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Abstract

Background: The diagnosis of neuromuscular diseases is strongly based on the histological characterization of
muscle biopsies. However, this morphological analysis is mostly a subjective process and difficult to quantify. We
have tested if network science can provide a novel framework to extract useful information from muscle biopsies,
developing a novel method that analyzes muscle samples in an objective, automated, fast and precise manner.

Methods: Our database consisted of 102 muscle biopsy images from 70 individuals (including controls, patients
with neurogenic atrophies and patients with muscular dystrophies). We used this to develop a new method,
Neuromuscular DIseases Computerized Image Analysis (NDICIA), that uses network science analysis to capture the
defining signature of muscle biopsy images. NDICIA characterizes muscle tissues by representing each image as a
network, with fibers serving as nodes and fiber contacts as links.

Results: After a ‘training’ phase with control and pathological biopsies, NDICIA was able to quantify the degree of
pathology of each sample. We validated our method by comparing NDICIA quantification of the severity of
muscular dystrophies with a pathologist’s evaluation of the degree of pathology, resulting in a strong correlation
(R = 0.900, P <0.00001). Importantly, our approach can be used to quantify new images without the need for prior
‘training’. Therefore, we show that network science analysis captures the useful information contained in muscle
biopsies, helping the diagnosis of muscular dystrophies and neurogenic atrophies.

Conclusions: Our novel network analysis approach will serve as a valuable tool for assessing the etiology of
muscular dystrophies or neurogenic atrophies, and has the potential to quantify treatment outcomes in preclinical
and clinical trials.
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Background
Neuromuscular diseases (NMD) comprise a large and
heterogeneous group of disorders affecting the motor
unit [1-3]. NMD can encompass acquired and genetic
etiologies with very diverse clinical, morphological and
molecular characteristics that usually (but not always)
manifest in a progressive manner [2,4]. A comprehensive
analysis of a muscle biopsy is necessary for a complete
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and detailed evaluation of a NMD [5]. However, the
morphological analysis of muscle samples is mostly a
subjective process and difficult to quantify.
Skeletal muscle fibers are bundled together in fascicles

that are separated by the perimysium, a connective tissue
sheath that conveys innervation and vascular irrigation.
Each muscle fiber is in turn enclosed by a very thin band
of connective tissue, the endomysium. Skeletal muscles
fibers can be classified into type I (slow) or type II (fast)
fibers, which are distributed in a mosaic pattern along the
fascicles [6,7]. A transverse section of a normal muscle
shows the muscle fibers with a polygonal shape and
homogeneous size, surrounded by a thin mesh of collagen
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(Figure 1a). NMD can be classified as neurogenic disor-
ders, myopathies and neuromuscular junction disorders
[1-3]. Muscular dystrophies (MD) are primary myopathies
characterized by a wide variation in fiber size, a rounded
shape of atrophic fibers, and fibrosis (an increase of
endomysial collagen), which define the dystrophic pattern.
In neurogenic atrophies (NA), motor neurons or periph-
eral nerves are primarily affected. Groups of angulated
atrophic fibers, together with fascicular atrophy and fiber-
type grouping secondary to reinnervation events are seen.
Muscles also can show a combination of neurogenic and
myopathic patterns because additional myopathic features
or fibrosis may be present in chronic neuropathic
processes [2,8]. Therefore, the correct interpretation
of a condition based on its pathologic features cannot
always be determined with certainty, thus hampering
the diagnosis of the underlying disease. A large panel
of different histochemical and histoenzymatic tech-
niques are necessary to identify pathologic changes in
the routine diagnostic process [9,10] (Additional file 1:
Figure S1). Previous attempts to automate the extraction
of geometrical characteristics from normal muscle
biopsies have been published [11-16], but those
methods fail to provide an automated analysis or
adequate scrutiny of the information derived from the
analysis. Our analysis begins at this point, taking into
account a large number of samples to study both
Figure 1 Segmentation and network construction of a muscle biopsy
showing collagen VI content including the endomysium and perimysium (
delimits the region of interest used in this case. (b) Segmented image ena
boundary lines) whose geometric properties can be calculated. (c) This info
represented as a node, and two nodes are connected if two fibers are adja
showing objects corresponding to the fibers (green boundary lines). The ar
index of fibrosis. NDICIA identifies ‘slow’ and ‘fast’ fibers shown in red and
until they reach the adjacent objects. This allows each fiber’s neighbors to
also used for calculation of the fibrosis index for each image. (f) Detail of t
by slow and fast nodes shown as red and black dots, respectively. (g,h) Re
biopsies analyzed in this study. The collagen VI content (green), slow fibers
geometrical and network data to include morphometric
and organizational information.
Network science involves the study of the generally

