesis of
dyskinesia through yet undefined mechanisms [196,197].
Taken together, these functional alterations point towards
a complex multi-factorial mechanism behind the genera-
tion and expression of dyskinesia which could explain why
the management of those motor complications is so
problematic.

Why is managing dyskinesia as much art as science?
Due to the complex pathophysiology of dyskinesia, there
has been considerable debate about which treatment is
more efficacious for best symptom management while still
avoiding motor complications [28,32-34,40,44,47,48,51,
52,198-201]. Several studies examined the incidence of
dyskinesia with different medication (see [41] for an exten-
sive review). Here, we focus on possible treatment options
when dyskinesia have already occurred. The primary
option for clinicians is to reduce medication dosage; how-
ever, this can lead to the resurgence of typical parkinso-
nian symptoms. The second option is to fragment dosage,
reducing each dose and increasing its frequency for more
constant delivery as the pulsatile delivery of L-DOPA is, in
part, responsible for the observed functional alterations
within the basal ganglia. The use of controlled-release oral
medication may limit this pulsatile effect [202]. However,
the efficacy of such controlled release drugs in treating
dyskinesia is investigational at best and there is little evi-
dence to suggest that they may delay the onset of dyskine-
sia [41]. Nonetheless, the concept behind controlled-
release formulations, that is, a more continuous delivery of
medication rather than a pulsatile increase in medication
normally observed with PD medication, has spurred
the development of continuous drug delivery (CDD) sys-
tems such as mini-pump guided continuous apomorphine
infusion [203], duodenal L-DOPA infusion (Duodopa)
[30,201], and transdermal delivery of rotigotine (dopamine
agonist) through a patch [204]. Several continuous drug
delivery treatments are proposed as useful in reducing the
incidence or treatment of dyskinesia [203,205-207], but
there is insufficient evidence to characterize them as
unequivocally effective [41]. For example, a study on an

animal model of PD demonstrated that continuous deliv-
ery of rotigotine did not induce dyskinesia and functional
sensitization, whereas using an oral formulation at differ-
ent intervals did [208]. On the other hand, a pilot study on
duodenal infusion of L-DOPA was shown to induce simi-
lar levels of dyskinesia as pulsatile delivery systems; how-
ever, once dyskinesia are present, switching to duodenal
L-DOPA reduces the duration of dyskinesia [209]. This
highlights the variability in the effectiveness of these treat-
ments. Furthermore, these approaches to dyskinesia treat-
ment are limited due to the complexity of the procedure
and the difficult long-term management of patients.
Indeed, the invasive nature of some of these treatments
limits the number of potential candidates; and the poten-
tial for severe complications requires adequate monitoring.
Another option is to control dyskinesia by reducing the
L-DOPA dose and introducing dopamine agonists. Again,
this option is not without problems, including the lower
efficacy of dopamine agonists in treating motor symptoms
[210-213], as well as increasing the incidence of other dis-
abling side effects such as somnolence, sleep attacks, dizzi-
ness, nausea, delusions, impulse control disorders,
hallucinations and confusion [214,215]. In addition, one
must keep in mind that some studies have observed the
appearance of dyskinesia with the use of dopamine ago-
nists without the concomitant presence of L-DOPA [213].
There are currently very limited direct drug treatments

for dyskinesia as only two medications were shown to be
efficacious: amantadine and clozapine [41]. Amantadine is
a NMDA receptor antagonist [216] that was shown to
reduce significantly the duration and severity of dyskinesia
in several studies [216-218]. However, its mechanism of
action leading to reduction in dyskinesia has yet to be con-
clusively determined. Clozapine is a high affinity serotoni-
nergic agonist as well as a low affinity dopamine agonist
[219-221]. One study demonstrated the ability of clozapine
to reduce dyskinesia significantly [222]. However, the
severe side effects associated with clozapine, such as agra-
nulocytosis [223], central nervous system depression, sei-
zures, dementia, and myocarditis [224], limit its use in
clinical practice as it requires strict monitoring.
Surgical interventions can also reduce dyskinesia in a

