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Abstract

Background: Cerebral microdialysis (MD) is used to monitor local brain chemistry of patients with traumatic brain
injury (TBI). Despite an extensive literature on cerebral MD in the clinical setting, it remains unclear how individual
levels of real-time MD data are to be interpreted. Intracranial pressure (ICP) and cerebral perfusion pressure (CPP)
are important continuous brain monitors in neurointensive care. They are used as surrogate monitors of cerebral
blood flow and have an established relation to outcome. The purpose of this study was to investigate the relations
between MD parameters and ICP and/or CPP in patients with TBI.

Methods: Cerebral MD, ICP and CPP were monitored in 90 patients with TBI. Data were extensively analyzed, using
over 7,350 samples of complete (hourly) MD data sets (glucose, lactate, pyruvate and glycerol) to seek
representations of ICP, CPP and MD that were best correlated. MD catheter positions were located on computed
tomography scans as pericontusional or nonpericontusional. MD markers were analyzed for correlations to ICP and
CPP using time series regression analysis, mixed effects models and nonlinear (artificial neural networks) computer-
based pattern recognition methods.

Results: Despite much data indicating highly perturbed metabolism, MD shows weak correlations to ICP and CPP.
In contrast, the autocorrelation of MD is high for all markers, even at up to 30 future hours. Consequently, subject
identity alone explains 52% to 75% of MD marker variance. This indicates that the dominant metabolic processes
monitored with MD are long-term, spanning days or longer. In comparison, short-term (differenced or A) changes
of MD vs. CPP are significantly correlated in pericontusional locations, but with less than 1% explained variance.
Moreover, CPP and ICP were significantly related to outcome based on Glasgow Outcome Scale scores, while no
significant relations were found between outcome and MD.

Conclusions: The multitude of highly perturbed local chemistry seen with MD in patients with TBI predominately
represents long-term metabolic patterns and is weakly correlated to ICP and CPP. This suggests that disturbances
other than pressure and/or flow have a dominant influence on MD levels in patients with TBI.
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Background

Cerebral microdialysis (MD) has been used to monitor
patients with traumatic brain injury (TBI) for over a
decade, but the methodology has not yet found a clear
place in the neurointensive care unit (NICU) arsenal of
multimodal monitoring [1,2]. The commonly monitored
parameters that are advocated to follow dynamic meta-
bolic changes in viable but vulnerable tissue (and their
current predominant interpretations) are lactate, pyru-
vate (metabolic markers of redox state and thus ische-
mia and/or hypoxia), glucose (local capillary flow, but
also related to blood glucose and metabolism), gluta-
mate (excitotoxic marker) and glycerol (phospholipid
degradation as a marker of cell breakdown and death)
[3]. Baseline values have been investigated [4], and
ischemic interpretations of MD have been suggested [5]
and are supported by findings from the ischemic
penumbra [6]. MD has been shown repeatedly to corre-
late with other components of multimodal brain moni-
toring, such as jugular venous saturation and brain
tissue oxygenation [3]. Specifically, intracranial pressure
(ICP) and cerebral perfusion pressure (CPP) have both
been reported to correlate with MD values [7,8], and
manipulation of these parameters are often first-line
bedside responses to pathological MD values. CPP has
also been claimed to be the most frequently used surro-
gate monitor of cerebral blood flow [9].

Despite the discussion above, it remains unclear how
the individual levels of the real-time MD data streams
are to be interpreted on a patient-to-patient basis, and
the value of using MD in the treatment of TBI has not
yet been established [2,3,10,11]. While MD-derived data
seem to be a sensitive monitor of local ischemic tissue,
as shown especially in the experimental ischemic
penumbra [12], there is a growing awareness that the
classical “ischemic” interpretation of MD values in the
traumatic border zone may often reflect metabolic states
unrelated to ischemia or tissue hypoxia [13]. In addition,
the scope of ischemia in TBI may not be as extensive as
previously thought [13,14]. Although sensitive, MD may
thus be a nonspecific monitor of ischemia [11]. This
appears to be in conflict with the expectations of MD as
a dynamic monitor of ischemia used for online interpre-
tation and decision-making.