asymmetric relationships that exist between elements
that form complex systems. This approach has been
used successfully to capture information from systems
ranging from the Internet to social networks [17-20].
Although network analysis has been recently exploited
to investigate biological systems of different scales [21],
the application of network theory at the level of indivi-
dual cells or groups of cells has been relatively limited
[22-24]. A recent report introduced network theory to
the study of tissue organization [22]. In that report, the
approach followed allowed the organization of epithelial
networks to be described objectively. Interestingly, the
method permitted the quantification of differences
between wild-type and mutant (perturbed) tissues.
Muscle biopsies share a similar structure with epithelia
due to the polygonal appearance of the fibers. However,
muscle samples present extra heterogeneity due to the
presence of endo- and perimysium together with the
different fiber types. Our novel method, named Neuromus-
cular DIseases Computerized Image Analysis (NDICIA),
identifies differences between normal and affected muscles
in an objective, reproducible and precise way. The applica-
tion of NDICIA to the study of muscle biopsies could have
clinical application as a new diagnostic tool that would
image. (a) Fluorescence image corresponding to a control biopsy
green), slow fibers (red) and fast fibers (black). The white square
bling all fibers to be identified. The fibers are considered objects (white
rmation is used to produce a muscle network where each fiber is
cent in the muscle biopsy. (d) Detail of the segmented image
ea of each object is termed A2 for subsequent calculations of the
black, respectively. (e) The objects are expanded in a linear manner
be identified. A1 is the area of the expansion for each object, and is
he network corresponding to the region in (e). The network is formed
gion of interest selected from NA (BNA01-1, g) and MD (QD54-1, h)
(red) and fast fibers (black) are marked. Scale bar, 500 mm.
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significantly aid in the evaluation of the degree of pathology
and the collection of data in both clinical practice and in
the research laboratory.

Methods
Tissue sampling
For the retrospective analysis of human muscle tissue, we
obtained images from processed biopsies stored in tissue
banks at the Virgen del Rocío University Hospital (Seville),
the Santa Creu i Sant Pau Hospital (Barcelona) and the
Doce de Octubre Hospital (Madrid). Our database
consisted of 102 images from 70 individuals. Fifty images
were considered controls and came from patients who
were referred to the Neuromuscular Unit of Virgen del
Rocío University Hospital because of minor symptoms,
such as unspecific fatigue or pain, in whom the physical
examination and complete routine biopsy analysis were
completely normal. Seventeen images came from adults
with diverse NA and 20 images were from the quadriceps
of children with either Duchenne or Becker MD
(Additional file 2: Table S1). All the methodology used in
this study follows the guidelines of the Declaration of
Helsinki developed by the World Medical Association. The
biopsies used in this study were treated following the re-
quirements established by Spanish law in relation to the
Investigation in Biomedicine (Ley 14/2007), personal data
protection (Ley Orgánica de 15/1999) and Bioethics. The
Hospital Virgen del Rocío ethics commission gave approval
for this work (File 2/11). All biopsies were performed under
informed consent using a standardized protocol [10].

Immunohistochemistry
Muscle biopsies were processed by the standard
methods of freezing and cryostat sectioning. Fluores-
cence microscopy was used to detect muscle fiber types
and the amount of collagen in preparations. The follow-
ing antibodies were used in accordance with standard
immunostaining protocols [10]: mouse anti-myosin
heavy chain (slow) (Leica, Newcastle, United Kingdom,
clone WB-MHCs; 1:200), mouse anti-myosin heavy
chain (fast) (Leica, Newcastle, United Kingdom, clone
WB-MHCf; 1:200), and rabbit anti-collagen type VI
(Millipore, Temecula, CA, USA, lot number: NG18332|0;
1:300). After staining, the preparations were mounted
using Fluoromount-G (Southern Biotech, Birmingham,
AL, USA All images were obtained using the 10× ob-
jective of a DP70 Olympus microscope (Olympus Iberia,
Barcelona, Spain), with a resolution of 4080 × 3072 pixels.
Regions of interest were chosen that did not show artifacts
caused by the sample processing protocol.

Biopsy evaluation
The pathologist from the Virgen del Rocío University
Hospital estimated the degree of severity (from 1 to 4)
of the MD samples by following routine and specific
protocols (see Additional file 1: Figure S1).

