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Abstract

Background: Monitoring progress with disease and injury reduction in many populations will require widespread
use of verbal autopsy (VA). Multiple methods have been developed for assigning cause of death from a VA but
their application is restricted by uncertainty about their reliability.

Methods: We investigated the validity of five automated VA methods for assigning cause of death: InterVA-4,
Random Forest (RF), Simplified Symptom Pattern (SSP), Tariff method (Tariff), and King-Lu (KL), in addition to
physician review of VA forms (PCVA), based on 12,535 cases from diverse populations for which the true cause of
death had been reliably established. For adults, children, neonates and stillbirths, performance was assessed
separately for individuals using sensitivity, specificity, Kappa, and chance-corrected concordance (CCC) and for
populations using cause specific mortality fraction (CSMF) accuracy, with and without additional diagnostic
information from prior contact with health services. A total of 500 train-test splits were used to ensure that results
are robust to variation in the underlying cause of death distribution.

Results: Three automated diagnostic methods, Tariff, SSP, and RF, but not InterVA-4, performed better than
physician review in all age groups, study sites, and for the majority of causes of death studied. For adults, CSMF
accuracy ranged from 0.764 to 0.770, compared with 0.680 for PCVA and 0.625 for InterVA; CCC varied from 49.2%
to 54.1%, compared with 42.2% for PCVA, and 23.8% for InterVA. For children, CSMF accuracy was 0.783 for Tariff,
0.678 for PCVA, and 0.520 for InterVA; CCC was 52.5% for Tariff, 44.5% for PCVA, and 30.3% for InterVA. For neonates,
CSMF accuracy was 0.817 for Tariff, 0.719 for PCVA, and 0.629 for InterVA; CCC varied from 47.3% to 50.3% for the
three automated methods, 29.3% for PCVA, and 19.4% for InterVA. The method with the highest sensitivity for a
specific cause varied by cause.
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certification practices.

Conclusions: Physician review of verbal autopsy questionnaires is less accurate than automated methods in
determining both individual and population causes of death. Overall, Tariff performs as well or better than other
methods and should be widely applied in routine mortality surveillance systems with poor cause of death

Keywords: Verbal autopsy, VA, Validation, Cause of death, Symptom pattern, Random forests, InterVA, King-Lu, Tariff

Background

Reliable information on the number of deaths by age,
sex and cause is the cornerstone of an effective health
information system [1,2]. Levels and trends in cause-
specific mortality provide critical insights into emerging
or neglected health problems and the effectiveness of
current disease control priorities. Further, monitoring
progress with national health development goals and
global poverty reduction strategies enshrined in the
Millennium Development Goals requires a reliable under-
standing of how leading causes of death are changing in
populations. The urgency of supporting countries to im-
plement reliable and cheap cause of death measurement
strategies is becoming increasingly evident with the
strong country leadership expectations that are driving
the post-2015 development agenda. Yet with the remark-
ably slow progress over the last 40 years or so in the de-
velopment of vital registration systems built on medical
certification of causes of death, countries will be ‘driving
blind’ [3]. The recent Report of the High-Level Panel on
the post-2015 Development Agenda has called for a ‘data
revolution’ [4] to urgently improve the quality and avail-
ability of information on key development indicators, in-
cluding patterns of disease in populations, and to exploit
new measurement and data collection technologies. Civil
registration systems which are able to generate reliable
vital statistics on the health of populations are central to
the new emphasis on accountability, but there is little
prospect of countries being able to do so if they continue
to pursue current cause of death measurement strategies
based on incrementally expanding coverage of physician
certification of deaths.

How then, might countries accelerate cause of death
measurement in their populations in order to monitor
progress with their development goals and deliver on
the promise of the ‘data revolution’ that is being called
for? What is required are cheap, effective methods to
reliably assess cause of death patterns that facilitate
comparisons over time and with the evaluation of dis-
ease control strategies. Moreover, these methods need
to be capable of realistic application in the poorest
populations where physician availability is likely to be
extremely limited, thus ensuring compliance with a key
tenant of the post-2015 development strategy to ‘leave
no one behind’ [4].

A death certificate completed by a physician with sub-
stantial knowledge of the clinical course of an individual
prior to death based on appropriate diagnostics is the
de facto standard for cause of death assignment. When
deaths occur outside of a hospital or occur in facilities
with limited diagnostic capability, verbal autopsy (VA) has
increasingly been proposed and used to measure cause of
death patterns. Recent studies suggest that VA can provide
cause of death information that, at the population level,
is similar to death certification in high-quality hospitals
[5]. VA is thus a potential data collection option for low-
resource settings to confidently monitor progress with
their development strategies, provided it can be shown
to be realistic, reliable and routinely applicable.

Interest in VA as a tool for monitoring causes of death
in research settings has grown steadily. For example, the
number of articles referring to VA in Google Books has
doubled every five-year period over the last two decades
[6]. More recently, several developing country governments,
including India, Brazil, and Sri Lanka, have used forms of
VA in official data collection systems. Mozambique has im-
plemented a national VA sample as part of their decennial
census [7]. Other countries such as Zambia and Tanzania
are developing national sample registration systems using
VA, and China has already done so [8,9]. The World Health
Organization (WHO) has called for wider use of VA
specifically to track the non-communicable disease epi-
demic in many developing countries without adequate
death registration and medical certification [10]. The
increased use of VA for routine application in national
health information systems has the potential to greatly
improve the availability of reliable and essential information
on causes of death for disease control programs worldwide
but has been constrained by widespread concerns about
the dependability of symptom information collected from
families and the practicality of relying on physicians to re-
view anonymous symptom-based questionnaires. Confi-
dence in VA as a legitimate data collection mechanism
has been limited because it is not known how accurately
the method can diagnose the underlying cause of death
compared with hospital-based procedures or how different
approaches to VA perform in assigning causes of death.

VA encompasses a diverse set of tools. An instrument is
used to conduct the interview of family members about
their recollection of signs, symptoms and characteristics of
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the individual and events prior to death, as well as the dece-
dent’s experience of health care. Then, an analytical method
is used to process the information collected in the interview
in order to diagnose the cause of death. WHO has recently
proposed a standardized instrument, [11] variants of which
have been used in a number of demographic surveillance
sites [12] and in the Population Health Metrics Research
Consortium (PHMRC) VA validation study, which collected
more than 12,535 VA interviews for deaths where the true
underlying cause was reliably known through pre-defined
rigorous diagnostic criteria [13]. The validity of at least
six analytical methods to assign cause has been studied
using comparable data from the PHMRC study: physician-
certified VA (PCVA), InterVA 3.2, King-Lu (KL) direct
cause-specific mortality fraction (CSMF) estimation, the
Tariff method (Tariff), Random Forest (RF), and the
Simplified Symptom Pattern (SSP) method [14-19].

PCVA is the traditional approach to verbal autopsy
and uses the judgment of a physician to determine the
most likely cause of death based on a verbal autopsy.
InterVA is an application of Bayes’ Theorem that uses
expert review panels to determine the probability of
saying yes to each item conditional on the true cause
of death. The King-Lu method uses information on the
probability of saying yes to each item from a reference
dataset to estimate the cause fractions in a population
sample but does not assign cause at the individual
level. The Tariff method calculates a score, or tariff, for
each symptom-cause pair based on observed endorsement
rates in the data that effectively identify the symptoms
with a strong ‘signal’ for each cause. Random Forest uses
a machine learning algorithm to classify causes of death
based on the automated creation of decision trees. Simpli-
fied Symptom Pattern is a statistical implementation of
Bayes’ Theorem that takes into account symptom cluster-
ing. Performance of all methods was assessed using new
metrics [20] and a broad set of test datasets that are meant
to generate more robust assessments across a range of
cause of death compositions.