The real-time interpretability of an online monitoring
system is fundamental for its use, but conflicting inter-
pretations of MD in TBI have emerged, especially those
that can potentially be interpreted as ischemia and/or
hypoxia. The concept of ICP- and CPP-vulnerable peri-
contusional tissue, where MD could be used to monitor
the dynamic metabolic effects of local oxygen delivery-
dependent ischemia and/or hypoxia, contrasts with that
of possible cytopathic hypoxic “states.” Here, instead,

Page 2 of 17

local oxygen utilization itself could be altered, such as
by mitochondrial dysfunction [15] or diffusion barriers
[16]. These states would be expected to be less suscepti-
ble to ICP and CPP variation. A consensus [17] and an
investigation [18] have also highlighted the importance
of computed tomography (CT)-verified catheter place-
ment, and MD is suggested to be most informative
when monitoring vulnerable, ischemia- and/or hypoxia-
prone, traumatic pericontusional (border zone) tissue.

The analysis of MD data requires special considera-
tion, as it is a time series, where intrapatient data
hours are correlated. This must be taken into account
in analysis. We have found earlier in TBI patients that
by using a computer-based pattern recognition method
(self-organizing maps) [19], MD patterns, even those
potentially interpretable as ischemia, were unexpect-
edly static over time and therefore highly delineate
subjects. This suggests that the dominant monitored
metabolic processes with MD were long-term, extend-
ing over whole patient-monitoring periods. It has been
recognized that these data regarding intrapatient time
dependency have often been overlooked in the analysis
of MD data [20]. Despite this, hourly MD from indivi-
duals continues to be analyzed as independent data
[21,22].

The aim of the present study was to establish, in a
large MD data set, the extent to which MD correlates to
ICP and CPP when taking into account the correlated
time series nature of MD data in analyses. A strong cor-
relation of MD values to ICP and CPP would suggest
pressure and/or flow processes to be central causes of
locally perturbed metabolism. To this purpose, extensive
data mining was performed. In line with consensus, a
CT-defined group of optimally placed pericontusional
catheters was identified and contrasted with nonpericon-
tusional placed catheters. In addition, MD, CPP and ICP
data were analyzed for their relation to Glasgow Out-
come Scale (GOS) score.

Methods

The study was approved by the local ethics committee
on human research at the Karolinska Institutet and the
Karolinska University Hospital. Our standard NICU care
was applied, and no interventions were employed as
part of this investigation.

Inclusion

This study was a retrospective analysis including all con-
secutive patients admitted to the adult (=15 years of age)
NICU with TBI requiring mechanical ventilation (gener-
ally Glasgow Coma Scale (GCS) score < 8), during a 5-
year period, with functioning MD catheters, ICP moni-
toring and arterial catheters.
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Patient management

All patients were intubated, mechanically ventilated and
sedated with morphine, midazolam or propofol. Mass
lesions were evacuated as deemed appropriate by neuro-
surgeons. ICP was measured predominantly with ventri-
cular catheters or, in some cases, with intraparenchymal
pressure monitors (Codman & Shurtleff inc. Raynham,
MA, USA). Mean arterial pressure (MAP) was measured
invasively, commonly in the radial artery. CPP was cal-
culated as MAP-ICP, with both transducers placed at
the midlateral ventricular level. Patients’ heads were ele-
vated at 20°to 30°angles. ICP was targeted at < 20
mmHg and CPP was targeted at 60 to 70 mmHg. Tar-
gets were achieved with intravascular infusions (Ringer’s
acetate and albumin), vasopressors (norepinephrine),
osmotic therapy (hypertonic NaCl and mannitol), inter-
mittent cerebral spinal fluid (CSF) drainage from ventri-
cular catheters, ventilation and temperature control, and
decompressive craniotomy as needed. When ICP could
not be controlled with other measures, sodium thiopen-
tal was infused, limited by burst suppression and moni-
tored with continuous electroencephalography. Partial
pressure of carbon dioxide was targeted at 4.5 kPa.
When mild hyperventilation was employed for ICP con-
trol, it was guided by venous jugular bulbar saturation
and arterial-jugular lactate difference. Temperature was
regulated at 37°C with paracetamol or external wrapping
cooling systems. Mild hypothermia (35°C to 36°C) was
used for high refractory ICP. Blood glucose was targeted
at 4 to 8 mM/], and hemoglobin was targeted at >90 g/l.

Microdialysis technique

CT-visible gold-tipped MD catheters of 10-mm length
and a 20-kDa cutoff CMA 70 (Solna, Sweden) were
placed in conjunction with evacuation of mass lesions
or placement of ICP monitors in the surgical theater.
Catheters were perfused with a solution with an electro-
lyte composition similar to the CSF (CMA) at 0.3 pl/
min via a pump (CMA 106). Dialysate was sampled in
vials and analyzed immediately for glucose, lactate, pyru-
vate and glycerol levels using the CMA 600 enzyme
photometric analyzer at 1-hour intervals. The extraction
ratio of this catheter and perfusion rate is known to be
close to 70% [23]. MD catheters were viewed on CT
scans with the assistance of a neuroradiologist. Pericon-
tusional location was defined as within 2 cm of a mass
lesion (hyperdense or hypodense contusion or a hema-
toma border) on CT scans. Catheters not fulfilling this
definition were defined as nonpericontusional.