Image processing: muscle fiber segmentation
Muscle fiber segmentation for image processing was
carried out in two steps. First, muscle fibers in an image
were identified by applying morphological operators.
This was followed by application of a watershed trans-
form to provide accurate detection of the fiber contours.
The G component of the Red-Green-Blue (RGB)

image was used because of the high contrast that exists
between muscle fibers and collagen. Considering that
fibers are darker than the surrounding collagen, we
searched the image for intensity valleys. Accordingly, the
h-minima transform [25] was applied to the G compo-
nent image to obtain homogeneous minima valleys. The
h-minima or h-maxima transform is a powerful math-
ematical tool used to suppress undesired minima or
maxima [25]. By using the h-minima transform, all
minima whose depth was lower than or equal to a given
h-value were suppressed. The h-value has a direct influ-
ence on the number of segmented regions: the larger the
h-value is, the smaller the number of segmented regions.
In our case, the h-value was experimentally chosen as
being half the average intensity of G, such that:
ℎ = ed transform may be applied to an original image

as given. However, if the gradient of the original image is
used, the minima in the gradient image will correspond
to sites within homogeneous regions in the original
image. Thus, the watershed transform is usually applied
to the gradient image. The watershed algorithm yields
results with substantial over-segmentation; that is, the
number of segmented regions could be much larger than
desired, with clearly identifiable objects or regions being
broken into multiple smaller regions. This undesirable
result is because the gradient image used in the process
is sensitive to noise. The problem of over-segmentation
can be overcome with the use of markers that identify
objects. The objects’ contours in the gradient image can
be seen as the highest crest-lines around the object
marker. In our case, the image gradient was calculated
in the G component and the internal and external
markers were derived from the first step. The block dia-
gram of Additional file 3: Figure S2 shows the steps
followed in the segmentation process.

Image processing: generation of the muscle network
For a structural analysis of the biopsy images, we formed
a muscle network, where each fiber is represented as a
node and two nodes are connected if two fibers are adja-
cent. This network was formed from the external
markers, that is, from the watershed transformation
directly to the binary image considered as internal
markers, resulting in the first step of the segmentation
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process. The resulting image was a mosaic where each
fiber contour reached the adjacent fiber contour.
Geometric and network feature extraction
The next step concerned feature extraction. Geometric
features such as the fiber area or the length of the major
and minor axes of the fiber were extracted from the
detected contours. Other parameters that took into
account the neighboring vicinity of each fiber, such as
the ratio between the fiber area and adjacent fiber areas,
or the ratio between the fiber area and the area resulting
from the expansion of its contour (computed in the
previous step), were calculated from the muscle network.
Finally, graph theory was applied to the muscle network
to compute additional features.
A total of 82 characteristics were computed, including

16 geometric features, 22 features derived from the muscle
network, and 44 from graph theory (Additional file 4:
Table S2).
Discriminant feature selection
A feature selection step was performed to analyze the
discriminatory power of the 82 characteristics men-
tioned above. To achieve this, the sequential forward
selection method (SFS) [26] and the sequential backward
selection method (SBS) [26] used via the Fuzzy-ARTMAP
neural network [27] were applied.
SFS is a bottom-up search procedure where one fea-

ture at a time is added to the current feature set. At each
stage, the feature to be included in the feature set is
selected from among the remaining available features,
which have not been added to the feature set. The new
enlarged feature set yields a minimum classification
error compared to adding any other single feature. The
algorithm stops when the addition of a new feature
yields an increase of the classification error. The SBS is
the top-down counterpart of the SFS method. It starts
from the complete set of features and, at each stage, the
feature that shows the least discriminatory power is
discarded. The algorithm stops when removing another
feature results in an increase of the classification error.
The selection performance was evaluated by five-fold

cross-validation [26]. In this way, the disadvantage of
sensitivity to the order of presentation of the training set
that the SBS and SFS methods present was diminished.
To perform the cross-validation method, four disjoint
subsets of each class (control, dystrophy) were used.
Three of these subsets served as a training set for the
neural network, and the remaining one was used as a
validation set. The procedure was then repeated, inter-
changing the validation subset with one of the training
subsets and so on until each of the four subsets had
been used as validation sets. The final classification error
was calculated as the mean of the errors for each cross-
validation run.
The classifier used was the Fuzzy-ARTMAP neural

network architecture developed by Carpenter et al. [27],
which is based on adaptive resonance theory (ART).
Fuzzy-ARTMAP is a supervised learning classification
architecture for analog-value input pairs of patterns
where each individual input is mapped to a class label.

Results analysis
Once the feature vector with the most discriminatory
power to distinguish between the classes analyzed had
been selected, it was possible to classify new biopsy
images and to estimate the degree of pathology with
respect to control images.
The Fuzzy-ARTMAP neural network classifies new

biopsies based on the selected features. Also, principal
component analysis (PCA) [26] allows the degree of
pathology of each biopsy image to be visualized graphi-
cally based on its position when two or three principal
components are represented (Figure 2). These principal
components are correlated data points of the feature
vector that PCA transforms into a small number of
uncorrelated variables. The projection maximizes the
dispersion of the individual data points without prior
knowledge of whether these are expected to form
groups. This allows the unbiased identification of natu-
rally separated sets of data points that may form groups
because they are similar.
PCA was applied to the selected feature vector. To

check the vector’s performance as an indicator of the de-
gree of pathology, the Pearson correlation coefficient was
computed. This parameter provides a measure of the
strength of linear dependence between two variables X
and Y, giving a value between +1 and −1 inclusive. In this
case, the variable X is the degree of pathology evident in
the biopsies used in the training stage, which have previ-
ously been analyzed by the pathologist. The variable Y is
the Euclidean distance between the pathological images
and the centroid of the controls in the PCA graph.