PCVA is the current practice in most VA applications,
but it is expensive and inefficient to apply since it relies
on physician review of VA forms. However, until now,
PCVA has been considered the method of choice if re-
sources allow. In this paper, we take advantage of the
recent series of method-specific studies that have been
published and the PHMRC validation dataset, to investigate
the comparative performance of available VA methods,
including PCVA [14-19]. We use any revisions of these
methods, such as InterVA-4, [21] that have emerged
since the original PHMRC publications to provide an
objective, comprehensive and up-to-date comparison of
the performance of various methods in diagnosing VAs.
This comparative information on performance and the
relative strengths and weaknesses of various methods is
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intended to facilitate choices by researchers and man-
agers of health information systems wishing to deploy
VA as a tool for routinely monitoring causes of death in
their populations.

Methods

The design, implementation, and broad findings from
the PHMRC Gold Standard Verbal Autopsy validation
study are described elsewhere [13]. Briefly, the study
collected VAs in six sites: Andhra Pradesh and Uttar
Pradesh in India, Bohol in the Philippines, Mexico City
in Mexico, and Dar es Salaam and Pemba Island in
Tanzania. Gold standard (GS) clinical diagnostic criteria
were specified by a committee of physicians for 53 adult,
27 child and 13 neonatal causes plus stillbirths prior to
data collection. Deaths fulfilling the GS criteria were
identified in each of the sites. It is important to note that
the stringent diagnostic criteria used in this validation study
differ from traditional validation studies, which frequently
use physician judgment to certify deaths based on available
clinical records. Even if independent clinicians are used
to certify the cause of death, the diagnosis is subjective
in nature, non-standardized and further limited by any
biases of the individual clinician and the availability of
diagnostic tests. Once the GS deaths that met the criteria
were identified, VA interviews were then conducted with
household members by interviewers who had no know-
ledge of the cause of death. Separate modules were used
for adults, children and neonates [13]. The PHMRC in-
strument was based on the WHO recommended VA
instrument with some limited modifications [13].

At the end of the study, 12,535 verbal autopsies on
deaths with GS diagnoses were collected (7,846 adults,
2,064 children, 1,620 neonates and 1,005 stillbirths).
This is seven fewer than previously published due to final
revision of the preliminary dataset. Additional revisions
include recoding several items in the dataset including the
question ‘Did decedent suffer from an injury?” which was
considered an endorsement conditional on the injury oc-
curring within thirty days of death. Questions not directly
related to cause of death, such as “Was care sought outside
the home?, are no longer used in order to avoid potential
bias when analyzing data sets from other populations.

Additional files 1, 2 and 3: Tables Sla to Slc provide
information on the number of GS deaths collected for
adults, children and neonates by cause and by diagnostic
level. The study protocol defined three levels of cause of
death assignment based on the diagnostic documentation:
Level 1, 2A and 2B. Level 1 diagnoses are the highest level
of diagnostic certainty possible for that condition, consist-
ing of either an appropriate laboratory test or X-ray with
positive findings, as well as medically observed and docu-
mented illness signs. Level 2A diagnoses are of moderate
certainty, consisting of medically observed and documented
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illness signs. Level 2B was used rarely in place of level 2A if
medically observed and documented illness signs were not
available but records nonetheless existed for treatment of a
particular condition. Details of the clinical and diagnostic
criteria for each cause have been published [13]. Of all GS
deaths collected, 88% met Level 1 criteria, which we used
for all primary analysis. In various sensitivity analyses that
have been conducted, the results do not differ when only
Level 1 deaths are used compared to all deaths. Because of
small numbers of deaths collected for some causes, we were
able to estimate causes of death and evaluate the methods
for 34 causes for adults, 21 causes for children and 5 causes
for neonates plus stillbirths [13]. The choice of the causes
used in the study is elaborated elsewhere [13]. The number
of neonatal causes evaluated was reduced from 10 to 5,
excluding stillbirths, because of the use of combinations of
causes that do not map to the International Classification
of Diseases and Injuries (ICD). Results from these analyses
are presented based on the Global Burden of Disease
(GBD) 2010 cause list, which divides causes of death
into three broad groups: communicable, maternal, neo-
natal and nutritional disorders; non-communicable dis-
eases; and injuries [22].

The VA data, consisting of both the interview and open
narrative, were sent to physicians at each data collection
site who were trained to fill out standardized death certifi-
cates for each VA interview. Substantial efforts were taken
to standardize PCVA across sites including using stan-
dardized training material and the same trainers. Further
details on these efforts to standardize PCVA are described
in detail elsewhere [14]. In addition to the standard VA,
we sent VAs excluding the open narrative and information
on the recall of health care experience to a different set of
physicians to test what would be the performance of PCVA
in settings where decedents had had limited contact with
health services.

A well-known problem with the analysis of VAs is that
performance may vary as a function of the true cause of
death composition in the population studied. To avoid this
limitation, as part of the PHMRC study, 500 train-test data
analysis datasets were generated. Each train-test pair has a
different true cause of death composition. Figure 1 illustrates
how the validation data have been used to generate each
train-test pair. This procedure ensures that in each train-test
dataset pair, the train set and test set contain no deaths in
common. It further guarantees that there is no correlation
between the CSMF composition in the train set and the test
set. This is important because some automated methods
can yield exaggerated performance when the test and train
datasets have similar cause compositions [20,23].

As noted, the process of separating the data into test
and train datasets was repeated 500 times to eliminate
the influence of cause composition on the results of our
analysis. Each of the 500 test data sets has a different
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Figure 1 Process of generating 500 test and train validation
datasets. A detailed flowchart illustrating the process by which 500
different populations with different cause distributions were
simulated in order to validate the analytical models in 500

separate scenarios.

cause composition and analysis of all 500 datasets results
in a distribution of the metrics of performance, from
which we can calculate overall metrics and their uncer-
tainty intervals. By analyzing performance of methods
across multiple pairs of train-test datasets, we can en-
sure that conclusions about comparative performance
are not biased by the particular cause composition of the
test dataset. All methods except InterVA-4 have been
compared using exactly the same train-test datasets, and
all methods except InterVA-4 have been compared using
exactly the same cause lists. InterVA-4 yields cause assign-
ments for a different list of causes than the list developed
for the PHMRC study [21].

Since the publication of the study on the comparative
performance of InterVA 3.2 [15], InterVA-4 [21] has been
released. InterVA-4 includes a longer list of possible cause
assignments than InterVA 3.2, including maternal and
stillbirth causes. In this study, we use InterVA-4 for
comparison. The cause list has changed slightly between
InterVA 3.2 and InterVA-4. Therefore, the mapping of
the PHMRC cause list to the InterVA-4 cause list has
also been revised. This new cause mapping is described
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in Additional files 4, 5 and 6: Tables S2a to S2c. The new
cause mapping requires a ‘joint cause list; which is a
shorter list than the PHMRC cause list. When shorter
lists are used, a method will usually perform better than
when longer lists are used so performance for InterVA-4
may be exaggerated.

The Tariff method has also been updated so that only
tariffs that are statistically significant are used to generate a
tariff score for a death. This revision along with other slight
modifications is explained in detail in Additional file 7. RF
and SSP use tariff scores as an input into their algorithms
so the revisions to Tariff slightly modify the performance of
these automated methods as well.

Performance of each method has been assessed in two
dimensions: how well methods assign cause of death cor-
rectly for individual deaths and how accurately CSMFs are
estimated for populations. For assessing the performance
of each method at assigning true cause of death for indi-
vidual deaths for specific causes, we report sensitivity and
specificity. Because these measures, particularly specificity,
are a function of the underlying cause of death structure in
the population, we report the median value of each metric
and provide in additional tables further detail across the
500 splits. To summarize performance of each method
at assigning deaths to the correct cause across all causes,
we report two overall measures: chance-corrected con-
cordance (CCC) and Cohen’s Kappa [20]. Both summary
measures count how often a cause is correctly assigned
and then adjust for how often this is expected on the basis
of chance. Chance-corrected concordance for cause j
(CCCG) is measured as:

_TIh )\ _(1
ccc, - (qui]\é)[) (N)

where TP is true positives, FN is false negatives, and N
is the number of causes. TP plus FN equals the true
number of deaths from cause j.

