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Abstract

Background: Neural tube defects (NTDs) are among the most common of all human congenital
defects. Over the last two decades, accumulating evidence has made it clear that periconceptional
intake of folic acid can significantly reduce the risk of NTD affected pregnancies. This beneficial
effect may be related to the ability of folates to donate methyl groups for critical physiological
reactions. Choline is an essential nutrient and it is also a methyl donor critical for the maintenance
of cell membrane integrity and methyl metabolism. Perturbations in choline metabolism in vitro have
been shown to induce NTDs in mouse embryos.

Methods: This study investigated whether single nucleotide polymorphisms (SNPs) in human
choline kinase A (CHKA) gene and CTP:phosphocholine cytidylytransferase (PCYTIA) gene were
risk factors for spina bifida. Fluorescence-based allelic discrimination analysis was performed for the
two CHKA intronic SNPs hCV 1562388 (rs7928739) and hCV1562393, and PCYT/A SNP rs939883
and rs3772109. The study population consisted of 103 infants with spina bifida and 338 non-
malformed control infants who were born in selected California counties in the period 1989-1991.

Results: The CHKA SNP hCV 1562388 genotypes with at least one C allele were associated with a
reduced risk of spina bifida (odds ratio = 0.60, 95%CI = 0.38-0.94). The PCYT/A SNP rs939883
genotype AA was associated with a twofold increased risk of spina bifida (odds ratio = 1.89, 95%
Cl = 0.97-3.67). These gene-only effects were not substantially modified by analytic consideration
to maternal periconceptional choline intake.

Conclusion: Our analyses showed genotype effects of CHKA and PCYT/A genes on spina bifida
risk, but did not show evidence of gene-nutrient interactions. The underlying mechanisms are yet
to be resolved.
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Background

Neural tube defects (NTDs) are complex congenital mal-
formations of the central nervous system. Anencephaly
and spina bifida are the most common and severe forms
of NTDs. The birth prevalence of NTDs varies from
approximately 0.8/1,000 births in many areas of the US to
3.5/1,000 in Mexico [1,2]. Epidemiologic studies suggest
that both genetic and environmental factors contribute to
NTD etiologies. Although most factors appear to explain
very little of the population burden of NTDs, maternal
nutritional factors do appear to substantially contribute to
the complex etiologies of NTDs. Foremost among these
factors has been the role of periconceptional intake of
folic acid in reducing recurrence and occurrence risks of
women for NTD-affected pregnancies [3-11].

Nutrients and nutrition-related factors other than folic
acid have been observed to influence NTD risks. For exam-
ple, increased intakes of methionine, zinc, vitamin C, and
choline have been associated with reduced NTD risk [12-
15]. With respect to choline, it was recently observed that
increased periconceptional intakes of diets with choline
were associated with reduced risks of NTD-affected preg-
nancies that were independent of maternal folate
intakes.[15] This observation provided evidence to sug-
gest that deficiencies in methyl donors may be associated
with NTD risk, that is to say, a less than optimal methyl-
donor supply and DNA methylation status has been a sug-
gested area for research efforts for certain birth defects
[16]. Choline, like folate, is a methyl donor in the meth-
ylation of homocysteine to methionine [17,18].

Choline is utilized for the de novo synthesis of phosphati-
dylcholine (PC) and sphingomyelin through the cytidine
diphosphocholine (CDP-choline) pathway. There are
three reactions in this pathway. The first reaction is cata-
lyzed by the enzyme choline kinase (CHK; ATP:choline
phosphotransferase, EC 2.7.1.32), which phosphorylates
choline by donating an ATP [19]. The second reaction
involves phosphocholine (P-Cho) cytidylyl transferase
(CCT), which catalyzes the formation of CDP-Choline
from P-Cho and CTP [20]. The final reaction uses choline
phosphotransferase (CPT), which catalyzes the condensa-
tion reaction of CDP-Choline with diacylglycerol [21].
Phosphatidylcholine (PC) and sphingomyelin are
required for maintaining cell membranes and play impor-
tant roles in regulation of cell growth, differentiation, and
death through the production of diacylglycerol (DAG)
and ceramide (CER), which are cell signaling molecules
[22,23].