Results
NDICIA identifies fibers in muscle samples and extracts
the muscle network
Immunohistochemical staining of the collagen network
surrounding the muscle fibers (endomysium and peri-
mysium) with anti-collagen VI antibody enabled quanti-
fication of the amount of collagen in the tissue and, at
the same time, provided an outline of the muscle fibers.
The muscle fiber type was identified using anti-myosin
slow (type I) or anti-myosin fast (type II) specific anti-
bodies (Figure 1a). By applying a digital image process-
ing algorithm based on the watershed transform [28],
the segmentation process identified cell contours and



Figure 2 Principal component analysis graphs of the comparisons of different control and pathological samples. PCA graphs for the
comparisons of muscle images from different sources using different groups of characteristics. The green dots represent the control images
(quadricep biopsies from children in a, c, and d and adult biceps in b). The black star represents the centroid for the control dataset in each
graph. The red and blue dots are the MD and NA images, respectively. (a) Control versus MD comparison using characteristics 15, 18 and 19.
(b) Control versus NA comparison using characteristics 12, 20, 21 and 22. (c) Same comparison as in (a), showing the degree of pathology as
evaluated by the pathologist and the correlation coefficient with distances to the centroid. (d) Control versus MD comparison using
characteristics 13, 15, 18, 27 and 41 and showing the degree of pathology and the correlation with distances to the centroid. Three images (dots)
are highlighted with an orange, light blue or violet circle. These dots correspond to the images in e, f and g respectively. (e) Detail of a
representative control image (the one closer to the centroid, QC60-1). (f) Detail of the QD54-2 image. This image shows a small increase in the
amount of collagen between the fibers and in the heterogeneity of sizes and shapes of them. (g) Detail of the QD58-2 image. This image
presents a clear increase of the endomysium and higher heterogeneity in sizes and shapes than in e and f. PCA, principal component analysis.
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enabled geometrical characteristics such as area or shape
indicators to be identified, as well as the muscle fiber
type (fast or slow) to be determined (Figure 1b,d and
Methods). The segmented image also served as the basis
for determining which cells were adjacent to each fiber
(Figure 1f ). This information was used to produce a
muscle network where each fiber was represented as a
node, and two nodes were connected if two fibers were
situated adjacently (Figure 1e,f ). This approach was
used to extract typical characteristics of the three
types of images: control, NA and MD (Figure 1a,g
and h respectively).

NDICIA selects the most discriminating features for the
optimal classification of muscle samples
The network and segmented images were used to extract
82 characteristics from muscle biopsies (Additional file 4:
Table S2). Sixteen of these characteristics were related to
geometrical features of the biopsy and reflected the basic
features analyzed by the pathologist. Aiming to capture
the organization of the fibers in the muscle, we added
eight characteristics that were exclusively related to the
structure of the network formed by the tissue: the number
of neighbors (characteristics 17 and 18), the number of
neighbors for a particular type of fiber (19 and 20), and
the number of neighbors of one kind for a particular type
of fiber (21 to 24). A further 14 characteristics (25 to 38)
were obtained by modifying the geometric parameters to
convert them into network characteristics. The remaining
44 network features consisted of inherent network proper-
ties that would not normally form part of the evaluation
by the pathologist (described in the legend of Additional
file 4: Table S2). The combination of these 82 geometrical
and network characteristics gives rise to a ‘Feature vector’
that describes the properties of the image. This allows the
application of multivariate statistical analysis using PCA
[19,29,30]. To evaluate the discriminatory power of each
individual feature to classify and select the most effective
subset of features, we used the SFS and SBS methods
[27] via an artificial neuronal network (see Methods
and Additional file 5: Figure S3).
First, we tried to mimic the routine analysis made by the

pathologist using only the first 24 characteristics of our set
of 82 characteristics. The selection of relevant features for
each comparison required a training process based on
known biological data. Performing the training by using 18
images from control and 20 images from MD samples
(Additional file 2: Table S1), NDICIA selected one geomet-
rical (15) and two network characteristics (18 and 19) for
the identification of dystrophies. PCA graphs for the
control and MD datasets were generated using the selected
features. Whereas the control images were clustered at one
side of the projection, the MD dataset was separated from
the control group and more spread out (Figure 2a).
We repeated the analysis with other sets of images
that could be considered more similar based on sim-
ple visual inspection. We trained NDICIA using 16
control images from adult biceps brachii and 17 NA
images from different muscles (Additional file 2:
Table S1). The PCA graph also revealed a separation
of the images into two groups (Figure 2b). Interest-
ingly, none of the previous characteristics (15, 18,
19) were selected when control and NA samples (12,
20, 21, 22) were compared, thus indicating the flexi-
bility of the program to adapt to different sets of
images and pathologies. The three network features
selected for NA were related to the organization of
the fiber types and were able to capture the NA
characteristic fiber-type grouping due to secondary
reinnervation events.