subset of patients as both STN and GPi DBS were shown
to reduce dyskinesia effectively [103,109]. One possible
mechanism behind the reduction in dyskinesia is reduc-
tion in medication dose following surgical treatment [225].
However, the end result is highly dependent on several
factors such as lead placement, stimulation parameters
and level of reduction in medications. Another surgical
intervention that has demonstrated a reduction in dyskine-
sia is pallidotomy [73,74,226]. In fact, this intervention was
shown to be as effective as STN DBS for the reduction of
dyskinesia [74]. Again, the outcome of this procedure is
greatly dependent on lesion extent and location.
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Future avenues for drug treatment of dyskinesia include
the development of adenosine A2A receptor antagonists
[227,228] as well as the use of metabotropic glutamate
receptor 5 (mGluR5) antagonists [229] and orthosteric
metabotropic glutamate receptor 4 (mGluR4) agonists
[230]. While these compounds are currently in different
testing phases, a few studies using adenosine A2A receptor
antagonists and mGluR5 antagonists have demonstrated a
significant reduction in dyskinesia induction in animal
models [183,186,231] and subgroups of human samples
[227,229,232]. On the other hand, orthosteric mGluR4
agonists are only beginning to be studied for their effect
on the indirect pathway of the basal ganglia.
Maintaining therapeutic efficacy while at the same time

trying to control dyskinesia can be difficult with all treat-
ments for PD. Clinicians often progressively introduce an
intricate combination of medications that could help
re-establish neurotransmitter balance and avoid motor
fluctuations. Unfortunately, the unavoidable dopaminergic
denervation and receptor imbalances render this task
increasingly difficult as the disease progresses.

How prominent is the problem of dyskinesia and its
management?
The incidence of dyskinesia is estimated at 30% to 50%
after five years of initiating L-DOPA treatment [142,198].
As the disease progresses, the incidence can increase to
60% to 100% after 10 years [65,198,211,233,234]. These
figures are even higher in young-onset PD where it is
observed that almost all patients experience dyskinesia
after only six years of treatment [22]. Once these motor
fluctuations occur, increased monitoring of patients is
required. However, the lack of movement disorders specia-
lists able to handle such complex side effects of medica-
tion hinders proper monitoring of these patients. In the
United States, the ratio of neurologists varies drastically
between regions ranging from a low of 1 and a high of
11/100 000 population [235] with an average close to
5/100 000 population [236]. In Canada, in 2008, the num-
ber of neurologists varied between 0 and 3/100 000 popu-
lation in different regions of a geographically vast country
[237]. While most European countries fare relatively well
with an average of 5 neurologists per 100 000 population
[236], Asia, where the majority of the world’s population
resides and where the expected number of PD cases is
expected to grow several fold in upcoming years [238], is
in dire need of neurologists with less than 1/100 000
population [236]. Of note is that these figures encompass
all neurologists; the number of movement disorders spe-
cialists, who possess the necessary tools to adequately
manage the symptoms of PD and motor complications
associated with their treatment, is much lower, and to our
knowledge, has never been evaluated. Another issue facing
patients with motor fluctuations is that most movement

disorders specialists are located in larger cities; thus for-
cing patients from remote communities to travel great dis-
tances for medical consultations and follow-ups. These
issues may explain why only 45% of patients with PD in
Ontario (Canada) have access to a specialist at least once a
year [239]. The lack of access to trained clinicians has a
negative impact on patient care since constant manage-
ment of medication is required to delay or negate the
undesired motor fluctuations.