For many purposes, it is more important to assess how
well a VA method does in estimating CSMFs. For indi-
vidual causes, we compare the true CSMF and the esti-
mated CSMF by regressing estimated CSMF on true
CSMF and report the slope, intercept and root mean
square error (RMSE) of this regression. If a method
perfectly predicts the true CSMF, the slope would be
1.0, the intercept would be zero and RMSE would be
zero. This concept is illustrated in Figure 2 which shows
a comparison of estimated CSMFs and true CSMF for one
cause for one method. Each point represents the true and
estimated CSMF for a cause from one of the 500 splits.
The red line represents the circumstances where the true
CSMF would equal the estimated CSMF. The blue line is
the linear regression line fit to the observed relationship
between the true and estimated CSMFs. As indicated, the

Page 5 of 19

Estimated CSMF

True CSMF

Figure 2 Estimated cause-specific mortality fraction (CSMF)
versus true CSMF example. A graphical example of the regression
of the estimated over true CSMF. This particular example is for the
estimation of epilepsy using SSP without HCE. Each dot represents a
single split, or simulated population, and SSP’s estimate of fraction
of epilepsy in the population as compared to the true fraction. The
red line represents a perfect estimate while the blue line represents
a line of best fit for the data. HCE, health care experience; SSP,

Simplified Symptom Pattern.

slope will tend to be less than one when sensitivity is
reduced; likewise, the intercept will tend to be non-
zero when specificity is reduced. The exact impact,
however, is also a function of the correlation structure
of misclassification errors.

To summarize overall performance of a method across
causes, we compute the CSMF accuracy for each of the
500 test datasets, defined as [20]:

k
S0 |csmEre-csmer

CSMF Accuracy = 1-

2 (I—Minimum (CSMF;’W) )

As defined, CSMF accuracy will be 1 when the CSMF
for every cause is predicted with no error. CSMF ac-
curacy will be zero, when the summed errors across
causes reach the maximum possible. To summarize
overall performance of a method in predicting CSMFs
that is robust to variation in the cause composition in
the population, we report the median CSMF accuracy
across the 500 splits.

Performance was also assessed with and without
household recall of health care experience (HCE), if any,
prior to death. HCE includes information about the
cause of death or other characteristics of the illness told to
the family by health care professionals transmitted in the
open section of the instrument or evidence from medical
records retained by the family and the responses to ques-
tions specifically related to disease history including all
questions from the section 1 of the Adult module, such as
‘Did the deceased have any of the following: Cancer’ [13].
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The open text information was parsed and tokenized
using the Text Mining Package in R version 2.14.0 [24].
The resulting information is a series of dichotomous vari-
ables indicating that a certain word was included in the
open text. By excluding from the analysis information on
the household experience of health care, the applicability
of various methods in populations with limited or no ac-
cess to care may be approximated. However, it is possible
that the process of contact with health services may also
change responses to other items in the instrument.

Performance of methods varies depending on the
underlying CSMF composition in the test population.
In other words, for a given CSMF composition one method
may outperform another even if in most cases the reverse
is true. To quantify this, we assess which method performs
best for CCC and CSMF accuracy for each of the 500 test
data sets (which have different cause compositions). We
also compute which method has the smallest absolute
CSMF error for each cause across the 500 splits. This
provides an evaluation of how often the assessment of
which method works best is a function of the true CSMF
composition of the test data and which method performs
best for a specific cause.

Results

Adults

Figure 3 reports the median sensitivity of each method
(except King-Lu which does not provide individual cause
of death assignments) for each cause and Figure 4 reports
the median specificity of each method for each cause. Cells
in these figures have been color coded to help identify pat-
terns across methods and causes — green for higher values
and red for lower values. Several general patterns emerge
across methods and causes. InterVA-4 has much lower
sensitivities than any of the other methods for nearly all
causes. Among the other four methods, there is consider-
able correlation in sensitivities across the methods by
cause, suggesting that it is easier, regardless of method, to
assign some causes correctly. For example, sensitivities are
relatively high for AIDS with HCE, maternal causes, breast
cancer, esophageal cancers, and most of the injuries except
for suicide. SSP yields very high sensitivities (over 70%)
with the inclusion of HCE for five injuries; maternal
causes; breast, cervical, esophageal and prostate cancers;
diabetes; and epilepsy. Many other causes have sensitivities
above 50%, while some causes, especially residual categories
such as other non-communicable diseases, have quite
low sensitivities. There is substantial variation in perform-
ance for specific causes across the methods as well. For
example, for malaria, sensitivity ranges from 9.8% for
InterVA-4 with HCE to 59.1% for Tariff with HCE.
PCVA has the highest sensitivity for suicide and for the
residual categories other non-communicable diseases
and other infectious diseases.
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Figure 4 indicates particular weaknesses for methods
where specificity drops below 95% which will lead to sub-
stantial over-estimation of CSMFs for these causes: PCVA
for other non-communicable, InterVA-4 for pneumonia,
other cardiovascular and other non-communicable. Speci-
ficities in the 95% to 98% range are also problematic and
these are noticeable for many causes including major public
health challenges, such as malaria. Additional file 8: Table
S3 provides the standard deviation of sensitivity and speci-
ficity by cause and method across the 500 splits indicating
that both sensitivity and specificity can vary as a function
of the cause composition of the population and due to
stochastic variation in the deaths selected in the train and
test splits.

Figure 5 provides Cohen’s Kappa and CCC for each
method (except King-Lu) which gives an overall sum-
mary of the performance of each method in assigning
individual deaths to their true cause. CCC and kappa
are reported both in cases where household recall of
HCE is available and not. Overall, SSP does the best at
assigning individual causes of death with or without HCE.
Tariff and RF have slightly lower performance followed
by PCVA, and InterVA-4 is substantially worse. These
general orderings of the methods are similar whether
performance is assessed with or without HCE using kappa
or CCC as the metric.

Additional file 9: Table S4 shows the relationship be-
tween the estimated and true CSMFs across 500 test-
train splits for adults. The relationships are quantified
in terms of the slope, intercept, RMSE of the regression
of estimated CSMF on true CSMF and the average abso-
lute error in CSMFs across all splits. There are some
general findings that hold across all methods, including
the observation that other non-communicable diseases
have among the largest absolute errors as compared to
other causes while injuries such as road traffic acci-
dents have the lowest absolute error. Simple inspection
confirms that RF with HCE has the smallest absolute
error for 9 of the 34 causes. KL, SSP, Tariff, PCVA and
InterVA-4 with HCE have the smallest error for five, five,
two, two and zero causes, respectively. Additionally, RF ties
for smallest absolute error eight times while KL, SSP, Tariff,
PCVA and InterVA-4 with HCE tie three, one, three, zero
and zero times respectively. Both with and without HCE,
InterVA-4 gives large errors for pneumonia and other car-
diovascular diseases. Table 1 provides median CSMF accur-
acy and CCC for each method with uncertainty intervals.

Figure 6 compares the performance of the six VA
methods for adult cause of death assignment in terms of
performance in assigning cause of death for individual
deaths (CCC) and performance in estimating CSMFs
(CSMF accuracy). Across the VA analytical methods, there
is marked variation in both CCC and CSMF accuracy.
In general, these two performance dimensions are highly
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Tariff ssp RF PCVA InterVA
Adult Causes No HCE HCE No HCE HCE No HCE HCE No HCE HCE No HCE HCE
Median Median Median Median Median Median Median Median Median Median