NDICIA objectively quantifies the severity of pathology of
muscular dystrophies
PCA graphs can be used to quantify differences
between components in different image datasets [22].
We postulated that the distribution patterns in the
PCA graphs of MD images with respect to the group
of control images could have diagnostic significance,
and tested this hypothesis by performing a blind
experiment. The pathologist estimated the degree of
severity of the MD samples by analyzing the biopsies
using the routine panel and the specific protocols of
histochemical, histoenzymatic and immunohistoche-
mical techniques (Methods and Additional file 1:
Figure S1). We then compared his evaluations with
the results of PCA plots generated using the charac-
teristics 1 to 24. Interestingly, we found a high
correlation (R = 0.865, P <0.0001) between the degree of
pathology diagnosed by the pathologist and the Euclidean
distance between the MD image and the centroid of the
controls in the PCA graph (Figure 2c).
Once we confirmed that the results obtained using 24

characteristics correlated with the pathologist’s evalu-
ation, we decided explore the whole set of 82 available
characteristics, looking for novel insights from the
network analysis and an improvement of our results.
After testing different options, the combination of
characteristics 13, 15, 18, 27 and 41 resulted in the
maximum correlation with the pathologist’s evaluation
(R = 0.900, P <0.0001; Figure 2d). Changes in some of
these characteristics could be observed in the
dystrophic images, such the increase of collagen VI
staining or the enhancement in heterogeneity of sizes
and shapes of the fibers (Figure 2e-g). By contrast,
some network characteristics were too complex to be
detected by simple visual inspection. This was the case for
‘standard deviation of the degree of neighbors’ (18) or
‘average strength of fast cells’ (41).
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Classification of muscle biopsies when multiple categories
were compared
In practice, pathologists receive new muscle biopsies for
analysis that are accompanied by some additional clinical
information that orients the evaluation. We simulated
this situation, testing if our method was able to correctly
classify new images into any our three patterns of inter-
est (control, neurogenic and dystrophic). First, we
performed a new feature selection step using more
control images to cover a wider range of age and muscle
types (87 images: 50 controls, 20 MD, 17 NA; Additional
file 2: Table S1). When the training procedure was
performed on the 82 features, nine characteristics were
subsequently selected (15, 16, 25, 29, 30, 32, 34, 62, 69).
It is of interest that only two of these are geometric
characteristics, pointing again to the high discrimination
power of network features. Then, the pathologist evalu-
ated the morphological pattern (normal, dystrophic or
neurogenic) of nine new biopsies that were not used in
the different feature selection steps (Table 1). For each
image we performed a triple (50 control versus MD
versus NA) and two double (control child quadriceps
versus MD and control adult biceps versus NA) compa-
risons. The classification of the four controls and the
sample showing a clear dystrophic pattern (X01) was
correct. In addition, NDICIA detected a mixed pattern
of a dystrophic myopathy with a predominance of type I
fibers (X13) and an end-stage NA with associated fibrosis
Table 1 New dataset of images and classification of the differ

Sample Age
(years)

Muscle Morphological pattern
evaluation

ALL

cc =
30,

X03-1 45 Biceps Normal C

X06-1 18 Biceps Normal C

X11-1 12 Quadriceps Normal C

X12-1 6 Quadriceps Normal C

X01-1 55 Biceps Dystrophic pattern D

X01-2 55 Biceps Dystrophic pattern D

X01-3 55 Biceps Dystrophic pattern D

X01-4 55 Biceps Dystrophic pattern D

X01-5 55 Biceps Dystrophic pattern D

X13-1 3 months Quadriceps Dystrophic pattern D

X05-1 54 Gastrocnemius NA-severe-pseudodystrophy N

X02-1 37 Gastrocnemius NA, only focal grouping C

X02-2 37 Gastrocnemius NA, only focal grouping C

X04-1 47 Gastrocnemius NA, slight-moderate C

X04-2 47 Gastrocnemius NA, slight-moderate C

Results of the classification of the three comparisons performed on different test sa
selection step. The table shows the selected characteristics in each case. Cases whe
‘No D’ corresponds to cases where NA was classified as ‘not dystrophic’, and ‘No N’
only two options in these double comparisons. C, normal pattern, D, dystrophic pat
(X05). Case X04 showing slight-moderate NA was consi-
dered normal in the triple comparison, but was correctly
classified in the control versus NA evaluation, showing that
the double comparison step is more sensitive. Finally, case
X02 with initial stage NA, which only showed some fiber-
type grouping of fibers without atrophy, was classified in
both comparisons as a control (Table 1).

