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Abstract

Background: The World Health Organisation estimates that by 2030 there will be approximately 350 million
people with type 2 diabetes. Associated with renal complications, heart disease, stroke and peripheral vascular
disease, early identification of patients with undiagnosed type 2 diabetes or those at an increased risk of
developing type 2 diabetes is an important challenge. We sought to systematically review and critically assess the
conduct and reporting of methods used to develop risk prediction models for predicting the risk of having
undiagnosed (prevalent) or future risk of developing (incident) type 2 diabetes in adults.

Methods: We conducted a systematic search of PubMed and EMBASE databases to identify studies published
before May 2011 that describe the development of models combining two or more variables to predict the risk of
prevalent or incident type 2 diabetes. We extracted key information that describes aspects of developing a
prediction model including study design, sample size and number of events, outcome definition, risk predictor
selection and coding, missing data, model-building strategies and aspects of performance.

Results: Thirty-nine studies comprising 43 risk prediction models were included. Seventeen studies (44%) reported
the development of models to predict incident type 2 diabetes, whilst 15 studies (38%) described the derivation of
models to predict prevalent type 2 diabetes. In nine studies (23%), the number of events per variable was less than
ten, whilst in fourteen studies there was insufficient information reported for this measure to be calculated. The
number of candidate risk predictors ranged from four to sixty-four, and in seven studies it was unclear how many
risk predictors were considered. A method, not recommended to select risk predictors for inclusion in the
multivariate model, using statistical significance from univariate screening was carried out in eight studies (21%),
whilst the selection procedure was unclear in ten studies (26%). Twenty-one risk prediction models (49%) were
developed by categorising all continuous risk predictors. The treatment and handling of missing data were not
reported in 16 studies (41%).

Conclusions: We found widespread use of poor methods that could jeopardise model development, including
univariate pre-screening of variables, categorisation of continuous risk predictors and poor handling of missing
data. The use of poor methods affects the reliability of the prediction model and ultimately compromises the
accuracy of the probability estimates of having undiagnosed type 2 diabetes or the predicted risk of developing
type 2 diabetes. In addition, many studies were characterised by a generally poor level of reporting, with many key
details to objectively judge the usefulness of the models often omitted.
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Background
The global incidence of type 2 diabetes is increasing
rapidly. The World Health Organisation predicts that the
number of people with type 2 diabetes will double to at
least 350 million worldwide by 2030 unless appropriate
action is taken [1]. Diabetes is often associated with renal
complications, heart disease, stroke and peripheral vascu-
lar disease, which lead to increased morbidity and prema-
ture mortality, and individuals with diabetes have
mortality rates nearly twice as high as those without dia-
betes [2]. Thus the growing healthcare burden will present
an overwhelming challenge in terms of health service
resources around the world. Early identification of patients
with undiagnosed type 2 diabetes or those at an increased
risk of developing type 2 diabetes is thus a crucial issue to
be resolved.
Risk prediction models have considerable potential to

contribute to the decision-making process regarding the
clinical management of a patient. Typically, they are multi-
variable, combining several patient risk predictors that are
used to predict an individual’s treatment outcome. Health-
care interventions or lifestyle changes can then be targeted
towards those at an increased risk of developing a disease.
Similarly, the function of these models can also be to
screen individuals to identify those who are at an increased
risk of having an undiagnosed condition, for which diag-
nosis management and treatment can be initiated and ulti-
mately improve patient outcomes.
However, despite the large number of risk prediction

models being developed, only a very small minority end
up being routinely used in clinical practice. Reasons for
the uptake of one risk prediction model and not another is
unclear, though poor design, conduct and ultimately
reporting will inevitably be leading causes for apprehen-
sion. Lack of objective and unbiased evaluation (validation)
is a clear concern, but also, when performance is evalu-
ated, poor performance data to support the uptake of a
risk prediction model can contribute to scepticism regard-
ing the reliability and ultimately the clinical usefulness of a
model. Dictating the performance is how the risk predic-
tion model was originally developed.
There is a growing concern that the majority of risk pre-

diction models are poorly developed because they are
based on a small and inappropriate selection of the cohort,
questionable handling of continuous risk predictors, inap-
propriate treatment of missing data, use of flawed or
unsuitable statistical methods and, ultimately, a lack of
transparent reporting of the steps taken to derive the
model [3-12].
Whilst a number of guidelines in the medical litera-

ture exist for the reporting of randomised, controlled
trials [13], observational studies [14], diagnostic accuracy
[15], systematic reviews and meta-analyses [16] and
tumour marker prognostic studies [17], there are

currently no consensus guidelines for developing and
evaluating multivariable risk prediction models in terms
of conduct or reporting. Although a number of texts
and guidance exist that cover many of the issues in
developing a risk prediction model [18-20], these are
spread across the literature at varying levels of prior
knowledge and expertise. Raising the quality of studies
is likely to require a single, concise resource for easy use
by authors, peer reviewers and ultimately consumers of
risk prediction models to objectively evaluate the relia-
bility and usefulness of new risk prediction models.
Furthermore, there is currently no guidance on what
aspects of model development and validation should be
reported so that readers can objectively judge the value
of the prediction model.
The aim of this article is to review the methodological

conduct and reporting of articles deriving risk prediction
models for predicting the risk of having undiagnosed
(prevalent) type 2 diabetes or the future risk of develop-
ing (incident) type 2 diabetes.