GBD Cause Group A: Communicable,
maternal, neonatal and nurtritional
disorders
AIDS 20.8 52.5 21.1 57.1 342 55,3 336 66.7 19.8 19.5
Diarrhea/Dysentery 35.1 404 4713 433 38.6 444 394 30.4 7.1 7.1
Malaria 32 59.1 30.6 52.5 12 32 254 32.7 5 9.8
Maternal 66.7 69 85.8 90.2 72.8 713 559 62.2 46.1 457
Other Infectious Diseases 6.1 18.4 55 9.3 20 22.7 15.1 34 8.2 7.1
Pneumonia 74 17.7 45 49 22 313 20 19 33.6 332
TB 233 452 30.1 484 31.8 46.9 384 48.7 559 552
GBD Cause Group B: Non-communicable
diseases
Acute Myocardial Infarction 429 46 38.2 45.1 39.2 47.5 38.7 572 203 18.5
Asthma 333 583 26.5 67.5 8.3 333 7 46.9 14.7 147
Breast Cancer 714 75.5 80.6 88.9 67.3 79.2 60 65.1 44.6 44.1
Cervical Cancer 70.3 76.5 69.4 719 53.1 64.1 232 375 55.8 56.6
Cirrhosis 19.7 52,6 46.5 58.1 50 62.8 41 45.7 11.8 222
Colorectal Cancer 8 20 16.8 33 8 20 11.4 BS1Y)
COPD 23.3 41.9 23.4 51 20.9 44.4 21.4 40 232 22.7
Diabetes 33 524 359 70.3 36.4 64.3 17 582 20.5 19.7
Epilepsy 41.7 583 67.7 734 41.7 50 149 23.6 21 184
Esophageal Cancer 60 80 75 80.2 58.6 60 439 46.9
Leukemia/Lymphomas 20.5 36.8 12.1 38.7 222 41.7 5.8 26.1
Lung Cancer 15.4 30.8 19.7 493 25 46.2 114 40.2 75 75
Other Cardiovascular Diseases 19 39.1 12 29.2 19.4 36.5 12.3 30.6 344 335
Other Non-communicable Diseases 9.7 17.1 10.5 15.6 16.4 234 24.5 443 23.6 239
Prostate Cancer 50 66.7 58.1 749 25 50 21.1
Renal Failure 7.8 31 _I 185 17.6 429 10.7 23.5 7.1
Stomach Cancer 18.8 31.3 7 31.1 133 125 33 | 26.8 32.2 32.6
Stroke 45 51.8 47.1 532 554 60.6 40.1 589 425 46.6
GBD Cause Group C: Injuries
Bite of Venomous Animal 87.5 81.3 94.2 100 80 87.5 81 100 67.5 62.8
Drowning 84.6 81.8 85.1 872 76.9 80.8 549 68 333 329
Falls 59.5 60.5 46.4 58 46.5 55.8 48.7 46.2 25 25.6
Fires 733 727 67.3 75 433 56.7 42.1 424 147 13.8
Homicide 73 794 71.5 80 69 73.8 61.7 61.7 54.6 54.6
Other Injuries 69.2 73.1 64 65.1 577 65.4 478 529
Poisonings 36.4 59.1 53,3 549 50 54.5 13.5 7.5 49 4.9
Road Traffic 717 82 719 82 68.3 76 71.2 829 36.2 35.1
Suicide 10 125 24.7 28.3 29 30.4 49.5 66.7 10.6 125

Figure 3 Sensitivity (%) for 5 methods for 34 adult causes. Figure 3 shows the median sensitivity for each method (except King-Lu which
does not provide individual cause of death assignments) for 34 adult causes. Cells are shaded from red (low sensitivity) to green (high sensitivity)
to help identify the relative differences between sensitivities across methods and causes. COPD, chronic obstructive pulmonary disease; GBD, Global
Burden of Disease; HCE, health care experience; PCVA, physician certified VA; RF, Random Forest; SSP, Simplified Symptom Pattern; TB, tuberculosis.

correlated. Although RF performs best for CSMF accuracy
in adults, Tariff performs nearly as well (a difference of
0.008), a margin that is well within the 95% uncertainty
interval for the median across the 500 splits for each
method. SSP performs best for CCC, followed by RF.
These three methods, with the inclusion of HCE, outper-
form all other methods for both CCC and CSMF accuracy.
Even without HCE, Tariff, RF and SSP perform better than
PCVA, King-Lu and InterVA-4 in terms of CSMF accur-
acy, and they perform better than InterVA-4 in terms of
CCC. In fact, InterVA-4 performs notably poorly for both
CCC and CSMF accuracy compared to all other methods,
including PCVA.

Children

Figure 7 provides the sensitivities by cause for child deaths
for the five methods that assign cause at the individual
level. For 12 causes, SSP with HCE yields sensitivities
greater than 50%, including bites of venomous animals,
road traffic injuries, measles, drowning, violent death, falls,
fires, poisonings, hemorrhagic fever, diarrhea, AIDS and
malaria. Interestingly, pneumonia has sensitivities ranging
from 14.2% for Tariff with HCE to 75.0% for InterVA-4
with HCE across methods. Although it performs com-
paratively poorly overall, InterVA-4 has substantially
higher sensitivities for pneumonia than other methods,
with and without HCE; however, this must be viewed with
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Tariff SSP RF PCVA InterVA

Adult Causes No HCE HCE No HCE HCE No HCE HCE No HCE HCE No HCE HCE
Median Median Median Median Median Median Median Median Median Median

GBD Cause Group A: Communicable,

maternal, neonatal and nurtritional

disorders

AIDS 97.9 97.8 98.4 98.5 9.3 97.9 9.4 97.3 9.7 96.9

Diarrhea/Dysentery 96.7 97.7 96.5 97.9 97.3 97.6 98.1 99.2 99.7 99.7

Malaria 95.4 9.1 973 97.8 983 98.4 97 98.6 97.9 97.8

Maternal 98.8 99.3 98 9.5 98.9 9.2 98.9 99.4

Other Infectious Diseases 98.9 98.8 99.5 97.5 98.1 96 97.4

Pneumonia 98.8 98.6 99.6 96.1 9.9 95.7 98.4

TB 98.8 98.1 98.1 98.1 98.1 982 9.8 97.7

GBD Cause Group B: Non-communicable

diseases

Acute Myocardial Infarction 96 98.7 97.8 99.2 97.7 98.5 97 97.6 97.7 97.8

Asthma 9.8 972 98.7 9.5 995 99.2 99.5 99.1 98.9 98.9

Breast Cancer 99.1 99.4 99.2 99.1 99.6 99.6 99.4 99.4 99.5

Cervical Cancer 97.8 98.8 97.7 98 98.9 99.2 99.6 98 98.2

Cirrhosis 99.4 98.5 97.1 9.5 97.4 974 97.4 98.7 99.1 98.6

Colorectal Cancer 99.1 - 97.9 98.1 99.3 99.3 99.3 99.7

COPD 98.2 98.9 98.6 98.9 98.7 98.8 98.4 98.4 98.9 98.6

Diabetes 95.8 9.3 9.4 9% 95.4 96.1 97.9 9.5 98.8 98.7

Epilepsy 9 982 97.4 97.9 98.7 98.8 99.7 99.5 99.6

Esophageal Cancer 97.4 98.7 97 98.4 99 99.5 99 99.7

Leukemia/Lymphomas 98.3 99.2 98.9 99 98.2 98.6 99.5

Lung Cancer 98.8 99.3 98.5 98.9 98.3 98.9 99.4 99.6 99.3 99.3

Other Cardiovascular Diseases 95.7 97 97.5 98.3 95.6 96.8 96.4 95.9 92.6 929

Other Non-communicable Diseases 96.6 97 97.6 98.5 96.3

Prostate Cancer 97.4 98.9 97.2 98.5 99.6

Renal Failure 98.8 98.7 99.7 -T

Stomach Cancer 99.2 98.9 98.6 98.4 99.2 99.5 99.7 99.6 96.6 96.7

Stroke 97.2 97.9 98.3 98.9 9.7 972 97 97.2 95 9.5

GBD Cause Group C: Injuries

Bite of Venomous Animal 99.7

Drowning 99.7 98.7 929

Falls 98.1 98.1 99 98.9 99.2 99 98.8 99.2 99.7 98.8

Fires 99.1 99 99.2 98.9 9.5 9.5 99.7

Homicide 99.1 99 98.6 98.6 99.4 99.4 98.5 99.2 97.8 98.1

Other Injuries 98.8 98.7 99.2 99.4 995 99.4 97.5 97.5

Poisonings 98.8 98.8 99.2 99.1 99.4 99.2

Road Traffic 99.2 99.1 99.4 995 99.6 99.6 99.6 995 98.8 98.8

Suicide 99.5 99.6 99.5 99.6 99.7 9.7 97.9 96.3 96.6

Figure 4 Specificity (%) for 5 methods for 34 adult causes. Figure 4 shows the median specificity for each method (except King-Lu which

does not provide individual cause of death assignments) for 34 adult causes. Cells are shaded from red (low specificity) to green (high specificity)

to help identify the relative differences between specificities across methods and causes. COPD, chronic obstructive pulmonary disease; GBD,