NDICIA can quantify new samples with dystrophic and
neurogenic patterns
We tested if our method could also quantify the severity
of these newly incorporated samples. A PCA graph was
generated for the control versus NA comparison that
included corresponding images from the new set
(Figure 3a). The new controls appeared close to the ori-
ginal control samples, whereas the neurogenic images
appeared scattered in different positions within the
cloud of NA images. Interestingly, X02-1 and X02-2
were located at the boundary between the two groups,
indicating the low level of pathology that this patient
presented. Similar results were obtained in the case of
the control versus MD comparison (Figure 3b). The par-
ticular case of X05-1 was assessed in both comparisons
and exhibited dual properties that identified it as a
neurogenic pathology with a strong fibrosis component
(similar to the morphological pattern described by the
pathologist). Finally, the evaluation carried out by the
pathologist was compared with the NDICIA analysis of
ent comparisons

82cc Control versus MD 82cc Control versus NA 82cc

15, 16, 25, 29,
32, 34, 62, 69

cc = 13, 18, 15, 27, 41 cc = 21, 33, 55

No D No N

No D No N

No D No N

No D No N

D No N

D No N

D No N

D No N

D No N

D N

D N

No D No N

No D No N

No D N

No D N

mples. In these comparisons 82 characteristics were used in the feature
re NDICIA was not able to classify the condition correctly are labeled in bold.
the cases with fibrosis was classified as being ‘not neurogenic’ since there were
tern, N, neurogenic pattern.



Figure 3 Principal component analysis graphs of the
comparisons of control dystrophies with newly incorporated
samples. (a) PCA graphs for the control versus NA comparison
using characteristics 21, 33 and 55 (control biceps: green dots; NA:
blue dots) incorporating the control (dark green squares) and NA
images (light blue squares) from a new dataset. The violet square
represents the position of sample X05-1, a mixed neurogenic-
dystrophic pattern. (b) PCA graphs for the comparisons of muscle
images from control quadriceps (green dots) and MD quadriceps
(red dots) using characteristics 13, 15, 18, 27 and 41. The position of
the new images is represented by dark green squares (new control)
and brown squares (new cases with dystrophic pattern). The violet
square corresponds to the position of the sample with severe NA
affected with dystrophy (X05-1). (c) Same plot showing the degree
of pathology of the new samples (red numbers) and the correlation
with distances to the centroid (black star). PCA, principal
component analysis.
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these new samples with respect to their distance to the
centroid of the controls in the PCA graph (Figure 3c).
Importantly, the value of the correlation after the
inclusion of the new images remained very high (R = 0.892,
P <0.0001; Figure 3c), suggesting that NDICIA maintained
its quantification power with samples that were not
subjected to the feature selection step.

Discussion
We have described here NDICIA, a flexible method to
aid in the diagnosis of different muscle diseases. Our
results were based on 87 images from 61 individuals
(controls and patients). To the best of our knowledge,
this is the largest and most comprehensive dataset of
images analyzed in a neuromuscular study. Previous
reports have been published of attempts to facilitate the
automated extraction of geometric characteristics from
muscle biopsies [11-16]. These studies rely on the devel-
opment of segmentation methods using a very small
number of samples to only extract morphometric infor-
mation. In our case, the segmentation of the muscle
images (control and pathological) is only the first step
undertaken. NDICIA also extracts topological informa-
tion, capturing the spatial organization of slow and fast
fibers by constructing a ‘muscle network’ of fiber-to-fiber
contacts. NDICIA automatically identifies muscle cells
and classifies them as type I or type II, calculates the
collagen content of the biopsy, and provides values for
the geometric and network characteristics of the muscle
fibers. It then combines these data to complete a quanti-
fiable characterization of the muscle sample in a repro-
ducible, objective and automated manner. Therefore, the
framework introduced here complements, facilitates and
accelerates the routine work of the pathologist. NDICIA
is able to distinguish between three patterns (control,
dystrophic and neurogenic) and point out when a
sample presents a mixture of dystrophic and neurogenic
patterns. Of course, morphological information needs
additional data such as clinical, biochemical or molecu-
lar information to reach the final diagnosis, but the use-
ful information provided by NDICIA will doubtless aid
the pathologist’s evaluation. As a proof of principle, we
demonstrated that the information extracted from the
images is meaningful because the quantification pro-
vided correlated highly with the pathologist’s evaluation
in the case of MD. Besides this practical accomplish-
ment, our results suggest that network science techno-
logy can be used to capture defining signatures of
muscle biopsies. We assessed the two morphological
patterns, MD and NA, to evaluate the accuracy of this
method. It is out of the scope of the present work to
analyze every type of NMD. However, NDICIA is a
flexible tool and we think that it can be very helpful in
other groups of muscle disorders in the near future. For
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example, congenital myopathies share some common
morphological features, such as type I fiber atrophy or
type I fiber predominance or uniformity, that can be
easily recognized by the NDICIA network approach.
We have shown that the characteristics chosen in the