Methods
We identified articles that presented new risk prediction
models for predicting the risk of detecting undiagnosed
(prevalent) diabetes or predicting the risk of developing
(incident) type 2 diabetes. The PubMed and EMBASE
databases were initially searched on 25 February 2010 (a
final search was conducted on 13 May 2011). The search
string is given in Appendix 1. Articles were restricted to
the English-language literature. Searches included articles
from all years in the PubMed (from 1965) and EMBASE
(from 1980) databases. Additional articles were identified
by searching the references in papers identified by the
search strategy and our own personal reference lists.

Inclusion criteria
Articles were included if they met our inclusion criteria:
the primary aim of the article had to be the development
of a multivariable (more than two variables) risk predic-
tion model for type 2 diabetes (prediabetes, undiagnosed
diabetes or incident diabetes). Articles were excluded if
(1) they included only validation of a preexisting risk pre-
diction model (that is, the article did not develop a
model), (2) the outcome was gestational diabetes, (3) the
outcome was type 1 diabetes, (4) participants were chil-
dren or (5) the authors developed a genetic risk predic-
tion model.

Data extraction, analysis and reporting
One person (GSC) screened the titles and abstracts of all
articles identified by the search string to exclude articles
not pertaining to risk prediction models. Items were
recorded by duplicate data extraction by combinations of
two from four reviewers (GSC, SM, LMY and OO). One
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reviewer (GSC) assessed all articles and all items, whilst
the other reviewers collectively assessed all articles (SM,
LMY and OO). Articles were assigned to reviewers (SM,
LMY and OO) in a random manner using variable block
randomisation. In articles that presented more than one
model, the model that was recommended by the authors
was selected. No study protocol is available. Data items
extracted for this review include study design, sample
size and number of events, outcome definition, risk pre-
dictor selection and coding, missing data, model-building
strategies and aspects of performance. The data extrac-
tion form for this article was based largely on two pre-
vious reviews of prognostic models in cancer [3,21,22]
and can be obtained on request from the first author
(GSC).
For the primary analysis, we calculated the proportion of

studies and, where appropriate, the number of risk predic-
tion models for each of the items extracted. We have
reported our systematic review in accordance with the
PRISMA guidelines [16], with the exception of items relat-
ing to meta-analysis, as our study includes no formal
meta-analysis.

Results
The search string retrieved 779 articles in PubMed and
792 articles in EMBASE, and, after removing duplicates,
our database search yielded 799 articles (see Figure 1).
Thirty-five articles met our inclusion criteria, and a further
four articles were retrieved by hand-searching reference
lists or citation searches. In total, 39 studies were eligible
for review, among which 32 studies (83%) were published
between January 2005 and May 2011. Thirteen studies
(33%) were published in Diabetes Care, five studies (13%)
were published in Diabetes Research and Clinical Practice,
four studies (10%) were published in Diabetic Medicine
and three studies (8%) were published in the Annals of
Internal Medicine. Four studies reported separate risk pre-
diction models for men and women [23-26], thus our
review assesses a total of 43 risk prediction models from
39 articles. Thus the denominator is 39 when reference is
made to studies and 43 when reference is made to risk
prediction models. The outcomes predicted by the models
varied because of different definitions of diabetes and
patients included (Tables 1, 2 and 3). Seventeen studies
(44%) described a model to predict the development of
diabetes (incident diabetes) [23,25,27-40], fifteen (38%)
described the development of a model to predict the risk
of having undiagnosed diabetes [41-53], four described the
development of a prediction model for diagnosed and
undiagnosed diabetes [24,26,54,55], one described the
development of a prediction model for undiagnosed dia-
betes and prediabetes [56], one described the development
of a prediction model for abnormal postchallenge plasma
glucose level (defined as ≥ 140 mg/dL) to predict

undiagnosed diabetes [57] and one described the develop-
ment of a model to predict the risk of undiagnosed type 2
diabetes and impaired glucose regulation [58].
In terms of geography, all but two risk prediction mod-

els were developed using patient data from single coun-
tries [38,40]. Eight articles (21%) were from the USA
[31,34,36,39,43,56,57,59], thirteen articles (33%) were from
Europe [23-25,32,33,35,40,42,46,52,54,55], thirteen articles
(33%) were from Asia [26,27,29,37,41,44,45,47-49,51,60],
two were from Africa [30,53], one was from Australia [28]
and one was from Brazil [50].

Number of patients and events
The number of participants included in developing risk
prediction models was clearly reported in 35 (90%) stu-
dies. In the four studies where this was not clearly
reported, the number of events was not reported
[26,34,49,56]. The median number of participants
included in model development was 2,562 (interquartile
range (IQR) 1,426 to 4,965). One particular study that
included 2.54 million general practice patients used
separate models for men (1.26 million) and women
(1.28 million) [25]. Six studies (15%) did not report the
number of events in the analysis [26,34,47,49,56,58].
Where the number of events was recorded, the median
number of events used to develop the models was 205
(IQR 135 to 420).

Number of risk predictors
The number of candidate risk predictors was not reported
or was unclear in seven studies [27,31,37,47,48,52,54,60].
A median of 14 risk predictors (IQR 9 to 19, range 4 to
64) were considered candidate risk predictors. The ratio-
nales or references for including risk predictors were pro-
vided in 13 studies [25,29,31,32,38,42,46,49-52,56,58]. The
final reported prediction models included a median of six
risk predictors (IQR 4 to 8, range 2 to 11). In total, 47 dif-
ferent risk predictors were included in the final risk pre-
diction models (see Figure 2). The most commonly
identified risk predictors included in the final risk predic-
tion model were age (n = 38), family history of diabetes
(n = 28), body mass index (n = 24), hypertension (n = 24),
waist circumference (n = 21) and sex (n = 17). Other com-
monly identified risk predictors included ethnicity and
fasting glucose level (both n = 10) and smoking status and
physical activity (both n = 8). Twenty-four risk predictors
appeared only once in the final risk prediction model.