Data acquisition and preparation

ICP and MAP data were collected at 1- to 2-minute
intervals with the Datex monitoring system (Datex-
Ohmeda, Helsinki, Finland) and saved to a computer
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disk with MD data using the program ICU pilot (CMA).
Data were checked for integrity, removing known arti-
facts such as arterial catheter flushing, nonfunctioning
dialysate pumps, catheters producing empty vials or
logged events of erroneous handling or labeling of vials.
A MD catheter transfer time (from membrane to vial)
of 17 minutes was adjusted for. Limiters were applied to
out-of-range data (as specified by CMA) to avoid non-
sensical ratios. Sets of complete markers (glucose, lac-
tate, pyruvate and glycerol) were extracted with ICP
and/or CPP and time codes. Ratios of lactate:pyruvate
(LP ratio) and lactate:glucose (LG ratio) were calculated.
MD data were viewed for skew, and standard log;q and
square-root transformations were performed to
approach normal distributions (lactate, pyruvate and
glucose, square root; glycerol, log;o). Glasgow Outcome
Scale (GOS) scores [24] were recorded at three time
points: neurosurgical discharge, 3 to 6 months post-
trauma and >1 year posttrauma. The best GOS score
was defined as the highest value of these time points
and was used in the study. We hypothesize that this
value is most related to structural TBI changes. Patients
with only discharge GOS scores and those with GOS
scores from 2 to 4 were considered lost to follow-up.

Statistical analyses

Analyses were performed using MATLAB (MathWorks,
Natick, MA, USA) and the statistical program R (R
Foundation for Statistical Computing, Vienna, Austria;
http://www.R-project.org) [25].

Autocorrelation and cross-correlation of MD, ICP and CPP
data

Our earlier study suggested predominantly long-term
(on the order of days) patterns of MD and thus that
there should be a high autocorrelation [19]. Therefore,
MD and ICP and/or CPP were analyzed for autocorrela-
tion and cross-correlations (per patient) of the time ser-
ies. Autocorrelation is the extent to which values are
correlated with themselves over time. Cross-correlation
refers to the extent to which variables are correlated
with each other. In the cross-correlation analysis, checks
were also performed using (per patient) randomly per-
muted MD data, thus eliminating the time series com-
ponent of the data.

Multivariate correlations of MD, ICP and CPP data

Composite patterns of MD may be more related to ICP
and/or CPP than individual markers. Multivariate analy-
sis was therefore employed using two methods (one lin-
ear method, mixed effects linear models; and one
nonlinear method, artificial neural networks (ANNs)).
Both avoid the principal problems of intrasubject data
dependency, but by different means. With mixed effects
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linear models, the autocorrelated structure of the data
can be accounted for in analyses, and significant correla-
tions in excess of this can be evaluated. With ANNSs, a
cross-validation procedure is employed (in our case
leaving out one patient at a time) to ensure that correla-
tions generalize and are thus relevant to all patients.

Mixed effects linear models were fitted using
Restricted Maximum Likelihood (REML) using the
NMLE library for R. Random effects were those of
patients, with an autoregressive moving-average covar-
iance (ARMA (1,1)) structure for near lying data hours.

ANNs with radial basis functions were trained to pre-
dict ICP and/or CPP from MD values. The strength of
predictions was assessed as the correlation of true vs.
predicted ICP and/or CPP. The optimal number of
nodes and training epochs as well as model assessments
were determined using cross-validation (Radial Basis
Networks, MATLAB ANN module, Netlab by Bishop
http://wwwl.aston.ac.uk/eas/research/groups/ncrg/
resources/netlab/).

Hourly means of ICP and CPP (hour prior to MD
sample time) were the predicted variables. An extended
search was also performed to identify other possible
representations or time points of ICP and/or CPP (hour
or percentage of monitoring over or under cutoffs) that
could enhance predictions.

As a consequence of findings from autocorrelation
and cross-correlation analyses, mean (per patient) MD,
ICP and CPP data were subsequently correlated using
univariate and multivariate analysis. Outliers giving
undue influence to correlations were identified as
Cook’s distance > 1.