feature selection step were different for MD and NA.
Using 24 characteristics, NDICIA selected one geomet-
rical (‘A1/A2 relation’) and two network (‘average degree
of neighbors’ and ‘standard deviation of the degree of
neighbors’) characteristics for the identification of
dystrophies. The selection of ‘A1/A2 relation’ is logical
because it reflects the level of fibrosis in the biopsy, this
being an important biomarker for dystrophies. However,
it was surprising that the ‘degree of neighbors’ was more
important than features related to the shape of the
fibers. Interestingly, none of the previous characteristics
(15, 18, 19) were selected when control and NA (12, 20,
21, 22) were compared. The three network characteris-
tics selected are related to the organization of the fiber
types and were able to capture the characteristic fiber-
type grouping due to secondary reinnervation events.
We also obtained different selected features from the
analysis of the 82 characteristics (characteristics 21, 33
and 55 for NA; and 13, 15, 18, 27 and 41 for MD).
Therefore, NDICIA selects different features that cap-
ture the specific changes that occur within a particular
NMD. This modular nature of NDICIA establishes an
ideal framework to be adapted to the study of any NMD.
In some cases, the selection of characteristics from
among the 82 that we presented here will be sufficient,
whereas in others the addition of new markers to a similar
underlying method will be required.
The potential of NCIDIA resides also in the quantifica-

tion of severity of pathologic pattern. Whereas the first 24
characteristics were designed to ‘imitate’ the parameters
that the pathologist typically analyses in a biopsy, the
remaining 58 network features are extremely difficult (or
even impossible) to evaluate by visual inspection. Our
results demonstrated that the inclusion of these network
parameters first improves the quantification of the degree
of pathology by dystrophies (from R= 0.865 to R = 0.900)
and, second, uncovered unexpected network traits that
defined the differences between control and MD
patterns. These results convincingly point to the ave-
rage relation neighbors major axis (27) and average
strength of fast cells (41) as two new parameters
important for the evaluation of MD. The first reflects
the homogeneity of fiber shapes and sizes along the
image, and the second is an index of fiber packing.
We conclude that network characteristics could serve
as a valuable tool for assessing the etiology and/or
progression of a disease, and may help to further our
understanding of the pathological processes that
accompany NMD.
We have shown here that NDICIA (at least for MD and
NA) was able to quantify the differences between control
and pathological samples that were not used in the feature
selection step. Remarkably, the results maintained a high
degree of correlation with the evaluation of the pathologist
(Figure 3c). Although the final diagnosis of some NMD
does not require very detailed analysis of morphological
characteristics, the precise quantification leads to the iden-
tification of subtle differences between our controls and
pathological images. For example, the images X02-1 and
X02-2 (from a patient with initial stage NA whose sample
only showed some focal grouping of fibers without atro-
phy) were classified as control in the triple and double
comparisons (Table 1). Interestingly, when the PCA graphs
were analyzed (Figure 3a), we observed that these two
images were at the interface of control and NA datasets.
We interpret this type of result as an indication that
involvement of a possible affectation should be suspected.
Conclusions
NDICIA´s major achievement is its potential clinical
application. The combination of the precise quantification
and the incorporation of new samples could allow fine-
tuning of the diagnosis of the pathologies analyzed here.
This enables the identification of the first signs of path-
ology, bringing forward the onset of potential treatment.
In the neuromuscular field, objectivity in the quantifica-
tion of outcome measurements is a clear, fundamental de-
mand [31,32]. In addition, the modular nature of NDICIA
gives it the potential to be extended to the analysis of any
NMD, using new stainings and characteristics. NDICIA
fulfills all the requirements for monitoring the progression
of a disease in natural history studies and following the
treatment results in preclinical and clinical trials. The
results presented here are also likely to be applicable to
the analysis of complex cellular ensembles associated with
other biomedical conditions.
Additional files

Additional file 1: Figure S1. Procedure for analysis of muscle biopsies
in the neuropathology laboratory. Muscle biopsies are processed by
cryostat. A large number of slides are necessary for the different stainings,
and a series of routine techniques are performed for the initial evaluation
(histochemical and histoenzymatic techniques). Depending of the results
of the routine panel, other more specific protocols can be applied to
obtain additional information. HE, hematoxylin-eosin, PAS, periodic acid-
Schiff, MG Trichrome, modified Gomori trichrome.