Sample size
The number of events per variable could not be calcu-
lated for 14 models. Nine risk prediction models (21%)
were developed in which the number of events per vari-
able was < 10. Overall, the median number of events
per variable was 19 (IQR 8 to 36, range 2.5 to 4,796).
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Treatment of continuous risk predictors
Thirteen prediction models (30%) were developed
retaining continuous risk predictors as continuous,
twenty-one risk prediction models (49%) dichotomised
or categorised all continuous risk predictors and six risk
prediction models (14%) kept some continuous risk pre-
dictors as continuous and categorised others (Table 4).
It was unclear how continuous risk predictors were trea-
ted in the development of three risk prediction models
(7%). Only five studies (13%) considered nonlinear terms
[23,25,34,35,40], of which only the QDScore Diabetes
Risk Calculator included nonlinear terms in the final
prediction model [25].

Missing data
Twenty-three studies (59%) made reference to missing data
in developing the risk prediction model, of which twenty-
one studies explicitly excluded individuals with missing
data regarding one or more risk predictors (often a speci-
fied inclusion criterion), thereby rendering them complete
case analyses [23,26,28-31,33-38,40,41,43-46,54,58,61]. One
study derived the model using a complete case approach,
though it included a sensitivity analysis to examine the
impact of missing data [58]. One study used multiple
imputations to replace missing values for two risk predic-
tors [25]. One study used two different approaches to
developing a risk prediction model (logistic regression and

779 articles identified through 

database searching (PUBMED) 

26 of full-text articles excluded 

Reasons for exclusion: 

No print copy (n = 2) 
In press (n = 3) 

No model developed (n = 4) 
Validation study only (n = 6) 

Genetic risk prediction model (n = 3) 
Other (n = 8) 

738 articles excluded on abstract 

799 articles after duplicates removed 

792 articles identified through 

database searching (EMBASE) 

61 full-text of articles assessed for eligibility 

35 articles eligible for review 

4 articles identified by hand/citation search 

39 articles included for review 

Figure 1 Flow diagram of selected studies.
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Table 1 Models for predicting risk of incident diabetesa

Study Year Country Definition of diabetes as reported Risk predictors in the model

Aekplakorn et al. [27] 2006 Thailand Diabetes diagnosed according to ADA
criteria as FPG level ≥ 126 mg/dL (7.0 mmol/
L) or 2-h PG level ≥ 200 mg/dL (11.1 mmol/
L) or a previous diagnosis of diabetes

Age, sex, BMI, abdominal obesity (waist
circumference), hypertension, family history
of diabetes

Balkau et al. [23] 2008 France Incident cases of diabetes identified by
treatment for diabetes or FPG ≥ 7.0 mmol/L

Men: waist circumference, smoking status,
hypertension.
Women: waist circumference, family history
of diabetes, hypertension.

Chen et al. [28] 2010 Australia Incident diabetes at follow-up defined by
treatment with insulin or oral hypoglycaemic
agents, FPG level ≥ 7.0 mmol/L, or 2-hPG in
OGTT ≥ 11.1 mmol/L

Age, sex, ethnicity, parental history of
diabetes, history of high blood glucose, use
of antihypertensive medication, smoking
status, physical activity, waist circumference

Chien et al. [29] 2009 Taiwan Diabetes defined by FPG ≥ 7.0 mmol/L or
use of oral hypoglycaemic or insulin
medication

Age, BMI, WBC count, and triacylglycerol,
HDL cholesterol, FPG levels

Gao et al. [30] 2009 Mauritius Diabetes diagnosed according to 2006
WHO/IDF criteria. Diabetes cases were
defined as those who reported a history of
diabetes and treatment with glucose-
lowering medication and/or FPG ≥ 7.0
mmol/L and/or 2-h PG ≥ 11.1 mmol/L.

Age, sex, BMI, waist circumference, family
history of diabetes

Gupta et al. [40] 2008 UK, Ireland, Sweden,
Denmark, Iceland,
Norway, Finland

FPG ≥ 7 mmol/L or random glucose ≥ 11.1
mmol/L at randomisation or screening visits.
Self-reported history of diabetes and drug or
dietary therapy for diabetes. Presence of
both impaired FPG (> 6 and < 7 mmol/L)
and glycosuria at randomisation or screening
visits.

Age, sex, FPG, BMI, randomised group,
triglycerides, systolic blood pressure, total
cholesterol, use of non-coronary artery
disease medication, HDL cholesterol, alcohol
intake

Hippisley-Cox et al. [25] 2009 UK Patients with diabetes identified by
searching electronic health records for
diagnosis Read code for diabetes (C10%)

Age, BMI, family history of diabetes, smoking
status, treated hypertension, current
treatment with corticosteroids, diagnosis of
CVD, social deprivation, ethnicity

Kahn et al. [31] 2009 USA Participants were considered to have
diabetes if they reported a history of
physician-diagnosed ‘diabetes (sugar in the
blood)’ or if their FPG level was ≥ 7.0 mmol/
L (≥ 126 mg/dL), their non-FPG level was at
least 11.1 mmol/L (≥ 200 mg/dL), or their 2-
h PG at year 9 follow-up was ≥ 11.1 mmol/L
(≥ 200 mg/dL). Additional cases of incident
diabetes were identified by criteria-based
abstractions of hospital records.