Global Burden of Disease; HCE, health care experience; PCVA, physician-certified VA; RF, Random Forest; SSP, Simplified Symptom Pattern; TB,

tuberculosis; VA, verbal autopsy.

respect to the extremely low specificity of InterVA-4 for
pneumonia which leads to a very large fraction of deaths
to pneumonia regardless of the true pneumonia CSMF,
as shown in Figure 8. The method yielding the highest
sensitivity for each cause varies: SSP is the best for six
causes, Tariff is best for six causes, PCVA is the best for
six, InterVA-4 is best for one, RF is the best for one, and
RF and Tariff are tied for one. Figure 9 summarizes the
overall performance of each of the methods at assign-
ing individual causes of death using kappa and CCC.
Depending on the metric, Tariff or SSP appears to have
the best performance; the differences across methods

appear less consistent than for adults with the exception
that InterVA-4 has substantially poorer performance than
the other four methods.

Additional file 10: Table S5 provides, the intercept, slope
and RMSE of a linear regression between the estimated
CSMF and true CSMF as well as the average absolute
error between true and estimated CSME, across the
various methods. For 4 of 21 causes, RF has the smal-
lest errors, and Tariff has the smallest errors for seven
of them. There is marked variation across methods for
some important childhood causes. For example, for
diarrhea, Tariff has much smaller errors, especially
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Figure 5 Histogram of adult Cohen’s kappa and CCC for 5 analytical methods across 500 splits. Comparative performance of five methods
according to Cohen'’s kappa (%) and chance-corrected concordance (%) for adult causes with and without health care experience (HCE).

when compared to SSP and InterVA-4. For pneumonia,
SSP does much better than the other methods; notably,
InterVA-4 does very poorly with an average absolute
error of 33.0 percentage points. This suggests that the high
sensitivity for InterVA-4 for pneumonia arises because the
method tends to over assign many child deaths to pneu-
monia. This is corroborated by the comparatively lower
specificity for this cause and method as seen in Figure 8.
For malaria, KL does relatively well, and Tariff and InterVA-
4 have larger errors.

Overall performance of the different methods for assign-
ing child deaths by cause is summarized in Figure 10 which
compares CCC and CSMF accuracy for each of the six
methods. The correlation between method performance
at the individual level and at the population level for all
methods, excluding King-Lu, which does not provide indi-
vidual cause assignment, is strong (correlation coefficient of
0.954 for adults, 0.952 for children). The highest CCC is
achieved by Tariff followed very closely by SSP and RE,
while Tariff achieved the highest CSMF accuracy, followed
very closely by SSP. InterVA-4 performs markedly worse on
both dimensions of VA performance, similarly to what was
seen in adults. Likewise, the KL method does substantially
worse than Tariff, RE, and SSP with or without HCE recall.
PCVA for children with or without HCE does much better
than InterVA-4 but worse than the other automated
methods for CSMF accuracy. For PCVA with HCE, how-
ever, the gap in terms of CCC with the better methods is
smaller than for CSMF accuracy.

Neonates and stillbirths

The neonatal cause list is much shorter, five causes plus
stillbirths, compared to the child and adult cause lists.
Figures 11 and 12 provide sensitivities and specificities by
method. Most methods do well (more than 80% sensitivity)
for stillbirths but do particularly poorly in terms of

sensitivity for pneumonia, with the Tariff method pro-
viding the highest sensitivity of 42.9% with HCE. PCVA
and InterVA-4 do not have the highest sensitivity for
any cause, regardless of inclusion of HCE. There is
marked variation across the methods for performance on
congenital anomalies and preterm delivery. In Additional
file 11: Table S6, which displays the CSMF regression
information for each cause as well as the average abso-
lute error between estimated and true CSMFs across all
500 splits, only Tariff has average absolute errors below
0.05 across all causes. Figure 13 compares the perform-
ance of the five methods in terms of CCC and Cohen’s
kappa, and Figure 14 compares for neonates the overall
performance across causes in terms of CCC and CSMF
accuracy. Tariff yields the highest level of CSMF accuracy,
followed by KL, although the difference between them is
not statistically significant. SSP achieves the highest CCC,
outperforming RF by a small margin.

Performance of methods across different underlying
cause compositions
Table 2 shows how many times each method performs
best across the 500 test-train splits for adults, children
and neonates, with and without HCE, both for CCC and
for CSMF accuracy. Because all methods may do better
or worse for particular CSMF compositions in the test
dataset, this provides an assessment that indicates how
often across a wide range of CSMF compositions each
method performs best. For CCC in adults, SSP performs
best for more than 99.0% of splits. In children, Tariff
does better than SSP and RF. In neonates, SSP performs
best, followed by RF. In no case does InterVA-4 provide
the highest overall CCC and in only 5.4% of cases of child
death with HCE does PCVA provide the highest CCC.

In terms of CSMF accuracy, taking into account vari-
ation in the cause composition leads to quite different
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Table 1 Median chance-corrected concordance (%), cause-specific mortality fraction accuracy for 6 methods across 500
splits by age and health care experience

Tariff SSP
CCccC CSMF accuracy Ccc CSMF accuracy
Median 95% Cl Median 95% ClI Median 95% ClI Median 95% ClI
Adult No HCE 37.8 (37.6,37.9) 0717 (0.711,0.721) 414 (41.1,41.6) 0.715 (0.709, 0.720)
HCE 50.5 (502, 50.7) 0.77 (0.766, 0.775) 54.1 (539, 543) 0.764 (0.760, 0.769)
Child No HCE 44.6 (44.2, 45.0) 0.744 (0.736, 0.751) 449 (44.5, 45.2) 0.74 (0.735, 0.746)
HCE 525 (52.1,53.0) 0.783 (0.776, 0.786) 52.1 (51.7,524) 0.768 (0.762, 0.774)
Neonate No HCE 446 (442, 44.9) 0.809 (0.801, 0.817) 482 (479, 48.6) 0.778 (0.768, 0.787)
HCE 473 (469, 47.7) 0817 (0.809, 0.824) 50.3 (50.1, 50.7) 0.79 (0.781, 0.801)
Cont'd
RF PCVA
Cccc CSMF accuracy Cccc CSMF accuracy
Median 95% Cl Median 95% Cl Median 95% Cl Median 95% Cl
Adult No HCE 372 (37.0,374) 0.708 (0.705,0.712) 29.1 (289, 293) 0.638 (0.632, 0.644)
HCE 492 (49.0, 494) 0.769 (0.766, 0.774) 422 (41.8,425) 0.68 (0,673, 0.687)
Child No HCE 44.6 (44.1, 44.9) 0.715 (0.706, 0.721) 335 (33.2,33.7) 0.63 (0.615, 0.637)
HCE 50.2 (49.7, 50.5) 0.739 (0.729, 0.748) 445 (44.1,45.2) 0678 (0,671, 0.685)
Neonate No HCE 472 (46.9, 47.5) 0.769 (0.759, 0.779) 255 (25.2, 26.0) 0.692 (0682, 0.701)
HCE 50 (49.8, 504) 0.793 (0.779, 0.802) 293 (28.7,29.7) 0.719 (0.707, 0.734)
Cont'd
KL InterVA
CCccC CSMF accuracy Cccc CSMF accuracy
Median 95% Cl Median 95% Cl Median 95% Cl Median 95% Cl
Adult No HCE 0.672 (0667, 0.676) 234 (233, 23.6) 0.611 (0.605, 0.620)
HCE 0.688 (0682, 0.692) 238 (23.6, 24.0) 0.625 (0617, 0.632)
Child No HCE 0674 (0.668, 0.680) 296 (293,299 0514 (0.506, 0.526)
HCE 0.69 (0.683, 0.696) 303 (30.0, 30.6) 0.52 (0.510, 0.529)
Neonate No HCE 0.808 (0.796, 0.817) 20 (19.8, 20.4) 0.627 (0.602, 0.641)
HCE 0.81 (0.799, 0.819) 194 (19.2,19.8) 0.629 (0.606, 0.648)

King-Lu (KL) does not estimate individual causes so chance-corrected concordance and Cohen's kappa cannot be calculated.