What would be the impact of better management of
dyskinesia on quality of life?
The ability to engage and maintain social interactions is
inevitably linked to the ability to interact with the physical
environment and, as such, is associated on the level of
independence of patients. In patients with PD, reduced
participation in social activities appears in part related to
loss of mobility and impairs quality of life [240,241]. This
phenomenon is later exacerbated due to disease progres-
sion and complications related to treatments [242,243].
However, the actual impact of dyskinesia on quality of life
is still controversial. Some researchers have suggested that
dyskinesia have only a moderate impact on quality of life
of patients [198,244-246]. One study even observed an
improvement in quality of life in PD patients with dyskine-
sia [244]. Another recent study demonstrated that
‘Patients with PD experiencing dyskinesia are less likely to
be concerned about dyskinesia and more likely to prefer
dyskinesia over parkinsonian symptoms compared to
patients without dyskinesia’ [247]. This may be explained
by the patient’s own perspective on the impact of dyskine-
sia on his/her motor repertoire, that is, the movements a
particular patient deems important for his/her quality of
life. Of course, if dyskinesia have a moderate impact on
the motor repertoire, it is likely that he/she will not con-
sider dyskinesia as problematic. Patients would rather be
able to perform their activities than be constricted by their
parkinsonian symptoms. However, such findings must be
interpreted carefully, in light of recent evidence showing
that dyskinetic patients may suffer from anosognosia, that
is unawareness of deficits associated with an illness [248].
Accordingly, even if they do not complain about their
involuntary movements, dyskinesia may still have a dele-
terious effect on their motor repertoire. As such, mild dys-
kinesia themselves may not be problematic, but more
severe forms may reduce quality of life by impacting on
the patients’ motor repertoire.
In fact, other studies showed that the presence of dys-

kinesia is a key factor in determining the quality of life
of patients [249-251], especially in young patients who
participate in the workforce. Studies showed that the
main dimensions of quality of life that are affected by
dyskinesia are psychological, social [252,253] and stigma
[253-255]. This may be the result of loss in mobility,
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increased falls [256], weight loss [156] and even modifi-
cations of motor behavior in the OFF state [257]. Other
studies demonstrated that the reduction in quality of life
of PD patients with dyskinesia [258-260] could also be a
result of higher levels of anxiety [261-264] and depres-
sion[260], more so than in patients without dyskinesia.
However, in the study of Montel et al. [253], the only
factor that had a significant impact on quality of life was
the presence of dyskinesia, not neuropsychiatric mani-
festations. This indicates that dyskinesia can affect
patient quality of life directly and also by inducing, or at
least modulating the level of different neuropsychiatric
disorders.
The impact of dyskinesia on the quality of life of PD

patients can also be evaluated by assessing the effective-
ness of interventions aimed at controlling dyskinesia on
quality of life. For instance, a recent study demonstrated
that PD patients had a significant improvement in quality
of life after 18 months of continuous intra-duodenal
L-DOPA infusion [265]. Interestingly, they did not observe
a significant change in ‘ON medication’ motor symptoma-
tology after treatment but did observe a significant reduc-
tion in dyskinesia. As such, the reduction in dyskinesia
may have played a role in the improvement of quality of
life. Similar results were obtained in patients undergoing
GPi DBS where the reduction in dyskinesia scores was
highly correlated with the improvement in overall quality
of life [266]. While these are merely two examples of stu-
dies using quality of life as primary or secondary endpoints
to assess the impact of different interventions, it is becom-
ing more common to use quality of life to evaluate thera-
peutic effectiveness.
Another issue to consider is that dyskinesia also impact

upon on the quality of life of patients’ primary caregivers
(for example, spouses). Indeed, as the disease progresses
and patients with PD begin dealing with a loss of indepen-
dence, the quality of life of their caregiver also degrades as
they are more prone to social isolation, psychological pro-
blems, such as depression, and physical issues [267-270].
This is evident through the results of McCabe et al. [271]
where PD patients and caregivers only differed in physical-
and psychological-related quality of life. Social interaction
and environmental quality of life scores were not signifi-
cantly different [271]. These issues become more promi-
nent with disease progression when motor complications,
such as dyskinesia, are apparent [272]. Importantly, it has
been demonstrated that psychosocial factors such as social
support are critically important to the caregivers’ quality
of life [273]. As health-care systems are over-extended and
promote the implementation of community care programs
as a means of alleviating pressure on the system, the capa-
city of caregivers to provide support becomes essential
[274]. If caregiver burden is excessive, it may reduce the
quality of the care patients require [273]. As such, it is

important to acknowledge and find ways to optimize the
caregivers’ quality of life.