Diabetic mother, diabetic father,
hypertension, ethnicity, age, smoking status,
waist circumference (sex), height (sex),
resting pulse (sex), weight (sex)

Kolberg et al. [32] 2009 Denmark Diagnosis of type 2 diabetes was defined by
2-h PG ≥ 11.1 mmol/L on OGTT or FPG ≥
7.0 mmol/L

Adiponectin, C-reactive protein, ferritin,
interleukin 2 receptor A, glucose, insulin

Lindström et al. [33] 2003 Finland Subjects not on antidiabetic drug treatment
were diagnosed as having diabetes
according to WHO 1999 criteria [12] if they
had FPG ≥ 7.0 mmol/L (fasting whole blood
glucose ≥ 6.1 mmol/L) and/or 2-h PG ≥ 11.1
mmol/L (2-h whole blood glucose ≥ 10.0
mmol/L)

Age, BMI, waist circumference, use of blood
pressure medication, history of high blood
glucose, physical activity, daily consumption
of vegetables

Liu et al. [61] 2011 China Diabetes was diagnosed according to ADA
criteria as FPG ≥ 126 mg/dL (7.0 mmol/L) or
OGTT ≥ 200 mg/dL (11.1 mmol/L). Incident
diabetes was ascertained from multiple
sources: self-report, FPG and OGTT results,
and data on prescribing of hypoglycaemic
medication at follow-up survey.

Age, hypertension, history of high blood
glucose, BMI, high FPG

Schmidt et al. [34] 2005 USA Incident diabetes defined by OGTT (FPG ≥
7.0 mmol/L or a 2-h PG ≥ 11.1 mmol/L) at
end of follow-up (1996 to 1998) or as report
of clinical diagnosis or treatment for
diabetes during follow-up period

Age, ethnicity, parental history of diabetes,
FPG, systolic blood pressure, waist
circumference, height, HDL cholesterol,
triglycerides
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classification trees) with surrogate splitters to deal with
missing data when using classification trees, whilst the
approach for dealing with missing data in the logistic
regression analyses was not reported, in which event a
complete case analysis was most likely.. Sixteen studies
(41%) made no mention of missing data (Table 4), thus it
can only be assumed that a complete case analysis was
conducted or that all data for all risk predictors (including
candidate risk predictors) were available, which seems unli-
kely [24,27,32,39,42,47-53,55,57,59,60].

Model building
Eight studies (21%) reported using bivariable screening
(often referred to as ‘univariate screening’) to reduce the
number of risk predictors [32,34,44-46,50,52,54], whilst it
was unclear how the risk predictors were reduced prior
to development of the multivariable model in nine stu-
dies (23%) [23,29,31,35,37,47,48,55,58]. Two studies
reported examining the association of individual risk pre-
dictors with patient outcome after adjusting for age and
sex [27] and age and cohort [30]. Nine studies (23%)
included all risk predictors in the multivariable analysis
[25,26,33,36,39,49,51,53,61].
Twenty-two studies (56%) reported using automated

variable selection (forward selection, backward elimina-
tion and stepwise) procedures to derive the final multi-
variable model (Table 4). Nine studies (23%) reported
using backward elimination [24,28,41,43,45,46,50,52,57],

seven studies (18%) reported using forward selection
[34,35,38,40,48,55,60] whilst six studies (15%) used step-
wise selection methods [23,32,42,47,54,58].
All studies clearly identified the type of model they used

to derive the prediction model. The final models were
based on logistic regression in 29 articles, the Cox propor-
tional hazards model in 7 articles [25,29,30,35,37,38,40],
recursive partitioning in 2 articles [26,56] and a Weibull
parametric survival model in 1 article [31]. Two studies
used two modelling approaches (logistic regression and
Cox proportional hazards model [39] and logistic regres-
sion and recursive partitioning [56]).
Twenty-five risk prediction models (58%) considered

interactions in developing the model; however, this was
not explicitly stated for seven of these risk prediction mod-
els. Three studies clearly stated that they did not consider
interactions to keep the risk prediction model simple, yet
all three models implicitly included a waist circumference
by sex interaction in their definition of obesity [33,41,44].
Two studies examined over 20 interactions [36,43].

Validation
Ten studies (26%) randomly split the cohort into develop-
ment and validation cohorts [24-26,30,31,34,37,46,51,55]
(Table 5). Eight of these studies split the original cohort
equally into development and validation cohorts. Twenty-
one studies (54%) conducted and published an external
validation of their risk prediction models within the same

Table 1 Models for predicting risk of incident diabetesa (Continued)

Schulze et al. [35] 2007 Germany Incident diabetes identified through August
2005 by self-reports of diabetes diagnosis,
diabetes relevant medication or dietary
treatment due to diabetes. All cases were
verified by diagnosing physician on basis of
ICD-10 criteria.

Waist circumference, height, age,
hypertension, intake of red meat, intake of
whole-grain bread, coffee consumption,
alcohol consumption, physical activity,
former smoker, current heavy smoker (≥ 20
cigarettes/day

Stern et al. [36] 2002 USA Diabetes diagnosed according to WHO
criteria (FPG ≥ 7.0 mmol/L (≥ 126 mg/dL) or
2-h PG ≥ 11.1 mmol/L (≥ 200 mg/dL)) [3].
Persons who reported history of diabetes
diagnosed by physician and reported current
use of insulin or oral antidiabetic agent were
considered to have diabetes regardless of
plasma glucose level.