Table 1 shows chance-corrected concordance (CCC), and cause-specific mortality fraction (CSMF) accuracy for all methods across 500 splits by age and health care
experience for adults, children, and neonates. Cl, confidence interval; KL, King-Lu; PCVA, physician-certified VA; RF, Random Forest; SSP, Simplified Symptom
Pattern; VA, verbal autopsy.

results for adults than for children and neonates. Among
adults, RF performs best 30.0% of the time without HCE
and 37.8% of the time with HCE. Tariff does best 32.3%
of the time with HCE and 32.4% of the time without
HCE, and SSP in 28.4% of cases with HCE and 31.2%
without HCE. For children, Tariff has the highest CSMF
accuracy 52.8% of the time with HCE, SSP is the highest
just under 28.3% of the time, and RF is the highest in
13.8% of the draws. The advantage of Tariff over other
methods is more pronounced in neonates, where it has
the highest CSMF accuracy in 40.2% or more of the cases
with HCE, while King-Lu provides the highest CSMF
accuracy 27.6% of the time.

For adults, children and neonates, the findings of this
analysis across different cause compositions closely aligned
with the results of the comparative performance of the
six different methods examining only the median per-
formance. Overall, in 6,000 head-to-head comparisons
across the three age groups, with and without HCE, for
CCC and for CSMF accuracy, SSP performed best in
43.8%, Tariff performed best in 28.8%, RF in 18.8% of the
tests, PCVA in 2.1%, King-Lu in 5.6%, and InterVA-4 in
0.9%. These figures, however, tend to mask the fact that
SSP does very well on CCC in adults, while RF does well
on CSMF accuracy. Tariff does well on CCC in children
with HCE, and CSMF accuracy in children and neonates
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Figure 6 Plot of adult CCC and CSMF accuracy for 6 analytical methods across 500 splits. Comparative performance of six methods
according to chance-corrected concordance (%) and cause-specific mortality fraction accuracy for adult causes with and without health care
experience (HCE). CCC, chance-corrected concordance; CSMF, cause-specific mortality fraction.
J

with and without HCE. SSP does well in CCC for neonates
with and without HCE. Overall, SSP does the best for
CCC, performing best in 1,928 of the 3,000 comparisons,
and Tariff does best for CSMF accuracy, performing best in
1,218 of the 3,000 comparisons for CSMF accuracy.

Additional files 12, 13 and 14: Tables S7 to S9 contain
a similar comparison of minimum absolute errors by
cause of death. These tables show how many times each
analytic method produces the smallest absolute error
between the true and estimated CSMF for each cause. In

Tariff SSp RF PCVA InterVA
No No No No No

Child Causes HCE HCE HCE HCE HCE HCE HCE HCE HCE HCE

. Media | Media | Media | Media | Media | Media | Media | Media | Media

Median
n n n n n n n n n

GBD Cause Group A:
Communicable, maternal,
neonatal and nutritional
disorders
AIDS 40 60 43.1 572 60 60 39.3 50 282 28.2
Diarrhea/Dysentery 28.2 40 532 62.1 53.8 583 43.8 58.6 29.5 284
Encephalitis
Hemorrhagic fever
Malaria
Measles
Meningitis

Other Infectious Diseases

Pneumonia

Sepsis
GBD Cause Group B: Non-

Other Cancers

Other Cardiovascular Diseases

Other Defined Causes of Child
Deaths

Other Digestive Diseases

GBD Cause Group C: Injuries

Bite of Venomous Animal ‘ ‘ ‘ ‘ 65.3 ‘ ‘
Drowning ’ﬁ

Falls 75 75 63.1 732 545 50 71.6 453 41.2 44.8
Fires 70.6 76.5 74.5 79.4 62.5 65.7 72, 60.4 375 44.3
Poisonings 50 75 5513 75.8 50 50 40.6 54.6 23 23
Road Traffic 64.9 64.9
Violent Death 80 76.9 76.9 73.7 70.1

Figure 7 Sensitivity (%) for 5 methods for 21 child causes. Figure 7 shows the median sensitivity for each method (except King-Lu which
does not provide individual cause of death assignments) for 21 child causes. Cells are shaded from red (low sensitivity) to green (high sensitivity)
to help identify the relative differences between sensitivities across methods and causes. GBD, Global Burden of Disease; HCE, health care
experience; PCVA, physician-certified VA; RF, Random Forest; SSP, Simplified Symptom Pattern; VA, verbal autopsy.




Murray et al. BMC Medicine 2014, 12:5 Page 12 of 19
http://www.biomedcentral.com/1741-7015/12/5

Tariff SSp RF PCVA InterVA
N N Ni Ne N
Child Causes HCOE HCE HCDE HCE H(?E HCE H(;,E HCE H(?E HCE
. Media | Media | Media | Media | Media | Media | Media | Media | Media
Median
n n n n n n n n n
GBD Cause Group A:
Communicable, maternal,
neonatal and nutritional
disorders
AIDS 97.7 96.9 99.1 98.8 98.9 98.9 99.3 99.4 95.8 95.5
Diarrhea/Dysentery 95.1 95.5 94.3 94.1 94 94.3 91.7 96.3 98 98.1
Encephalitis 96.7 97.3 97.9 97.6 98.5 98.3 97.8
Hemorrhagic fever 96.1 98.6 97.1 97.1 97.9 98.1 99.1
Malaria 93.1 92.8 95.8 96.3 94.5 95.3 92.9
Measles 96.2 98.3 97.4 985 | 99.5 ! 99.2
Meningitis 96.8 974 96.8 96.7 97.3 97.4 96.9
Other Infectious Diseases 97.5 97.6 96.4 97.4 96.1 96.5 94.8 94.8 98.9 98.5
Pneumonia 98 98.2 93.8 959 91.7 92.5 87.4 93.4
Sepsis 952 95.4 98.4 98.9 96.2 96.8 98.1 98.8
GBD Cause Group B: Non-
Other Cancers 96.6 98.5 94.2 96.5 98.6 99.2
Other Cardiovascular Diseases 95.7 96.3 99.1 98.4 97.3 97.7
Other Defined Causes of Child 985 | 971 | 968 | 972 | 954 | 952
Deaths
Other Digestive Diseases 97.8 98.4 96.1 97.9 97.7 97.7
GBD Cause Group C: Injuries

Bite of Venomous Animal 99.5

Drowning 99.3

Falls 97 97.1 98.4 98 987 | 988 99 995 | 994
Fires 994 | 994 | 992 | 994 | 995 |

Poisonings 97.6 99.5 ‘

Road Traffic 99.1 99.2
Violent Death 99.4 99.3 98.7 98 98.5 98.5

Figure 8 Specificity (%) for 5 methods for 21 child causes. Figure 8 shows the median specificity for each method (except King-Lu which
does not provide individual cause of death assignments) for 21 child causes. Cells are shaded from red (low specificity) to green (high specificity)
to help identify the relative differences between specificities across methods and causes. GBD, Global Burden of Disease; HCE, health care
experience; PCVA, physician-certified VA; RF, Random Forest; SSP, Simplified Symptom Pattern; VA, verbal autopsy.
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Figure 9 Histogram of child Cohen’s kappa and CCC for 5 analytical methods across 500 splits. Comparative performance of five methods
according to Cohen’s kappa (%) and chance-corrected concordance (%) for child causes with and without health care experience (HCE). CCC,
chance-corrected concordance.
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Figure 10 Plot of child CCC and CSMF accuracy for 6 analytical methods across 500 splits. Comparative performance of six methods

according to chance-corrected concordance (%) and cause-specific mortality fraction accuracy for child causes with and without health care ex-
perience (HCE). CCC, chance-corrected concordance; CSMF, cause-specific mortality fraction.

the case of a tie for smallest absolute error for a given
split, we assigned a portion of the ‘credit’ for that split
to each method, resulting in non-integer number values
for some methods. SSP produces the highest number of
smallest absolute errors for adult causes of death for
analyses of VAs with and without health care experience
in 22.5% and 21.6% of the 17,000 comparisons, respect-
ively. For children, the Tariff method does best, with the
smallest absolute error in 22.4% of the 10,500 compari-
sons with HCE and 23.1% of the comparisons without
HCE. For neonates, the King-Lu method does best,
minimizing the error in 23.1% of the 6,000 comparisons
with HCE and 23.6% of the time without HCE.