Relative changes of MD data toward ICP and/or CPP
Pertinent information may be found in short-term (hourly)
changes of MD. Univariate and multivariate correlations of
relative levels of MD toward ICP/CPP were explored by
two methods using linear regression. First, A values, differ-
entiated MD (from 1- to 4-hourly samples) were corre-
lated to ICP and/or CPP (absolute levels and
differentiated). Second, individual normalization (that is,
relative changes of a patient’s MD values around their
own means), which is justified if there are differing “base-
line” values for local areas where MD catheters are posi-
tioned (and thus for patients), and short-term changes are
superimposed on these baselines. Patients’ data were nor-
malized to a mean of zero and standard deviation of 1.
Data were also checked to identify any need for detrending
(relative values around a general trend or baseline, such as
that patients generally get better over time).

Outcome analysis
One-way analysis of variance (ANOVA) and the Krus-
kal-Wallis test were used for analyses of MD and ICP
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and/or CPP toward GOS score. Patients with less than
12 hours of MD were excluded from outcome analyses.

Results

Data description

Ninety patients were eligible for analysis and ranged in
age from 15 to 77 years. The patients’ mean age was
48.9 years. The mean GCS score was 6.5 (median, 6.0).
Admission GCS score ranges were 3 to 8 (72%), 9 to 12
(18%) and 13 to 15 (10%). Complete sets (all four mar-
kers) of MD were obtained for a mean of 84 (hourly
taken samples) per patient. Sixty-four catheters (64
patients, 5,645 complete MD samples) were identified as
pericontusional on the basis of CT scans, and 26 (26
patients, 1,731 complete MD samples) were identified as
nonpericontusional. One patient was lost to follow-up
and had only a GOS score at discharge. Five patients
had less than 12 hours of MD and were excluded from
outcome analysis. Mortality was 15%, and there was a
57% percent favorable outcome (GOS scores 4 and 5).
No patient was vegetative (GOS score 2).

Pooled MD data in relation to catheter placement, ICP
and CPP

Mean MD data from pericontusional and nonpericontu-
sional catheters are shown in Tables 1 and 2 and binned
to ICP and CPP intervals, respectively. Extreme caution
must be observed when interpreting such tables with
pooled values, as they do not take into account the corre-
lated nature of repeated measures within subjects. A
patient’s data will be unevenly distributed between the
bins and can thus affect bins disproportionally. Despite
this, primarily glucose levels may suggest an interesting,
and possibly expected, trend in relation to ICP and CPP
levels. Another approach to visualizing these data is a scat-
terplot with a nonlinear fit (lowess locally weighted regres-
sion) (Figures 1 and 2). The shown MD markers chosen
are displaying possible trends in Tables 1 and 2. The y-
axes for the LP ratios are truncated to allow better inspec-
tion of the plots around the regression line, not showing
some extreme high values, but all data were used for the
lowess fit. The data below 50 mmHg for CPP must be
judged (as above) with caution, as the extreme MD values
in this region are seen clustered mainly from one subject
and the consistency of MD responses at this cutoff
between subjects can therefore not be evaluated.

Longitudinal trends of MD

MD data from all patients are plotted from the time of
catheter insertion with a lowess regression (Figure 3),
showing no clear trends motivating detrending of the
data prior to analysis. The same applies for the nonperi-
contusional catheters separately (not shown). This was
confirmed as detrending data after second- and third-
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Table 1 Pooled microdialysis data and intracranial pressurea®
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ICP, mmHg

Microdialysis data <15 15 to 20 20 to 25 25 to 30 > 30
Pericontusional
Glucose, mM/I 22+16 16+ 10 13+£13 19+20 09+ 15
Lactate, mM/I 50+ 27 54+ 27 57 +24 53+30 6.3 £ 57
Pyruvate, uM/I 176 + 87 161 + 82 148 + 83 209 + 234 195 + 221
Glycerol, uM/I 256 + 397 260 + 418 240 + 273 181 + 190 284 + 361
LP ratio 34 + 39 49 + 84 74 £122 62+ 116 75 + 158
LG ratio 52+12 81 +£17 18 £ 28 24 £ 41 51 £65
Number of samples 3,059 1,534 816 153 83
(n = 64 patients)

Nonpericontusional
Glucose, m\/I 22+15 1.5+ 1.1 14+£12 10+£10 19+22
Lactate, mM/I 37+£18 44+ 28 52+ 27 64 +29 50+ 26
Pyruvate, uM/I 162 + 60 150 + 64 161 + 64 170 + 79 161 + 110
Glycerol, uM/I 171 + 207 337 £ 450 414 + 513 735+ 763 1,029 + 907
LP ratio 23 £90 31+24 36 £ 30 42 + 23 36 £ 20
LG ratio 45 +98 82+ 20 12+24 16 + 11 10+ 12
Number of samples 903 570 220 34 4

(n = 26 patients)

“Data are binned to levels of intracranial pressure (ICP), including the lactate:pyruvate (LP) and lactate:glucose (LG) ratios, from 90 catheters (90 patients), in

pericontusional and nonpericontusional locations. Data are expressed as means + standard deviation (SD).

order polynomial fits did not enhance later ICP or CPP

predictions.