What would be the impact of better management of
dyskinesia on the health-care system?
As the disease progresses, so does the burden on patients
and the health community [83,275]. Studies have demon-
strated the immense effect of dyskinesia on the costs of
treating PD patients. For instance, a European study
showed that the average cost per annum for the treat-
ment of PD patients without dyskinesia was €11,412, but
it more than doubled to €24,990 in patients with severe
dyskinesia [260]. This increase in treatment cost was
accounted for by both non-medical expenditures, such as
community services and unpaid help provided by the
caregiver, and medical expenditures related to medica-
tion and hospitalization due to more complex and expen-
sive treatment regimens [260]. A French study also
demonstrated that the presence of dyskinesia more than
doubled treatment costs and increased medical visits
[276]. They also observed that the severity of dyskinesia
increased medical costs by increasing the need for care-
givers. This led them to estimate the total annual medical
cost of dyskinesia in France to be between 588 and 812
million francs [276]. Furthermore, a recent study from
the United States showed that dyskinesia resulted in an
increase in total treatment costs by 29%, and PD-related
treatment costs by 78% compared to costs incurred by
PD patients without dyskinesia [277]. This translates into
an increase of $5,549 in the year following the first
appearance of dyskinesia when compared to PD patients
without dyskinesia. The majority of this amount was
related to an increase in PD-related costs of $4,456 in
patients with dyskinesia; not to costs associated with
co-mobidities [277].
A major problem is that these direct costs have to be

added to the already increased health-related expendi-
tures associated with having PD compared to healthy
aging [278]. In Canada, the annual direct costs related
to PD were estimated at $202 million, which includes
hospital (44%), drugs (49%) and physician consultations
(7%). Indirect costs associated with mortality (38%) and
morbidity (62%) were estimated at $245 million, for a
total of approximately $447 million [278]. Interestingly,
a great proportion of indirect costs are related to early
retirement. The direct health-care cost of PD in the
United States was estimated at $10,349 per patient per
year [279]. Combining these direct costs with estimates
of indirect costs, the total costs of PD in the United
States may be as high as $23 billion annually [279]. If
we consider that the number of persons 65 years of age
and older is expected to increase significantly over the
upcoming years, the cost of treating PD patients is likely
to exceed $50 billion annually in the United States by
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2040 [279]. In China, the problem is even greater
because of the larger number of patients. In 2004, it was
estimated that the yearly health-care cost was about
$925 per patient, which represents half of the mean
individual annual income [280], for a total of $1.57 bil-
lion annually. The total cost correlated significantly with
disease severity and the frequency of outpatient visits
[280]. It is clear that better patient management is
required and one approach is to develop and implement
evidence-based practice. The question then becomes if
the reduction of dyskinesia incidence and severity can
modulate the costs. A recent study examined the effec-
tiveness (time to levodopa and time to levodopa-induced
dyskinesia), cost, and quality-adjusted life-years in two
trials of dopamine agonists. They showed that rasagiline
delayed the onset of dyskinesia by 10% and reduced
costs by 18% per patient over five years [281]. Further-
more, a French study estimated that each 10% of reduc-
tion in OFF periods would result in a 5% reduction of
direct medical costs [282]. These studies demonstrate
that finding approaches to control either the incidence
or the severity of dyskinesia and other motor fluctua-
tions should be developed and implemented in order to
reduce the burden on the health-care system.

What is the theory behind our proposed approach to the
treatment of dyskinesia?
Evidence-based practice aims to apply the best available
evidence from scientific investigations to clinical decision
making. To apply evidence-based practice for the manage-
ment of dyskinesia, information about the influence of
dyskinesia on voluntary movements must be known so as
to understand the challenges facing patients when plan-
ning and executing movements from their motor reper-
toire. It is important to discriminate between activities of
daily living and motor repertoire of patients as activities of
daily living are essential for minimal functional indepen-
dence while the motor repertoire encompasses all move-
ments deemed important for a good quality of life for a
specific patient. As such, the motor repertoire will be per-
sonalized and will vary greatly depending on the move-
ments patients wish to perform on a regular basis. Finally,
it is important to assess whether other symptoms are con-
comitantly present with dyskinesia; which may in fact be
responsible for motor deficits. To date, several algorithms
have been proposed to manage dyskinesia [283,284]. Inter-
estingly, these algorithms are geared towards markedly
reducing or eliminating dyskinesia, without necessarily
taking into account how the proposed strategy affects the
motor repertoire of patients. This is important since some
patients may rather have mild dyskinesia then undergo the
process of medication change, especially if dyskinesia do
not hinder their motor repertoire. Indeed, the reduction in
dyskinesia through either a reduction in medication