Age, sex, ethnicity, FPG, systolic blood
pressure, HDL cholesterol, BMI, family history
of diabetes

Sun et al. [37] 2009 Taiwan Not defined Sex, education level, age, current smoking
status, BMI, waist circumference, family
history of diabetes, hypertension, FPG

Tuomilehto et al. [38] 2010 Canada, Germany,
Austria, Norway,
Denmark, Sweden,
Finland, Israel, Spain

Primary end point was development of type
2 diabetes, defined as a 2-h PG ≥ 11.1
mmol/L

Acarbose treatment, sex, serum triglyceride
level, waist circumference, FPG, height,
history of CVD, diagnosed hypertension

Wilson et al. [39] 2007 USA Participants characterised as developing new
diabetes during follow-up if they (1) started
receiving oral hypoglycaemic agents or
insulin or (2) had a FPG ≥ 126 mg/dL (≥ 7.0
mmol/L)

FPG, BMI, HDL cholesterol, parental history of
diabetes, triglyceride level, blood pressure

aADA, American Diabetes Association; BMI, body mass index; WBC, white blood cell; HDL, high-density lipoprotein; WHO/IDF, World Health Organisation/
International Diabetes Federation; FPG, fasting plasma glucose; OGTT, oral glucose tolerance test; ICD-10, International Statistical Classification of Diseases and
Related Health Problems 10th Revision; CVD, cardiovascular disease; 2-h PG, two-hour 75-g postload plasma glucose level.
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article [23,27,28,33,35,38,41-48,50-53,56-58], and eight of
these studies used two or more data sets in an attempt to
demonstrate the external validity (that is, generalisability)
of the risk prediction model.

Model performance
We assessed the type of performance measure used to
evaluate the risk prediction models (Table 5). All studies

reported C-statistics, with 31 studies (79%) reporting C-
statistics on the data used to derive the model
[23,26-29,32,33,35-39,41,43-54,56-61], 13 studies (33%)
calculating C-statistics on an internal validation data set
[24-26,29-32,34,37,39,40,55,56] and 21 studies (54%)
reporting C-statistics on external validation data sets
[23,27,28,33,35,38,41-48,50-53,56-58]. Only 10 studies
(26%) assessed how well the predicted risks compared to

Table 2 Models for predicting risk of prevalent (undiagnosed) diabetesa

Study Year Country Definition of diabetes as reported Risk predictors in the model

Al Khalaf et al. [60] 2010 Kuwait Diagnosis of diabetes based on ADA 2003 criteria.
If FPG was ≥ 7.0 mmol/L or random glucose was ≥
11.1 mmol/L, participants were classified as having
newly diagnosed diabetes.

Age, waist circumference, blood pressure
medication, diabetes in sibling

Al-Lawati et al. [41] 2007 Oman Diabetes was diagnosed according to 1998 WHO
criteria for OGTT (FPG 11.1 mmol/l 2-h post 75-g
glucose load

Age, waist circumference, BMI, family
history of diabetes, hypertension

Baan et al. [42] 1999 The Netherlands Diabetes defined as use of antidiabetic medication
(insulin or oral hypoglycaemic medication) and/or
2-h PG ≥ 11.1 mmol/L according to WHO criteria

Age, sex, use of antihypertensive
medication, obesity (BMI ≥ 30)

Bang et al. [43] 2009 USA Undiagnosed diabetes defined as FPG ≥ 7.0 mmol/
L (≥ 126 mg/dL)

Age, sex, family history of diabetes,
history of hypertension, obesity (BMI or
waist circumference), physical activity

Borrell et al. [59] 2007 USA FPG ≥ 126 mg/dL Age, sex, ethnicity, family history of
diabetes, self-reported hypertension,
hypercholesterolaemia, periodontal
disease

Chaturvedi et al. [44] 2008 India Undiagnosed diabetes defined as those with FPG ≥
126 mg/dL (≥ 7.0 mmol/L) but who were not
aware of their glycaemic status

Age, blood pressure, waist circumference,
family history of diabetes

Gao et al. [45] 2010 China Diabetes defined according to 2006 WHO/IDF
criteria. In individuals without known diabetes,
undiagnosed diabetes was determined if person
had FPG ≥ 7.0 mmol/L and/or postchallenge PG ≥
11.1 mmol/L

Age, waist circumference, family history of
diabetes

Glümer et al. [46] 2004 Denmark Individuals without known diabetes and with FPG
≥ 7.0 mmol/L or 2-h PG ≥ 11.1 mmol/L defined as
having SDM

Age, BMI, sex, known hypertension,
physical activity, family history of diabetes

Keesukphan et al. [47] 2007 Thailand 75-g OGTT carried out as outlined by WHO
Diabetes Study Group

Age, BMI, history of hypertension

Ko et al. [48] 2010 Hong Kong All subjects underwent 75-g OGTT using 1998
WHO criteria (FPG ≥ 7.0 mmol/L and/or 2-h PG ≥
11.1 mmol/L

Age, sex, BMI, hypertension, dyslipidaemia,
family history of diabetes, gestational
diabetes

Mohan et al. [49] 2005 India Diagnosis of diabetes based on WHO Consulting
Group criteria, that is, 2-hr PG ≥ 200 mg/dL

Age, abdominal obesity (waist
circumference), physical activity, family
history of diabetes

Pires de Sousa et al. [50] 2009 Brazil FPG > 126 mg/dL (7.0 mmol/L), that is, provisional
diagnosis of diabetes according to ADA criteria,
classified as type 2 diabetes patients