Autocorrelation

MD, ICP and CPP are all shown to be highly autocorre-
lated (Figure 4), where CPP and glucose exhibit the least

Table 2 Pooled microdialysis data and cerebral perfusion pressure®

autocorrelation and glycerol exhibits the highest. The

degree of autocorrelation is found to extend so far over
time that individuals are identifiable. This is seen with
linear regression analyses using subject identities as sole

explanatory variables. Here subject identity alone is
found to explain the variance of MD to 52% to 75%

CPP, mmHg

Pericontusional <40 40 to 50 50 to 60 60 to 70 70 to 80 80 to 90 > 90
Glucose, mM/I 05+ 0.7 10£12 15+ 14 1.7 £14 20+ 16 22116 21+ 14
Lactate, mM/I 11 +63 50+ 36 53+£26 53127 52+26 50+ 25 48 +28
Pyruvate, uM/I 253 £ 190 263 + 348 147 + 85 166 + 83 171 + 89 177 + 85 178 + 89
Glycerol, uM/I 307 + 312 166 + 213 258 + 303 240 + 374 262 + 430 247 + 377 315 + 422
LP ratio 45 + 20 55+ 117 61 £ 105 46 + 78 45 + 74 36 £ 49 28 £ 14
LG ratio 105 £ 70 31+£43 15+ 25 89 + 19 56+ 12 36 + 34 46 £ 94
Number of 45 67 825 1,992 1,576 646 388
samples (n==64 patients)

Nonpericontusional
Glucose, mM/I 1.2 £07 1.6 £09 20+ 13 1.7+ 14 1.7£15 21+£16 26t 14
Lactate, mM/I 48 + 1.1 41 +£16 38 + 2.1 41 +£27 44 +£29 41 +22 43+ 15
Pyruvate, uM/I 162 + 52 151 + 58 155+ 73 155 + 61 161 £ 62 165 + 58 188 + 57
Glycerol, uM/I 309 + 410 327 £ 513 356 + 462 294 + 415 190 + 242 186 + 213 144 + 170
LP ratio 36 £ 25 28 £87 25+ 14 28 £ 24 29 £ 24 25+ 94 23 £ 7.1
LG ratio 52+26 46 + 64 45+ 84 82+ 19 96 + 22 56+ 11 37 +£59
Number of 47 130 372 571 375 142 65
patients (n==26
patients)

“Data are binned to levels of cerebral perfusion pressure (CPP), including the lactate:pyruvate (LP) and the lactate:glucose (LG) ratios, from 90 catheters (90
patients) in pericontusional and nonpericontusional locations. Data are expressed as means + standard deviation (SD).
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Figure 1 Scatterplots of intracranial pressures (ICP) vs. microdialysis (MD) markers. Markers selected are those with possible trends in
Table 1. A locally fitted regression (lowess) is supplied with a shaded standard error. A colored graph is shown to illustrate how individuals

cluster and thus disproportionally affect binned data. (A) MD from pericontusional located catheters. (B) MD from nonpericontusional located
catheters. Lactate:pyruvate (LP) ratio, lactate:glucose (LG) ratio.
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(glucose r* = 0.52, lactate r* = 0.75, pyruvate r* = 0.63,
glycerol * = 0.62, LG ratio r* = 0.69, LP ratio * = 0.54)
in 90 patients. These results indicate that the dominant
information in MD using these markers reflects long-
term processes (on the order of days) and that all other
factors dynamically affecting MD must consequently
share the remaining unexplained variance.

Cross-correlations of MD and ICP and/or CPP

In contrast to the strong autocorrelations presented
above, the associations between MD variables and ICP
and/or CPP are weak, explaining at most 9% of variance
(Figures 5 and 6). These weak correlations are also seen
to be similar at all time offsets (lag hours) between MD
and ICP and/or CPP and are thus independent of when
MD and ICP and/or CPP are sampled in relation to
each other. This strongly suggests that it is the mean

patient MD values, which are predominately related to
mean subject ICP and/or CPP values. This is conclu-
sively tested by randomly permuting (scrambling) the
MD time series per subject. Correlations were then
found substantially unaltered for all MD markers, ratios
and both catheter locations. An example of this is
shown for the strongest cross-correlations: those of the
LG ratio and ICP and/or CPP from pericontusional
catheters (Figure 7). A Monte Carlo-derived confidence
interval is applied after repeated random permutations
of MD data per subject. A control randomly permuting
all the data (also between subjects) gives the expected
levels of near-zero correlations.