dosage or a change in medication could lead to a resur-
gence of typical hypo- or hyper-kinetic parkinsonian
symptoms impeding the patient’s voluntary motor beha-
viors and hence reduce his quality of life for that specific
period. The clinician will judge whether the reduction in
dyskinesia following treatment regimen modification
based on these algorithms is clinically satisfactory. For
this, clinicians rely mostly on their experience and patient
feedback. They can also use clinical scales [285-288] to
assess the amplitude of dyskinesia and their impact on
activities of daily living. However, current scales only pro-
vide a general sense of the amplitude of dyskinesia and
their impact. Most do not measure the impact of the
amplitude of dyskinesia on voluntary movements and cer-
tainly not on the entire motor repertoire of patients. In
fact, a recent review of the different scales for the assess-
ment of dyskinesia found that of the eight scales used in
PD, only two were recommended for use (that is, the
Abnormal Involuntary Movement Scale (AIMS), and
the Rush Dyskinesia scale) [288]. The AIMS assesses the
amplitude of dyskinesia in each limb whereas the Rush
also incorporates a section on the impact of dyskinesia on
certain activities of daily living such as putting on a coat.
A recent scale, the PDYS-26, a patient-based question-
naire, focuses solely on the impact of dyskinesia on activ-
ities of daily living [289]. One main issue of these scales is
that they cannot segregate the impact of dyskinesia and
cardinal symptoms of PD on the performance of motor
behaviors. Another point that requires attention is that, as
mentioned above, activities of daily living do not circum-
scribe the whole motor repertoire deemed necessary by
each patient; they merely represent general tasks that pro-
vide some functional independence. For example, a patient
who is an artist painter with low amplitude dyskinesia may
deem that his/her dyskinesia are devastating, while most
daily living activities are actually intact (that is, he can put
on a coat, cut his food and dress himself but, he cannot
perform the fine voluntary movements required for him to
paint a canvas). Then, one could legitimately ask the fol-
lowing question: how does the amplitude of dyskinesia
relate to its impact on voluntary movements performed in
daily life? The opposite could also be true. A patient with
high levels of dyskinesia may judge that his/her involun-
tary movements are not an issue since they prefer to be
dyskinetic rather than OFF, as proposed in a recent paper
[247].
We propose that the evaluation of the impact of dyski-

nesia be viewed as a function of a signal-to-noise ratio
(SNR). The concept of the SNR is based on the fact that
success of voluntary movements (the motor output) is
directly correlated to the magnitude of the intended
voluntary movement (the signal) and inversely correlated
with the magnitude of the involuntary movement (the
noise) in the motor stream [290-297]. In other words, the
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likelihood of success in performing voluntary movements
is not only dependent on the magnitude of the symptoms
present, but also dependent on the type of movement per-
formed by the patients. Such an analysis would make it
possible to determine the motor repertoire available to
patients based on the magnitude of symptoms. For
instance, if a patient presents only with tremor, the SNR
could be represented by equation 1:

[
Voluntary drive for a specific movement

]

[Tremor]
= Motor output

Here, tremor would become deleterious only if the
intended movement is below a threshold that will allow
tremor to be close to, or supersede, the voluntary move-
ment in amplitude. It could also be deleterious if the fre-
quency of the intended movement is close to the frequency
of that tremor [298-300]. Of course, this is an oversimplifi-
cation as PD patients rarely exhibit only one motor symp-
tom. Therefore, a more accurate representation of the SNR
observed in PD patients would be equation 2:

[
Voluntary drive for a specific movement

]

[Tremor] +
[
Bradykinesia

]
+

[
Rigidity

]
+

[
Postural Instability

] = Motor output

Here, the noise would be the sum of all cardinal
motor symptoms, regardless of their neural origin.
Indeed, bradykinesia could be caused by bradyphrenia
during complex decision making, rather than a lack of
cortical activation by thalamo-cortical pathways. Inter-
estingly, as the disease progresses and motor complica-
tions arise, more ‘noise’ parameters could be added to
equation 2 such that dyskinesia could be taken into
account (equation 3):