In gastrulation- and neurulation-stage mouse embryos,
choline was elucidated to be used primarily for PC synthe-
sis favoring the CDP-choline pathway, although some
betaine and acetylcholine was also generated [24]. Using
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the choline uptake inhibitor 2-dimethlyaminoethanol
(DMAE) and an inhibitor of PC synthesis, 1-O-octadecyl-
2-O-methly-rac-glycerol-3-phosphocholine (ET-18-
OCH,), Fisher and co-workers observed an increase in cell
death and both craniofacial and NTDs in neurulation
stage mouse embryos grown in culture [24].

In humans, choline kinase has two isoforms, CHKo and
CHKQP, with the o as a dominant isoform. The CHKA gene
encoding choline kinase o is located at chromosome
11q13.2. Our study focused on the CHKA gene. PCYT1A
and PCYTIB encode CCTo and CCTP, respectively.
PCYT1A located at chromosome 3q29, while PCYT1B is
located at chromosome Xp22.11 [25,26]. In this study we
focused on PCYT1A gene.

Given that periconceptional intake of choline has been
associated with decreased risk of NTD-affected pregnan-
cies [15], we investigated CHKA and PCYT1A genotypes
on risk of spina bifida. We also investigated these geno-
types in combination with lowered maternal intake of
choline as risk factors of spina bifida.

Methods

Study population

Data investigated were derived from a case-control study
that previously described a risk reduction in NTDs associ-
ated with maternal periconceptional intake of choline. In
brief, these data were derived from the California Birth
Defects Monitoring Program, a population-based active
surveillance system for collecting information on infants
and fetuses with congenital malformations [27]. Births
occurring in selected California counties in the period
1989-1991 were eligible for the original case-controlled
interview study. For the current investigation, we identi-
fied 103 spina bifida infants whose newborn screening
blood specimen could be obtained and whose mothers'
choline intake was estimated. As controls, we identified
338 non-malformed control infants whose newborn
screening blood specimen could be obtained and whose
mothers' choline intake was estimated. Among the 103
cases, 36% were non-Hispanic whites, 51% were Hispan-
ics, and 13% were of other race/ethnic background.
Among the 338 controls, 56% were non-Hispanic whites,
25% were Hispanics, and 19% were of another race/eth-
nic background. All samples were obtained with the
approval from the state of California Health and Welfare
Agency Committee for the Protection of Human Subjects.
Genomic DNA used for genotyping was collected from
newborn screening blood spots and extracted according to
the Puregene Genomic DNA Extraction kit (Gentra, Min-
neapolis, MN, USA) protocol.
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Genotyping procedure

Two intronic CHKA SNPs, hCV1562388 (A>C) and
hCV1562393 (C>G) as well as two intronic PCYT1A
SNPs, 1$939883 (T>A) and 183772109 (T>C) were
selected as tagging SNPs using SNPBrowser software
(v2.0) (Applied Biosystems, Foster City, CA, USA).
hCV1562388 and hCV1562393 cover a 10 kbp genomic
region of the CHKA gene; 1s939883 and rs3772109 cover
a 40 kbp genomic region of the PCYT1A gene. Samples
were genotyped using a fluorescence-based allelic discrim-
ination assay on an ABI PRISM® 7900HT sequence detec-
tion system (Applied Biosystems, Forster City, CA, USA),
following the manufacturer's protocol. These intronic
SNPs were selected based on the assumption that they
might be in linkage disequilibrium (LD) with disease-
causing variation. Primers and fluorescent dye labeled
probes were purchased from ABI as Assay-on-Demand
reagents. The Assays-on-Demand SNP genotyping con-
sisted of a 20 x mix of unlabeled PCR primers and Tagq-
Man® probe labeled with FAM™ and VIC™ fluorescent
dyes. The FAM™ dye is linked to the 5' end of one allele in
the probe while the VIC™ dye is linked to the 5' end of the
other allele in the probe. These dyes are used for allelic
discrimination of each SNP.

Allelic discrimination PCR reactions were performed on
384-well plates. Each reaction contained 2.5uL TagMan
Universal PCR Master Mix, No Amp Erase® UNG (2 x),
0.25 pL of 20 x Assay-on-Demand™ SNP Genotyping
Assay Mix, 2.25uL gDNA (1-20 ng) diluted in dH,O mak-
ing up a total volume of 5 pL per reaction. The thermocy-
cling conditions started with a denaturation step at 95°C
for 10 min, followed by 45 cycles of denaturation at 92°C
for 15 sec, annealing and extension at 60°C for 1 minute.
Results were read and interpreted blind as to case/control
status, and each assay was performed in duplicate.