In the aggregate, these analyses convincingly indicate
that the dominant information in univariate correla-
tions of MD values and ICP and/or CPP are weak and
that there is little information in the (ordered) time
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series in excess of data means. The relations between
MD and ICP and/or CPP thus appear more related to
the individual patient than to any dynamic relation-
ship that can be followed during MD monitoring.
Consequently, mean per-patient correlations were also
assessed in further analyses (see mean data analysis
of MD).

Multivariate correlations of MD and ICP and/or CPP
Composite patterns of MD variables may be more
related to ICP and/or CPP than to individual MD vari-
ables. Therefore, multivariate analyses of MD toward
ICP and/or CPP were performed with two methods:
artificial neural networks and mixed models.

The motivation for using adaptive nonlinear regres-
sion methods (such as ANNs) is that they can adjust to
potential nonlinear relationships that can exist in limited
regions of data (for example, that CPP could be related
to an increased LP ratio and low glucose, but only
under 50 mmHg). This nonlinearity would not be mod-
eled in a linear regression. A cross-validation procedure
(repeatedly leaving out patients from model develop-
ment and using them to evaluate models) is crucial so
that ANNs do not “learn” patients, but instead model
the underlying general relationship between MD and
ICP and/or CPP.

The results of these analyses are presented in Table 3
as the correlation coefficient between true and predicted
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ICP and/or CPP, using MD parameters as explanatory
variables. Multivariate associations between MD and
ICP and/or CPP were found to be weak in both pericon-
tusional and nonpericontusional catheter locations. ICP
may be more related to MD in nonpericontusional and
CPP in pericontusional positions. (The negative correla-
tion in models designed to make positive predictions is
interpreted as “even worse.”) Again, there is a clear

indication that permuting (scrambling) subject data
hours has limited effects on predictions.

Linear mixed effects models allow for multivariate
analyses of grouped data structures. The dependency of
intersubject data can be analyzed as a random effect.
The fixed effect (subject-independent effect) between
MD and ICP and/or CPP can then be evaluated. In
addition, an intrasubject data structure (such as strong
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correlations and dependency of near lying MD hours)
can be introduced. Linear mixed effects analyses were
performed with MD markers and ratios as explanatory
variables and ICP or CPP as predicted variables. Peri-
contusional and nonpericontusional data were analyzed
separately. Data from adjacent MD hours were, in con-
gruence with the autocorrelation analyses, highly corre-
lated (0.77 to 0.83) in all groups. In addition, these
analyses identified glucose and LG ratio as being signifi-
cantly related (P< 0.05) to both ICP and CPP in peri-
contusional locations, and LP ratio was found to be
significantly related to ICP in both the peri- and non-
pericontusional positions. There were no significant

correlations between MD and CPP in nonpericontu-
sional positions. However, despite these quoted signifi-
cance values, regression coefficients were small and
extreme changes of MD marker values predicted minor
changes in ICP and/or CPP, indicating a generally weak
association between MD and ICP and/or CPP.

In summary, these analyses also indicate that the cor-
relations between MD and ICP and/or CPP are weak
when taking into account the correlated nature of intra-
subject data. The main strength of correlation is shown,
again, to be related to subject data means. We identified
no apparent multivariate and/or nonlinear information
that appreciably strengthened correlations.
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Mean data analysis of MD vs. ICP and/or CPP

Regression analysis of mean (per subject) values of MD
markers vs. ICP and/or CPP was performed. Here signif-
icances were tested against the number of patients
(mean of each patient’s whole monitoring period)
instead of the number of MD samples.

The significance levels in these analyses mirrored
those of the mixed model analyses, and the strongest
relationships were found between ICP and glucose in
pericontusional tissue (+* = 0.16) and LP ratio in non-
pericontusional tissue (+* = 0.15). Multivariate regression
did not enhance 7* values. An automated search for

alternative cutoffs of ICP and CPP that could better
represent the data (stronger correlations) was per-
formed, but no other representation (hours or percen-
tages of monitoring under or over cutoffs) strengthened
correlations, as compared to hourly means.