[
Voluntary drive for a specificmovement

]

[Tremor] +
[
Bradykinesia

]
+

[
Rigidity

]
+

[
Postural Instability

]
+

[
Dyskinesia

] = Motor output

Success for a particular task would be predicated upon
the ratio between the amplitude of the intended move-
ment (the signal; the numerator) and the magnitude of
symptoms (noise; the denominator) (see Figure 1).
This relationship between voluntary and involuntary

movements was demonstrated by us in previous work
[290-297]. For instance, we showed that during slow alter-
nating movements at the wrist, tremor was detected [295],
and its amplitude was directly correlated with deficits of
accuracy [294]. During fast movement, tremor was unde-
tected, and its amplitude previously assessed in the pos-
tural condition was unrelated to performance [294,297].
Furthermore, we showed that ventro-lateral thalamotomy
[59,61,294] had no impact on fast movements, but
increased the SNR by removing tremor, hence improving
tremendously the accuracy during slow movements [294].
We also showed that in tasks where the voluntary move-
ment was performed with varying amplitude and velocity,

the faster sections presented with higher SNR, and there
was a reduction in deviation from the intended trajectory
of the movement [294,295]. Accordingly, the amplitude of
velocity of the intended movement seemed to be impor-
tant in determining the impact of involuntary movements
on voluntary motor acts. This concept relates to Fitts law
[301], which proposes that two movements having the
same amplitude may possess different velocity profiles,
depending on the difficulty (target size) of the task. For
example, bringing a glass of water to the mouth may have
the same amplitude as bringing a spoon full of soup, but
the velocity will not be the same because of the increased
difficulty associated with keeping the soup in the spoon.
As such, in order to properly assess the complexity of a
voluntary movement, both its amplitude and velocity must
be examined. In patients where whole-body peak-dose
dyskinesia were recorded simultaneously with voluntary
movements (same tasks as above), we found that during
fast hand movements, dyskinesia were not visible [296].
Interestingly, patients with dyskinesia presented with levels
of bradykinesia similar to those of PD patients without
dyskinesia [296]. We also found no relationship between
the level of dyskinesia and accuracy during slow move-
ments [293], indicating that dyskinesia may not have been
the primary source of error during movements that
required accuracy. This strongly supports the concept that
‘noise’ is not limited to visible involuntary movements, but
may also include other symptoms such as rigidity or bra-
dykinesia [291] as proposed in equations 2 and 3. In the
aforementioned study, patients had little or no clinically-
detectable rigidity, so bradykinesia was probably the main
cause of reduction in motor performance. Taken together,
this illustrates that different types of noise observed in PD
can be independent from each other at the neurophysiolo-
gical level but can each contribute to the performance of a
given task. In another study, we demonstrated that
patients with Huntington’s disease presenting with chorea
were not impaired during fast hand movements. However,
they presented with large errors during slow manual track-
ing, which correlated with the amplitude of chorea. This
illustrates again that involuntary movements can be of no
consequence when the SNR is large enough. This also
indicates that the SNR concept could be applied to pathol-
ogies other than PD.
The aforementioned data on PD fits well with issues

facing clinicians. Indeed, any reduction in dyskinesia
levels could lead to increased typical parkinsonian
motor symptoms. Accordingly, clinicians may be repla-
cing one kind of noise with another one (this concept is
illustrated in Figure 2).
To better illustrate this theory, we present below two

hypothetical situations that could be encountered in
clinical practice (Figure 2).
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Situation 1: the clinician reduces L-DOPA or dopa-
mine agonist dosage and the level of dyskinesia is
reduced. This results in an increased motor repertoire
because of the increased SNR. Dyskinesia management
is effective and should be pursued.
Situation 2: the clinician reduces medication dosage