Discussion

Our findings that physicians are less accurate than
computers in correctly certifying causes of death in the
low and middle income populations that we studied are
likely to be counter-intuitive. Physicians are specifically
trained to understand and recognize pathological processes
and, in principle at least, to correctly apply the rules and
procedures of the ICD in order to certify the cause of death.
Yet, with the single exception of one automated method

(Inter-VA-4), we find that physicians are significantly
poorer at diagnosing the cause of death from information
reported by the household in a VA interview than computer
algorithms processing the same information. Why is this,
can we be confident in our findings, and what are their
implications for monitoring causes of death in populations
and measuring progress with development goals?

With rising interest in the use of VA as a tool to moni-
tor causes of death, a range of new analytical methods
have become available that offer an alternative to costly
and inefficient PCVA and yet perform better. The PHMRC
GS VA validation study provides a unique opportunity
to quantify and compare the performance of this diverse
array of VA analytical methods using a large multisite
set of deaths where the cause of death, according to
strict clinical and diagnostic criteria, has been reliably
established. Methods vary in their performance by cause
and age group. However, three methods, Tariff, RF and
SSP consistently and significantly provide better CCC
and CSMF accuracy than PCVA.

Most published studies and national data collection
efforts [25-39] use PCVA. PCVA can be expensive, difficult
to organize in settings with few physicians and can take

~N

Tariff SSP RF PCVA InterVA

Neonatal Causes NoHCE | HCE | NoHCE | HCE | NoHCE | HCE | NoHCE | HCE | NoHCE | HCE

Median | Median | Median | Median | Median | Medi: Medi: Medi: Median | Median
Birth asphyxia 37.9 40.5 52.7 56.5 58.4 58.4 57.2 57 49.5 49.9
Congenital malformation 452 415
Meningitis/Sepsis 57.1 61.9
Pneumonia 40.6 42.9
Preterm Delivery
Stillbirth

Figure 11 Sensitivity (%) for five methods for six neonatal causes. Figure 11 shows the median sensitivity for each method (except King-Lu
which does not provide individual cause of death assignments) for five neonatal causes and stillbirth. Cells are shaded from red (low sensitivity)
to green (high sensitivity) to help identify the relative differences between sensitivities across methods and causes. HCE, health care experience;
PCVA, physician-certified VA; RF, Random Forest; SSP, Simplified Symptom Pattern; VA, verbal autopsy.
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Tariff SSP RF PCVA InterVA
Neonatal Causes NoHCE | HCE | NoHCE | HCE | NoHCE | HCE | NoHCE | HCE | NoHCE | HCE
Median | Median | Median | Median | Median | Median | Median | Median | Median | Median

Birth asphyxia 91.6 92 91 90.9 90.6 915

Congenital malformation 94.3 94.2 96.6 96.8 953 95.2

Meningitis/Sepsis 93.8 93.4 89 88.1 93.1 94.5

Pneumonia 93.9 94.8 94 93.3 94.1 95.2 83.3 83.8

Preterm Delivery 92.5 933 85.5 88.6 91.8 92 85.3 86.6 952 95

Stillbirth 94.9 94.9 95 94.9 94.1 94.2 95.3 94.6 95.3 95.3
Figure 12 Specificity (%) for five methods for six neonatal causes. Figure 12 shows the median specificity for each method (except King-Lu
which does not provide individual cause of death assignments) for five neonatal causes and stillbirth. Cells are shaded from red (low specificity)
to green (high specificity) to help identify the relative differences between specificities across methods and causes. HCE, health care experience;
PCVA, physician-certified VA; RF, Random Forest; SSP, Simplified Symptom Pattern; VA, verbal autopsy.

scarce physician resources away from other clinical re-
sponsibilities. For example, VA data collected in India
from 2001 to 2003 as part of the Sample Registration
System was not published until 2010 [40,41] because of
the delays in obtaining physician reading of VAs. We
show here that PCVA performs worse overall on both
CCC and CSMF accuracy than three automated approaches
(Tariff, SSP, and RF) for all three age groups with and with-
out HCE. Given that the automated methods are essentially
free to apply, can be implemented with effectively no delay
and are now increasingly available on a wide set of compu-
tational platforms, there would seem to be little scientific,
financial or moral justification to continue with PCVA.
This study reports worse performance of PCVA com-
pared to prior studies that have compared PCVA to hos-
pital diagnosis or, frequently, to poor-quality medical
records [42-44]. Often hospital diagnosis in resource-
poor settings may be based on limited medical imaging,

laboratory, or pathological evidence. In fact, the PHMRC
study found that even in well-equipped hospitals, only a
small percentage of in-hospital deaths met strict clinical
and diagnostic criteria. We, therefore, have greater con-
fidence in the diagnostic accuracy of our GS reference
cases than criteria used in other studies. In addition, this
study uses much more robust and comparable metrics
of performance compared to previous studies. For some
causes, notably some adult non-communicable diseases,
child pneumonia, malaria and neonatal birth asphyxia,
PCVA appears to be systematically biased upwards in
suggesting larger cause fractions than are present in the
population, especially at low true CSMFs.

Our findings suggest that the optimal VA method may
depend on the purpose of a particular study. Specific
research studies with a strong interest in reliably diag-
nosing particular causes of death may want to factor in
the comparative performance of methods for specific
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Figure 13 Histogram of neonate Cohen’s kappa and CCC for 5 analytical methods across 500 splits. Comparative performance of five
methods according to Cohen'’s kappa (%) and chance-corrected concordance (%) for neonatal causes with and without health care experience
(HCE). CCC, chance-corrected concordance.
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causes, as demonstrated in the tables and figures on
sensitivity and average absolute errors. For more general
use in cause of death surveillance, however, we believe
that the choice of method should place greater emphasis
on the ease with which it can be explained to implementers
and users. Tariff is likely to be easier for medical practi-
tioners and other users to understand since it is predicated
on a common clinical knowledge about the symptoms
for each disease. Moreover, specific tariff scores for each
cause can be directly examined for plausibility. Tariff can,
in principle, be implemented in a spreadsheet so that
the logic and approach can be followed more easily than
RF and SSP, which require complex machine learning
and statistical methods. These communication and training
advantages, combined with the best overall performance at
the population level, suggest that of the currently available
automated methods, Tariff is our preferred method of
choice for population health monitoring.

Two automated methods that have been proposed and
applied to VA data, InterVA-4 and King-Lu, performed
less well than might have been expected. Flaxman et al.