Differenced and by-subject normalization of MD data vs.
ICP and/or CPP

The results presented so far strongly indicate that the
dominant processes affecting MD values follow an
appreciably longer time span than (the common) hourly
sampling. Differentiated (that is, A) values could possibly
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Table 3 Correlation coefficients of true vs. predicted
intracranial pressure (ICP), and cerebral perfusion
pressures (CPP), from a non-linear multivariate analysis
method (artificial neural networks)®

Pericontusional Nonpericontusional

ICP 0.165 = 0.013 0372 £ 0019
Permuted 0.129 £ 0016 0.265 £ 0.021

CPP 0.134 £ 0018 -0.143 £ 0.020
Permuted 0.059 £ 0.021 -0.111 £ 0.030

“ICP, intracranial pressure; CPP, cerebral perfusion pressure. Microdialysis
markers (glucose, lactate, pyruvate and glycerol) and ratios (LP ratio and LG
ratio) were used as explanatory variables predicting mean ICP/CPP (0 to 60
minutes prior to microdialysis (MD) sample time). In addition, correlations
were analyzed after randomly permuting (scrambling) MD data per subject in
relation to ICP/CPP to access what remained of correlations if no longer
serially related. Negative correlation (modeling positive prediction) is
interpreted as “even worse.” Data are presented as means + standard
deviation (SD). SD values represent the variation of artificial neural network
solutions from 200 separate runs with random initializations.

reveal associations of short-term effects of ICP and/or
CPP superimposed on longer trends of MD. Thus, dif-
ferentiated MD was analyzed toward ICP and/or CPP
and differentiated ICP and/or CPP. In these uni- and
multivariate analyses, significant changes were found for
CPP in pericontusional catheters, but no r* values were
greater than 0.002.

In contrast to absolute levels of MD, the particular
location of a MD catheter could exhibit a baseline char-
acteristic, and relative changes could be related to ICP
and/or CPP. MD was therefore analyzed toward ICP
and/or CPP after normalization (per-subject) of the
data. These analyses identified statistically significant
but weak multivariate correlations (maximum r* =
0.069) for ICP in nonpericontusional catheters. All other
analyses had * < 0.020 between MD and ICP and/or
CPP in both catheter locations.

In summary, the two methods exploring relative
changes and levels of MD in relation to ICP and/or CPP
indicate only weak associations.

MD, ICP and CPP vs. outcome

A reduction to mean values per subject the examination
of MD and ICP and/or CPP with respect to other global
(per-subject) parameters, such as outcome. There were
significant differences in subject means for CPP (P =
0.014) and ICP (P = 0.021) as related to GOS levels
(Figure 8). In contrast, there were no significant differ-
ences for any MD means, MD ratios or increased LP
ratios (hours or percentage of monitoring time) (P =
0.14 to 0.96) as compared to GOS score in the full data
set or in subgroups of peri- and nonpericontusional
catheters. Significant findings (P < 0.05) were unchanged
with both Kruskal-Wallis ranked and one-way ANOVA
analyses. Excluding the subject with only a discharge
GOS score did not alter significance values.
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Discussion

In this study comprising more than 7,350 hourly sam-
ples of complete MD sets from 90 patients, we have per-
formed an extensive search with several types of
statistical and computer-based linear and nonlinear pat-
tern recognition methods to explore the relationship
between ICP, CPP and the commonly used MD markers
in TBI monitoring. The main finding is that despite
much of the data indicating highly perturbed metabo-
lism, the relationships between MD and ICP and/or
CPP are weak. This suggests that factors other than
these pressure and/or surrogate flow variables may be
dominant causes of perturbations in the clinical TBI set-
ting. In contrast, intrasubject correlations (autocorrela-
tion) of MD are high for all MD parameters and ratios,
even up to 30 hours. In fact, these autocorrelations are
so extended in time that subject identities alone explain
52% to 75% of MD variable variance. This indicates that
the dominant patterns of MD seen in TBI (with the stu-
died variables) are protracted, reflecting processes that
change over days or longer. This leaves limited unex-
plained variance to be shared among other variables
that have been shown to affect MD values during moni-
toring, such as hyperventilation [26], meningitis [27],
temperature [28] and seizures [29]. Importantly, this
applies to catheters in both (CT-defined) pericontusional
and nonpericontusional locations. In contrast to long-
term associations of MD, short-term (differentiated)
associations of MD, though significant for CPP in peri-
contusional tissue, explain only up to 0.2% of variance.
These results may not be harmonious with the expecta-
tions of MD as a dynamic and interpretable online
monitor of ischemia and/or hypoxia in TBI. In addition,
a significant relation was found between CPP and/or
ICP and GOS score, but this could not be confirmed for
MD and GOS score.