Statistical analysis

Deviation from Hardy-Weinberg Equilibrium among con-
trol infants was evaluated by a chi-square test. Odds ratios
(ORs) and associated 95% confidence intervals (95% Cls)
were used to measure associations between infant CHKA,
PCTY1A genotypes or compound genotypes, and spina
bifida risk. For genotype comparisons, homozygous wild-
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type infants served as the reference group to which heter-
ozygotes and variant homozygotes were compared.
Choline intake values were considered according to quar-
tile cutoffs. For quartile analyses, odds ratios and 95% CI
were computed to estimate risk using the lowest quartile
as the reference. All statistical analyses for this study were
performed using SAS software v9.1 (SAS Institute Inc,
Cary, NC, USA). Samples failed the genotyping assay were
excluded for statistic analyses.

Results

Table 1 shows the previously observed association in this
dataset between choline intake and, specifically, spina bif-
ida risk. That is, ORs indicated that maternal intakes of
choline in the periconceptional period were associated
with reduced risk.

Genotyping results of all SNPs were in Hardy-Weinberg
Equilibrium (HWE) among controls (2 test: P > 0.05).
Among non-Hispanic white and Hispanic white, the
minor allele frequencies (MAF) were 0.39 and 0.27 for
hCV1562388, 0.20 and 0.12 for hCV1562393, 0.32 and
0.33 for 1s939883, 0.38 and 0.47 for 13772109, respec-
tively. Linkage disequilibrium (LD) were evaluated by D'
and 12 using the Haploview program. For CHKA gene,
hCV1562388 and hCV1562393 are in complete LD in
study population (D' = 0.91, 12 = 0.065). For PCYT1A
gene, D' for rs939883 and rs3772109 was 0.81 and 12 was
0.29.

Table 2 shows 'gene-only' effects associated with CHKA
SNPs. These data showed a reduced risk of spina bifida for
individuals with either one or more C alleles for the SNP
hCV1562388 (A>C) but not  with SNP
hCV1562393(C>G). Infants with AA genotype for
PCYT1A SNP 1s939883 showed a nearly twofold increased
risk of spina bifida relative to those with the TT genotype,
however, it is not statistically significant and may be
caused by chance.

Table 3 shows results of analyses that investigated gene-
nutrient effects, that is to say, combined effects on risk of
spina bifida between maternal choline intake and
homozygous genotypes. We did not observe evidence of a

Table I: Effect estimates (odds ratio) for spina bifida-affected pregnancies associated with maternal choline intake during the
periconceptional period, California 1989-1991. OR: odds ratio; Cl: confidence interval.

Total choline intake (mg/day) Cases Controls OR 95% Cl
103 338

Quartile Measure

<289.93 34 85 Reference

289.93-372.01 22 84 0.66 0.35-1.21

372.02-513.24 27 85 0.79 0.44-1.43

>513.24 20 84 0.60 0.32-1.12
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Table 2: Effect estimates (odds ratios) for spina bifida-affected pregnancies associated with CHKA SNPs hCV 1562388 (A>C) and
hCV1562393(C>G), PCYTIA SNPs rs939883 (T>A) and rs3772109 (T>C), California 1989-1991. OR: odds ratio; aOR: adjusted odds

ratio by maternal ethnicity; Cl: confidence interval.

CHKA gene Cases (%) Controls (%) OR (95% ClI) aOR (95% Cl)
SNP hCV1562388 (A>C)

AA 54 (54.0) 138 (41.2) Reference -

AC 38 (38.0) 154 (46.0) 0.63 (0.39-1.01) 0.62 (0.39-1.00)
CccC 8 (8.0) 43 (12.8) 0.48 (0.21-1.08) 0.48 (0.21-1.10)
AC+CC 46 (46.0) 197 (58.8) 0.60 (0.38-0.94) 0.55(0.38-0.99)
SNP hCV1562393(C>G)

CccC 66 (67.3) 225 (67.6) Reference -

CG+GG 32 (32.6) 108 (32.4) 0.99 (0.61-1.62) 1.01 (0.62—-1.66)
PCYTIA gene Cases (%) Controls (%) OR (95% Cl) aOR (95% ClI)

SNP rs939883 (T>A)

T 35 (34.3) 132 (39.9)
TA 48 (47.1) 161 (48.6)
AA 19 (18.6) 38 (11.5)
SNP rs3772109 (T>C)

T 33 (33.7) 104 (31.2)
TC 51 (52.0) 164 (49.2)
cc 14 (14.3) 65 (19.5)

Reference -
1.12 (0.69—1.84) 1.14 (0.70-1.87)
1.89(0.97-3.67) 1.85 (0.95-3.61)

Reference
0.98 (0.59-1.62)
0.68 (0.34-1.36)

0.99 (0.60-1.65)
0.69 (0.34—1.41)

gene-nutrient interaction between CHKA SNPs and mater-
nal periconceptional choline intake. The increased risk for
PCYT1A observed in gene-only analyses did not appear to
be further influenced by maternal choline intake.