Age, BMI, hypertension

Ramachandran et al. [51] 2005 India Diabetes diagnosis based on 2-h PG ≥ 11.1 mmol/L Age, family history of diabetes, BMI, waist
circumference, physical activity

Ruige et al. [52] 1997 The Netherlands Participants underwent 75-g OGTT and were
classified according to WHO criteria

Frequent thirst, pain during walking with
need to slow down, shortness of breath
when walking, age, sex, obesity (BMI),
obesity (men), family history of diabetes,
use of antihypertensive drugs, reluctance
to use bicycle for transportation

Tabaei and Herman [53] 2002 Egypt Undiagnosed diabetes defined based on FPG ≥
126 mg/dL and/or 2-h PG ≥ 200 mg/dL

Age, random plasma glucose,
postprandial time, sex, BMI

aSDM, screen-detected diabetes; ADA, American Diabetes Association; BMI, body mass index; WHO/IDF, World Health Organisation/International Diabetes
Federation; FPG, fasting plasma glucose; OGTT, oral glucose tolerance test; 2-h PG, two-hour 75-g postload plasma glucose level.
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the observed risks (calibration), investigators in 8 studies
(21%) chose to calculate the Hosmer-Lemeshow good-
ness-of-fit test [23,27-29,36,37,45,53] and in 2 studies a
calibration plot was presented [25,37].

Model presentation
Twenty-four studies (62%) derived simplified scoring sys-
tems from the risk models [23,24,27-29,31,33,38,39,
41-46,48-52,57,58,61]. Twelve studies derived a simple
points system by multiplying (or dividing) the regression
coefficients by a constant (typically 10) and then rounding
the result to the nearest integer [24,41-44,46,48,
50-52,57,58]. Four studies used the method of Sullivan et
al. [62] to develop a points system [27,29,38,39].

Discussion
Main findings
Our systematic review of 39 published studies highlights
inadequate conduct and reporting in all aspects of

developing a multivariable prediction model for detecting
prevalent or incident type 2 diabetes. Fundamental
aspects of describing the data (i.e. the number of partici-
pants and the number of events), a clear description of
all selection of risk predictors and steps taken to build
the multivariable model were all shown to be poor
One of the problems researchers face when developing

a multivariable prediction model is overfitting. This
occurs when the number of events in the cohort is dis-
proportionately small in relation to the number of candi-
date risk predictors. A rule of thumb is that models
should be developed with 10 to 20 events per variable
(EPV) [63,64]. Of the studies included in this review, 21%
had fewer than 10 EPV, whilst there was insufficient
detail reported for an EPV to be calculated in 33% of the
risk prediction models. The consequences of overfitting
are that models subsequently often fail to perform satis-
factorily when applied to data sets not used to derive the
model [65]. Investigators in other studies have reported

Table 3 Models for predicting risk of other diabetes outcomesa

Study Year Country Model objective
(undiagnosed or
incident
diabetes)

Definition of diabetes as reported Risk predictors in the model

Bindraban
et al. [54]

2008 The
Netherlands

Diagnosed and
undiagnosed

FPG ≥ 7.0 mmol/L and/or self-report Age, BMI, waist circumference, resting heart
rate, first-degree relative with diabetes,
hypertension, history of CVD, ethnicity

Cabrera
de León
et al. [24]

2008 Canary
Islands

Unclear Persons recorded as having diabetes if they said
they had the disease and reported dietary or
pharmacological treatment with oral
antidiabetics or insulin. Persons were considered
to have undetected type 2 diabetes if they
were unaware of disease at time of inclusion in
study but had two consecutive FPG values ≥ 7
mmol/L (≥ 126 mg/dL).

Men: age, waist/height ratio, family history of
diabetes
Women: age, waist/height ratio, family history
of diabetes, gestational diabetes

Gray et al.
[58]

2010 UK Undiagnosed and
impaired glucose
regulation

Participants diagnosed with type 2 diabetes
according to WHO criteria [1] with FPG ≥ 7
mmol/L and/or 2-h PG ≥ 11.1 mmol/L. IFG
defined as FPG between 6.1 and 6.9 mmol/L
inclusive.

Age, ethnicity, sex, first-degree family history
of diabetes, antihypertensive therapy or
history of hypertension, waist circumference,
BMI

Griffin et
al. [55]

2000 UK Diagnosed and
undiagnosed

Classified according to WHO criteria Sex, prescribed antihypertensive medication,
prescribed steroids, age, BMI, family history of
diabetes, smoking status

Heikes
et al. [56]

2008 USA Undiagnosed and
pre-diabetes

Diabetes is defined as FPG ≥ 126 mg/dL and/or
2-h OGTT ≥ 200 mg/dL. Prediabetes defined as
IFG and/or IGT without diabetes. Undiagnosed
diabetes defined as presence of actual diabetes
based on FPG and/or 2-h OGTTand absence of
having been told that he or she has diabetes.

Age, waist circumference, history of
gestational diabetes, family history of
diabetes, ethnicity, high blood pressure,
weight, height, parental diabetes, exercise

Kanaya
et al. [57]

2005 USA Abnormal PCPG Abnormal 2-h PG postchallenge test result (≥
140 mg/dL)

Sex, age, triglycerides, FPG

Xie et al.
[26]

2010 China Diagnosed and
undiagnosed

Participants without a previous diagnosis of
diabetes were categorised according to the
ADA diagnostic criteria as follows: undiagnosed
diabetes (FPG ≥ 7.0 mmol/L) and impaired
fasting glycaemia (6.1 to 6.9 mmol/L). Diabetes
was defined as self-reported history of diabetes
plus undiagnosed diabetes.