and the level of dyskinesia is reduced, but leads to a
reduction in motor repertoire. As such, the dyskinesia
portion of the noise is reduced but is accompanied by
an increase in noise associated with typical parkinsonian
symptoms present when medication is lacking, such as
bradykinesia or rigidity. Here, the treatment regimen
should be modified until situation 1 is achieved. If situa-
tion 1 cannot be achieved, it may be that having some
dyskinesia is the preferred solution since the motor
repertoire is greater with dyskinesia, as discussed by our
group [293,296] and others [302]. Surgery may be con-
sidered as an alternative in this case because, as men-
tioned above, it may control dyskinesia possibly through
a reduction in medication. The aforementioned

approach would seem logical to movement disorders
specialists, but may be more difficult to implement by
less experienced clinicians treating patients with PD
experiencing motor fluctuations.
Accordingly, we propose that there is a SNR related to

dyskinesia below which the execution of a voluntary
movement is rendered impossible (or not functionally
possible). Whether this SNR is systematic across
patients or specific to each patient is currently under
investigation in our laboratory. We also propose that a
reduction of dyskinesia amplitude through a proper
medication regimen modification will result in an
increased motor repertoire only if typical parkinsonian
symptoms do not re-emerge to levels affecting signifi-
cantly the SNR for specific tasks.

How may this strategy be translated into clinical practice?
We propose that clinicians may be able to view treat-
ment success as an optimization of each patient’s motor
repertoire, rather than simply targeting symptomatology.

Figure 1 Shown here is the theoretical relationship between the amplitude of involuntary movements (dyskinesia) and the motor
repertoire of patients. We hypothesize that higher amplitudes of dyskinesia will result in lower signal-to-noise ratio (SNR; dashed line) and,
therefore, a loss of motor repertoire.
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Highly-trained movement disorders specialists probably
use such an approach intuitively, but it is the lack of
tools to help clinicians less experienced in dealing with
PD patients that should be addressed. For instance, the
presence of dyskinesia should be deemed detrimental if it
significantly impacts the SNR and thus the motor reper-
toire of each patient. Based on the aforementioned evi-
dence, there is a need to develop clinical evaluation
protocols that specifically assess the motor repertoire of
patients. Such a tool must reflect the wide range of move-
ments performed during everyday life activities, it must
incorporate a customizable section and be easy to perform,
as well as give clinicians the ability to follow the progres-
sion within patients and compare the results between
patients. While acknowledging that current clinical scales
for the evaluation of dyskinesia provide invaluable infor-
mation regarding their amplitude and impact on some
activities of daily living, they lack the specificity for evalu-
ating the range of the motor repertoire accessible to

patients. We understand the immense difficulties asso-
ciated with the development of a clinical scale of this type
but, using such an evaluation, the clinician would be in a
better position to determine whether the intervention was
helpful to the patient, regardless of its effect on sympto-
matology. We are currently in the process of assessing the
motor repertoire of patients without dyskinesia and with
different levels of dyskinesia in order to develop a model
of interaction between symptomatology and motor beha-
viors. Once this relationship is known, the development of
such a tool could be envisioned.

Summary
The treatment of PD requires the evaluation of several
motor symptoms affecting the quality of life of patients.
The limited number of movement disorders specialists
and the increasing number of patients with PD places a
toll on health-care systems world-wide. The need to
develop and implement evidence-based medicine is

Figure 2 Two examples to illustrate opposite results following drug regimen change. In situation 1, a change in drug regimen decreased
dyskinesia amplitude which then led to increased signal-to-noise ratio (SNR) (dark grey lines), and consequently increased motor repertoire. In
situation 2, the same change in drug regimen also led to a reduction of dyskinesia amplitude. However, there is resurgence of typical motor
symptoms associated with PD, thus increasing the noise, which will induce a decrease of overall SNR, hence a reduction in the motor repertoire
(light grey lines). Here, the patient did not benefit from the reduction of dyskinesia, as his/her motor repertoire worsened. These examples
illustrate the challenges faced by clinicians when managing dyskinesia. PD, Parkinson’s disease.
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urgent. In this review, we proposed a novel way to view
the clinical management of motor symptoms in PD and
more specifically of dyskinesia. While we acknowledge
that this view requires further testing, we believe that
systematizing the approach to the treatment of motor
symptoms in PD will lead to an improvement in patient
quality of life and, hopefully, a relief on our health-care
system.
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