Discussion

This study investigated an underlying genetic explanation
for a previously identified association between choline
intake and spina bifida risk [15]. In the current study, we
investigated intronic gene variants of two enzymes
involved in the metabolism of dietary choline via the
CDP-choline pathway. We believe this is the first study to
evaluate DNA sequence variants in the human CHKA and
PCYT1A genes for a possible association with NTD risk.
Reduced risks of spina bifida were found for CHKA SNP
hCV1562388, and increased risks were found for SNP
1s939883. These risks, however, were not modified by
maternal periconceptional intake levels of dietary choline.
Thus, our study showed gene-only effects but did not
observe gene-nutrient interaction effects associated with
choline intake. The results indicate that dietary choline
and choline metabolism genes may affect spina bifida risk
independently or through some other unknown mecha-
nisms. This interpretation should be taken cautiously
owing to limited statistical power; if gene-only effects are
true, a lack of gene-nutrient interaction effects may be due
to small sample sizes and limited statistical power.

The functional impacts of the CHKA SNP hCV1562388
(A>C), CHKA SNP hCV1562393(C>G), PCYTIA SNP
r$s939883 and SNP rs3772109, or other sequence varia-
tions associated with these tagging SNPs are unknown
with respect to choline, PC, or homocysteine concentra-
tions. Unlike the enzymes cystathionine beta-synthase
(CBS), methionine synthase reductase (MTR), and 5,10-
methylenetetrahydrofolate reductase (MTHFR), that are
directly involved in folate-homocysteine metabolism, the
CHK metabolic profile may be modulated, as its effect is
transmitted through the choline pathway [24].

This study had limitations that lessen our ability to make
solid inferences from the results. As noted, the study had
limited sample size; therefore, precision was low for many
of the estimated effects, particularly those involving gene-
nutrient interactions. Our study, explored only four tag-
ging SNPs in two genes, limiting the ability to detect pos-
sible genetic modifiers related to choline metabolism.

Conclusion

Despite its limitations, this study provided initial data
indicating a potential association between CHKA and
PCYT1A gene variants and spina bifida risk. Future studies
of additional SNPs within the CHKA and PCYT1A genes
should be investigated as potential predictors of spina bif-
ida risks.
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Table 3: Effect estimates (odds ratios) for spina bifida-affected pregnancies associated with maternal choline intake, CHKA SNP
hCV1562388 (A>C), hCV1562393(C>G), PCYTIA SNPs rs939883 (T>A) and rs3772109 (T>C) genotypes. Breslow-Day test: P > 0.05.
Lower 25%: total choline intake < 289.93 mg/day. Higher 75 %: total choline intake > 513.24 mg/day.

CHKA gene Cases Controls OR (95% CI)
SNP hCV1562388 (A>C)
Lower 25 percentile Reference
AA 17 35
AC+ CC 15 49 0.63 0.28-1.63
Higher 75 percentile Reference
AA 37 103
AC+CC 31 148 0.58 0.34-1.00
SNP hCV1562393(C>G)
Lower 25 percentile Reference
CcC 22 58 -
CG + GG 9 25 1.08 0.43-2.70
Higher 75 percentile Reference
CcC 44 167 -
CG + GG 23 83 1.05 0.60-1.86
PCYTIA gene Cases Controls OR 95% Cl
SNP rs939883 (T>A)
Lower 25 percentile Reference
TT 9 37
TA 17 35 1.23 0.43-3.52
AA 7 I 1.66 0.41-3.52
Higher 75 percentile Reference
TT 26 95
TA 31 126 0.90 0.50-1.61
AA 12 27 1.62 0.72-3.64
SNP rs3772109 (T>C)
Lower 25 percentile Reference
TT 9 27
TC 17 40 1.28 0.50-3.28
CccC 5 16 0.94 0.27-3.29
Higher 75 percentile Reference
TT 24 77
TC 34 124 0.88 0.49-1.59
CC 10 49 0.59 0.25-1.37
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