Men: waist circumference, age
Women: waist/hip ratio, age

aADA, American Diabetes Association; BMI, body mass index; WHO, World Health Organisation; FPG, fasting plasma glucose; OGTT, oral glucose tolerance test;
CVD, cardiovascular disease; 2-h PG, two-hour 75-g postload plasma glucose level; IGT, impaired glucose tolerance; IFG, impaired fasting glucose.
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similar findings (EPV < 10) when appraising the develop-
ment of multivariable prediction models [3,21,66].
Another key component affecting the performance of

the final model is how continuous variables are treated,
whether they are kept as continuous measurements or
whether they have been categorised into two or more cate-
gories [67]. Common approaches include dichotomising at

the median value or choosing an optimal cutoff point
based on minimising a P value. Regardless of the approach
used, the practice of artificially treating a continuous risk
predictor as categorical should be avoided [67], yet this is
frequently done in the development of risk prediction
models [4,5,68-74]. In our review, we identified 63% of
studies that categorised all or some of the continuous risk

 
 

 
 

 
 

 

 

 

 

 

 

 
 

 
 

 
 

 

 
 

 
 

 
 
 

 
 

 

 
 

 
 

 

Figure 2 Frequency of identified risk predictors in the final prediction models. * Other risk predictors appearing no more than twice in the
final model; (1) white blood cell. count, (2) dyslipidaemia, (3) adiponectin, (4) C-reactive protein, (5) ferritin, (6) interleuken-2 receptor A, (7)
insulin, (8) glucose, (9) vegetable consumption, (10) frequent thirst, (11) pain during walking, (12) shortness of breath, (13) reluctance to use
bicycle, (14) total cholesterol, (15) intake of red meat, (16) intake of whole-grain bread, (17) coffee consumption, (18) educational level, (19)
postprandial time, (20) non-coronary artery disease medication, (21) acarbose treatment, (22) hypercholesterolemia, (23) periodontal disease, (24)
RCT group [1-24 all appear only once], (25) alcohol consumption (26) resting heart rate, (27) weight, (28) social deprivation [25-28 appear twice]
Abbreviations: WHR = waist-to-hip ratio; HDL = High density lipoprotein; GDB = Gestational diabetes.
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predictors, and similar figures have been reported in other
reviews [3]. Dichotomising continuous variables causes a
detrimental loss of information and loss of power to detect
real relationships, equivalent to losing one-third of the
data or even more if the data are exponentially distributed
[75]. Continuous risk predictors (that is, age) should be
retained in the model as continuous variables, and if the
risk predictor has a nonlinear relationship with the out-
come, then the use of splines or fractional polynomial
functions is recommended [76].
Missing data is common in most clinical data sets,

which can be a serious problem in studies deriving a risk
prediction model. Regardless of study design, collecting
all data on all risk predictors for all individuals is a diffi-
cult task that is rarely achieved. For studies that derive
models on the basis of retrospective cohorts, there is no
scope in retrieving any missing data and investigators are
thus confronted with deciding how to deal with incom-
plete data. A common approach is to exclude individuals
with missing values on any of the variables and conduct a
complete case analysis. However, a complete case analy-
sis, in addition to sacrificing and discarding useful infor-
mation, is not recommended as it has been shown that it
can yield biased results [77]. Forty percent of the studies

in our review failed to report any information regarding
missing data. Multiple imputation offers investigators a
valid approach to minimise the effect of missing data, yet
this is seldom done in developing risk prediction models
[78], though guidance and illustrative examples are
slowly appearing [18,79,80]. The completeness of overall
data (how many individuals have complete data on all
variables) and by variable should always be reported so
that readers can judge the representativeness and quality
of the data.
Whilst developing a model, predictors that are shown to

have little influence on predicting patients likely to have
particular outcomes might be taken out of a final model
during model development. However, this is not a simple
matter of selecting predictors solely on the basis of statisti-
cal significance during model development, as it can be
important to retain these among the model risk predictors
known to be important from the literature, but which may
not reach statistical significance in a particular data set.
Unfortunately, the process of developing a risk predictor
model for use in clinical practice for prediction is often
confused with using multivariate modelling to identify risk
predictors with statistical significance in epidemiological
studies. This misunderstanding of the modelling aims can
lead to use of inappropriate methods such as prescreening
candidate variables for a risk predictor model based on

Table 4 Issues in model developmenta

Variables Data

Sample size, median (IQR)

Development cohortb 2,562 (1,426 to 4,965)

Validation cohortsc 1,895 (1,253 to 4,398)

Treatment of continuous risk predictors, n (%)

All kept continuous 13 (30%)

All categorised/dichotomised 21 (49%)

Some categorised, some not 6 (14%)

Unclear 3 (7%)

Treatment of missing data, n (%)

Not mentioned 16 (41%)

Complete case 21 (54%)

Multiple imputation 1 (3%)

Other (for example, surrogate splitter for
regression trees)

1 (3%)

Model-building strategy, n (%)

Stepwise, forward selection, backward
elimination

20 (51%)

All significant in univariate analysis 2 (5%)

Other 12 (31%)

Unclear 5 (13%)

Overfitting mentioned or discussed, n (%) 5 (13%)
aIQR, interquartile range; bsample size not reported in four studies; csample
size not reported in two studies and unclear in one study.