[16] provide an explanation for the poor performance of
King-Lu for adults and children. The King-Lu method
does not perform well when more than ten causes are
included in the cause list. For InterVA-4, the results of
this evaluation are particularly poor, with the method
performing best in only 56 out of the 3,000 comparisons
for CSMF accuracy and never performing best for com-
parisons using CCC. Given that both the SSP method and
InterVA are constructed from an application of Bayes’
Theorem, why is their performance so different? Lozano
et al. [15] suggest four reasons: InterVA assumes that all
signs and symptoms conditional on the true cause are
independent of each other; it uses a restricted set of signs
and symptoms compared to the full WHO or PHMRC
VA instrument; the probabilities of a given sign or symp-
tom conditional on the true cause are generated from ex-
pert opinion rather than data; and it estimates a posterior
distribution across all causes at once rather than posterior
distributions assessing each cause one at a time against all
other causes. We have shown separately that by imposing
these restrictive assumptions on the symptom pattern

Table 2 Head-to-head performance of 6 analytical models across 500 splits (number)

CSMF accuracy

Chance-corrected concordance

Tariff SSP RF PCVA King-Lu InterVA Tariff SSP RF PCVA InterVA
Adult No HCE 162 156 150 8 13 1 5 493 2 0 0
HCE 156 142 189 10 0 3 4 495 1 0 0
Child No HCE 232 166 68 15 18 1 169 195 136 0 0
HCE 264 141 69 21 5 0 236 191 55 18 0
Neonate No HCE 203 44 44 24 163 22 46 300 154 0 0
HCE 201 50 62 30 138 19 47 254 199 0 0

Table 2 gives the number of 500 test-train datasets for which each method performs best for chance-corrected concordance (CCC) and cause-specific mortality

fraction (CSMF) accuracy, by age and health care experience (HCE). King-Lu (KL)

does not estimate individual causes so chance-corrected concordance cannot be

calculated. PCVA, physician-certified VA; RF, Random Forest; SSP, Simplified Symptom Pattern; VA, verbal autopsy.
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approach, its performance also drops to the level of
InterVA [15]. Further, published ‘validation’ studies of
InterVA have been comparisons with PCVA and not to
a reference or GS as we have used in this assessment.
Thus, while InterVA represented an important advance
in the use of automated diagnostic approaches for VA,
newer empirical approaches now perform dramatically
better.

Even using the best performing methods, VA does
not perform as well in adults as medical certification of
causes of death in a sophisticated hospital. Hernandez
et al. reported median CCC of 66.5% and a CSMF accur-
acy of 0.822 in large tertiary hospitals in Mexico [5]. While
it is to be expected that the cause of death for hospitals
with good diagnostic capacity are likely to be more accur-
ate than VA, the gap in performance is not as large as one
might have expected. Causes of death assigned in less so-
phisticated hospitals might in fact be less accurate than
those assigned by RF, SSP or Tariff based on a VA. Even
in these tertiary Mexican hospitals, these three methods
actually did better than medical certification of causes of
death for children and neonates. This suggests that there
may even be a role for a structured VA to formally supple-
ment hospital diagnostic information in some settings. In
some high-income countries, structured interviews that
resemble VA have been used in maternal death audits and
the US national mortality follow-back survey [45,46].

The strength of this large, comparative study of the
performance of various diagnostic methods, including
physician certification applied to VA information is that,
for the first time, we can confidently and objectively con-
clude which methods and measurement approaches per-
form best in different age groups. These are novel findings
of potentially substantial importance for country health
monitoring strategies. Nonetheless, there are some poten-
tially important caveats to the comparative assessments
reported here. While the PHMRC GS dataset is the largest
study of its kind to date and has applied much stricter
criteria for cause of death assignment than has been
done previously, it was conducted in a limited number
of sites in the developing world: Andhra Pradesh and
Uttar Pradesh in India, Bohol in the Philippines, Mexico
City in Mexico, and Dar es Salaam and Pemba Island in
Tanzania. An important potential limitation of this study
is that there may be cultural variation in how household
members respond to different items in a VA interview. In
this study, largely due to sample size, we have not been
able to assess validity of different methods for assigning
cause of death by specific site. The real possibility of cul-
tural variation means that we must be careful in generaliz-
ing results on VA method performance observed in these
six sites to all other populations where VA might be used.
Further research that collects more deaths with cause of
death assignment following strict clinical and diagnostic
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criteria in other sites would strengthen the generalizability
of these findings. Nevertheless, the higher performing VA
methods, such as RF, SSP and the easily understood Tariff
method, appear to have consistently performed better
than other options. A further limitation is that only deaths
with extensive documentation to meet the GS diagnostic
criteria were included; in most cases these deaths occurred
in a hospital. Household members may respond to VA
questions differently if the death occurs without any med-
ical care; the signs and symptoms of individuals who tend
to go to a hospital for care may be different, or reported
differently, than for deaths outside hospitals from the
same cause of death. Both of these limitations, however,
apply to all VA validation studies. In this comparative
assessment, removing any information about HCE from
the assessment could be viewed as a proxy for the per-
formance of VA methods for deaths without contact with
health services although there still remains the possibility
that HCE may change responses to the structured part of
the VA. Even so, removing information on HCE did not
change the ordering of the methods in most cases.

Given that these automated methods are operationally
easier and less costly to implement than PCVA and have
demonstrably better performance, we believe that the
time has come for their broader application in routine
health information systems as well as in field research.
Indeed, as automated methods continue to evolve and
become simpler to implement, the operational barriers
to their application will become progressively less im-
portant. Two factors will aid this greater dissemination
and use by countries: strategic dissemination about suc-
cessful application of the current methods by countries
where they are needed and, perhaps more importantly,
progress toward simplifying data collection instruments
using criteria that preserve performance but significantly
reduce interview time. Initial results from item reduction
approaches suggest that the current PHMRC interview
instrument could be reduced by about two-fifths without
any significant loss of performance. Further research is
urgently needed to determine how questionnaires can be
further reduced and at what cost in terms of perform-
ance. The PHMRC dataset can be used to aid in some of
this item reduction research. Another important area for
improvement is to simplify the collection of the open
text information in the VA instrument. For example, words
with high tariffs that are identified in the open text could
in many cases be converted to structured items. Ideally,
the open text component could be dropped facilitating
data collection and digital transcription if enough of the
information content used by the automated methods
could be converted into structured items.

The findings presented here, particularly on the three
top performing methods Tariff, SSP, and RF, suggest a
range of ways these results could be used to improve
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cause of death estimation through further research. As
in other analytical applications and fields [47], blends or
ensembles of these approaches may in fact perform better
[48,49]. In an automated environment, implementing VA
ensembles will be relatively simple and further research
on this should be a high priority. Another area of investi-
gation is the systematic correction of estimated cause frac-
tions from a method using the known biases from the
methods. Additional files 9, 10, and 11: Tables S4 to S6
provide detail on the relationship across the 500 test
datasets between the estimated CSMFs and true CSMFs
from each method for adults, children and neonates.
This type of information could be used to back-correct
CSMFs. Such back correction would, on average, improve
the accuracy of estimated CSMFs but in some cases would
make them less accurate. The PHMRC dataset, which is
available in the public domain, should stimulate further
methods innovation.

Conclusions

Drawing on the largest, most culturally diverse validation
data set of neonatal, child and adult deaths ever assembled
in developing countries, for which the underlying cause of
death had been reliably established using standardized and
strict clinical criteria, we have shown that automated
methods, not involving physician judgment, significantly
outperform physicians and commonly used methods such
as Inter-VA in correctly diagnosing the cause of death.
The methods allow rapid, standardized, efficient and com-
parable cause of death data to be generated for popula-
tions where the vast majority of deaths occur with limited
medical attention. One of these methods in particular, the
Tariff method, is well suited for widespread application
in routine mortality surveillance systems given its sim-
plicity and consistent high performance, as assessed by
strict statistical criteria.

The past five years have seen a rapid expansion of alter-
native approaches to VA. We should expect and encour-
age this innovation. Undoubtedly, future methodological
research would benefit from an expanded GS database
of cases drawn from different populations and for differ-
ent causes than those collected for the PHMRC study.
These developments, along with improved operational
methods for data collection, will greatly facilitate the
widespread adoption of VA by countries in which there
is currently vast ignorance regarding cause of death
patterns and how these patterns are changing. We see
this as a fundamental component of the ‘data revolution’
that is much discussed, and propagated, as a key require-
ment for assuring accountability in the post-2015 develop-
ment agenda. Indeed, knowledge about causes of death in
less developed populations could be rapidly and vastly
improved through the immediate application of the
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comparatively cost-effective, standardized, automated,
and validated methods reported here.
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