Additional file 2: Table S1. Muscle biopsies and images used in this
study. Information about the age and type of muscle is provided. Control
muscles have been grouped according to their location (quadriceps,
biceps or gastrocnemius muscle) and age (child or adult).

Additional file 3: Figure S2. Block diagram of the steps followed in the
segmentation process. The diagram includes images showing the output
of the different steps.

http://www.biomedcentral.com/content/supplementary/-S1.jpeg
http://www.biomedcentral.com/content/supplementary/-S2.xls
http://www.biomedcentral.com/content/supplementary/-S3.jpeg
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Additional file 4: Table S2. List of 82 characteristics analyzed and their
values for each image. Values for the 82 characteristics of the 87 images
used for the training step and the 15 other images tested. Av. = Average,
s. d. = standard deviation. Characteristics 1 to 24 mimic features that the
pathologist evaluates when analyzing a biopsy. The 24 characteristics can
be classified into four groups: geometrically related to the size of fibers (1
to 6), geometrically related to the shape and orientation of fibers (7 to
14), geometrically related to the collagen content (15 and 16), and
network characteristics (17 to 24). The network features capture
information about the organization of the fibers. Area: Size (in pixels) of
the fiber (A2). Major Axis: Length (in pixels) of the major axis of the
ellipse that has the same normalized second central moments as the
fiber. Minor Axis: Length (in pixels) of the minor axis of the ellipse that
has the same normalized second central moments as the fiber. Relation
Axis: Ratio between the major and minor axes of each fiber. Convex
Hull: Proportion of the pixels in the convex hull that are also in the fiber.
Computed as area of fiber/area of the convex hull. The convex hull is the
smallest convex polygon that can contain the fiber. Angles: Angle (in
degrees) between the x-axis (horizontal to the image) and the major axis
of the ellipse that has the same second-moments as the fiber. Relation
A1/A2: Ratio between the size (in pixels) of the ‘expanded fiber’ (A1) and
the size of the fiber (A2, in pixels). Neighbors: Number of neighbor fibers
of a fiber. Characteristics 25 to 38 are related to the value for a geometric
characteristic of a node and the average value of its neighbors. A short
description is given for characteristics 39 to 82: Strength: Node strength
is the sum of weights of links connected to the node, where the weight
of links, in our case, is the distance in pixels between two fibers.
Clustering coefficient: The fraction of triangles around a node
(equivalent to the fraction of a node’s neighbors that are neighbors of
each other). Eccentricity: The shortest path length between a node and
any other node. Betweenness centrality: The fraction of all shortest paths
in the network that contain a given node. Nodes with high values of
betweenness centrality participate in a large number of shortest paths.
Shortest path lengths: The distance matrix containing lengths of shortest
paths between all pairs of nodes. Radius: The minimum eccentricity.
Diameter: The maximum eccentricity. Efficiency: The average inverse
shortest path length in a network. Pearson: The Pearson correlation
reflects the degree of linear relationship between two variables (nodes
and weight of links). Algebraic_connectivity: The second smallest
eigenvalue of the Laplacian (Laplacian: degree matrix minus the
adjacency. Adjacency matrix: matrix with rows and columns labeled by
graph nodes, with a 1 or 0 in position (vi, vj) according to whether vi and
vj are adjacent or not). S_metric: The sum of products of degrees across
all edges. Assortativity: A positive assortativity coefficient indicates that
nodes tend to link to other nodes to the same or a similar degree.
Density: The fraction of present connections to possible connections.
Connection weights are ignored in calculations. Transitivity: The ratio of
'triangles to triplets' in the network (an alternative version of the
clustering coefficient). Modularity: A statistic that quantifies the degree
to which the network may be subdivided into such clearly delineated
groups.

Additional file 5: Figure S3. Scheme showing the approach proposed
in this study. We present an example for the feature selection step using
the artificial neuronal network (ANN) from the characteristics (yellow
circle) and two categories (A and B) of images. Green and red squares
represent two groups of images. The feature selection step provides the
most discriminating characteristics for this comparison (orange circle) and
the classification of the images into categories A and B. The blue squares
represent new images. ANN classifies them into categories A and B using
the selected characteristics. Principal component analysis (PCA) allows
quantification of the degree of affection of the images used for the
feature selection step, and also for the new images. This quantification is
performed using the same selected characteristics.
Abbreviations
ART: adaptive resonance theory; MD: muscular dystrophies; NA: neurogenic
atrophies; NMD: neuromuscular diseases; NDICIA: Neuromuscular DIseases
Computerized Image Analysis; PCA: principal component analysis;
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