Table 5 Evaluating performance of risk prediction
modelsa

Parameter Number of studies (%)

Validation

Apparent 30 (77%)

Internal 15 (38%)

Bootstrapping 2 (5%)

Jack-knifing 1 (3%)

Random split sample 10 (26%)

Cross-validation 2 (5%)

Temporal 3 (8%)

External 21 (54%)

Performance metricsb

Discrimination

C-statistic 39 (100%)

D-statistic 1 (3%)

Calibrationc 10 (26%)

Hosmer-Lemeshow statistic 8 (21%)

Calibration plot 2 (5%)

Classification

Reclassification (NRI) 2 (5%)

Other (for example, sensitivity,
specificity)

31 (79%)

aNRI,- Net Reclassification Index; bstudies can report more than one
performance metric; ccalibration assessed on the basis of the development
cohort in 10 studies and in the validation cohorts in 2 studies.
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bivariable tests of association with the outcome (that is, a
statistical test to examine the association of an individual
predictor with the outcome). This has been shown to be
inappropriate, as it can wrongly reject important risk pre-
dictors that become prognostic only after adjustment of
other risk predictors, thus leading to unreliable models
[18,81]. More importantly, it is crucial to clearly report
any procedure used to reduce the number of candidate
risk predictors. Nearly half of the studies in our review
reduced the initial number candidate risk predictors prior
to the multivariable modelling, yet over half of these failed
provide sufficient detail on how this was carried out.
The most commonly used strategy to build a multivari-

able model is to use an automated selection approach (for-
ward selection, backward elimination or stepwise) to
derive the final risk prediction model (50% in our review).
Automated selection methods are data-driven approaches
based on statistical significance without reference to clini-
cal relevance, and it has been shown that these methods
frequently produce unstable models, have biased estimates
of regression coefficients and yield poor predictions
[82-84].
Arguably, regardless of how the multivariable model is

developed, all that ultimately matters is to demonstrate
that the model works. Thus, after a risk prediction model
has been derived, it is essential that the performance of
the model be evaluated. Broadly speaking, there are three
types of performance data one can present, in order of
increasing levels of evidence: (1) apparent validation on
the same data used to derive the model; (2) internal valida-
tion using a split sample (if the cohort is large enough),
cross-validation or, preferably, resampling (that is, boot-
strapping); and (3) external validation using a completely
different cohort of individuals from different centres or
locations than those used to derive the model [85,86].
Investigators in over half of the studies in our review
(54%) conducted an external validation on cohorts that
were much larger than other reporting in other reviews
[72,87].
Reporting performance data solely from an apparent

validation analysis is to a large extent uninformative,
unless the obvious optimism in evaluating the perfor-
mance based on the same data used to derive the model
is accounted for and this optimism quantified (using
internal validation techniques such as resampling).
Unless the cohort is particularly large (> 20,000), then
using a split sample to derive and evaluate a model also
has limited value, especially if the cohorts are randomly
split, since the two cohorts are selected to be similar and
thus produce overly optimistic performance data. In
models in which a split sample has been used, a better
approach is a nonrandom split (that is, certain centres or
a temporal split) [85,86].

What is already known on the topic
The findings of this review are consistent with those of
other published reviews of prediction models in cancer
[3,70,71], stroke [4,73,88], traumatic brain injury [68,72],
liver transplantation [5] and dentistry [89]. We observed
poor reporting in all aspects of developing the risk predic-
tion models in terms of describing the data and providing
sufficient detail in all steps taken in building the model.

Limitations
Our systematic review was limited to English-language
articles and did not consider grey literature; therefore,
we may have missed some studies. However, we strongly
suspect that including articles in our review would not
have altered any of the findings.

Conclusions
This systematic review of 39 published studies highlights
numerous methodological deficiencies and a generally
poor level of reporting in studies in which risk prediction
models were developed for the detection of prevalent or
incident type 2 diabetes. Reporting guidelines are avail-
able for therapeutic [90], diagnostic [91] and other study
designs [14,92,93], and these have been shown to increase
the reporting of key study information [94,95]. Such an
initiative is long overdue for the reporting of risk predic-
tion models. We note that in the field of veterinary
oncology, recommended guidelines for the conduct and
evaluation of prognostic studies have been developed to
stem the tide of low-quality research. Until reporting
guidelines suitable for deriving and evaluating risk pre-
diction models are developed and adopted by journals
and peer reviewers, the conduct, methodology and
reporting of such models will remain disappointingly
poor.

Appendix 1: Search strings
PubMed search string
‘diabetes’[ti] AND (‘risk prediction model’[tiab] OR ‘pre-
dictive model’[tiab] OR ‘predictive equation’[tiab] OR
‘prediction model’[tiab] OR ‘risk calculator’[tiab] OR ‘pre-
diction rule’[tiab] OR ‘risk model’[tiab] OR ‘statistical
model’[tiab] OR ‘cox model’[tiab] OR ‘multivariable’[-
tiab]) NOT (review[Publication Type] OR Bibliography
[Publication Type] OR Editorial[Publication Type] OR
Letter[Publication Type] OR Meta-analysis[Publication
Type] OR News[Publication Type]).

EMBASE search string
risk prediction model.ab. or risk prediction model.ti. or
predictive model.ab. or predictive model.ti. or predictive
equation.ab. or predictive equation.ti. or prediction
model.ab. or prediction model.ti. or risk calculator.ab. or
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risk calculator.ti. or prediction rule.ab. or prediction
rule.ti. or risk model.ab. or risk model.ti. or statistical
model.ab. or statistical model.ti. or cox model.ab. or cox
model.ti. or multivariable.ab. or multivariable.ti. and dia-
betes.ti not letter.pt not review.pt not editorial.pt not
conference.pt not book.pt.
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