MD is commonly sampled once per hour in the
NICU. The objective is to monitor short-term changes
and more long-term trends. Short-term changes have
focused primarily on potentially ischemic and/or
hypoxic interpretations of the data, where increased LP
ratios and low glucose have often been implicated as
being local ischemic and/or hypoxic metabolic responses
[1]. The traumatic border zone has been recognized as
distinctly different from the ischemic penumbra as well
as regionally heterogeneous [30-32]. The interpretation
of more long-term patterns of metabolic perturbation
have received less focus, but increased LP ratios have
also been linked to different causes of altered oxygen
utilization in TBI, as opposed to oxygen delivery. These
include oxygen diffusion barriers [16], mitochondrial
dysfunction [15,33] and increased metabolism of glucose
[34]. In addition, irreversibly damaged (posthypoxic) but
reperfused regions may also display extended periods
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Figure 8 Glasgow Outcome Scale (GOS) score vs. cerebral perfusion pressure (CPP) and intracranial pressure (ICP). Significant
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with MD of ischemic and/or hypoxic character [35].
Alternative interpretations of lactate, pyruvate and LP
ratios in TBI have therefore been postulated [11], and
more complex supply-and-demand relations of these
parameters under nonischemic conditions have also
been identified [36]. Moreover, MD may also be influ-
enced by static parameters such as catheter placement
in gray or white matter [37], genetics [38] and patient
sex [39]. Our study strongly indicates that the dominant
information content in MD of TBI patients are that of
long-term patterns, which is reflected in the strong
autocorrelations, and that MD can so highly be
explained by subject identities. This includes the LP
ratio, which is also seen to be highly autocorrelated.
The significant but weak cross-correlations between MD
and ICP and/or CPP are also seen to be predominantly
caused by long-term perturbations, as the correlations
are largely unaffected by how subject MD data hours
are serially related to ICP and/or CPP hours. In
addition, the MD response to CPP and/or ICP changes
is variable even in ranges that are by consensus consid-
ered unsafe. This may lead clinicians to question the
current value of hourly sampling of MD in clinical TBI
monitoring in the absence of known cause-and-effect

relationships and points to a need for more reliable
interpretations of pathological values for clinical use.
We suspect that to differentiate patterns displaying simi-
lar levels, and possibly with different etiologies, one
needs also to better include temporal relations of MD
patterns.

The effect of CPP and/or ICP on local and global
blood flow in TBI is complex [9], and the effects on MD
have been found to be variable. Extreme ranges of ICP
and/or CPP have been shown to have predictable effects
on regional MD [7], and Nordstrom et al. [8] identified
MD changes related to CPP < 50 mmHg and > 70
mmHg. In contrast, CPP augmentation has been shown
to increase cerebral blood flow with positron emission
tomography (PET), but not to translate to predictable
changes in regional chemistry as seen with MD [40]. In
addition, increased LP ratios in pericontusional tissue
have been shown to be independent of CPP [20]. Our
study distinguishes long-term from short-term relation-
ships between MD and ICP and/or CPP. We have used
multiple analytical techniques to assess our data, and
the findings are in basic congruence. Despite a weak
correlation, CPP is found to be related to MD exclu-
sively in pericontusional tissue, whereas ICP is related
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to MD in both peri- and nonpericontusional tissues. In
contrast to long-term relations, differentiated short-term
values were exclusively related to CPP in pericontusional
locations, but with < 0.2% explained variance. Moreover,
we cannot confirm the findings of Belli et al. [41], who
found that increased LP ratios preceded increased ICP.
Multivariate analyses in our study also suggest that the
composite strongest association is found between MD
and ICP in nonpericontusional data, which is reasonable
as this catheter placement may represent a more global
monitor. Glucose is identified as the most dynamic mar-
ker and is least autocorrelated. In the aggregate, we can
identify several expected and previously known relations
between CPP and/or ICP and MD, but we conclude that
the explained variance is such that MD perturbations
must have other main causes.

A few studies have related MD to GOS score. Patient
outcome was earlier been found to be related to high
MD potassium [42], increased lactate and low glucose
[43], persistent low glucose [44,45] and increased gluta-
mate [46,47] levels, but variable for glycerol [48,49].
Recently, N-acetylaspartate sampled by MD has also
been implicated as a marker of outcome [50]. That MD
is so highly subject-related motivates comparisons of
mean (per subject) MD and GOS score. We found that
GOS score was significantly related to CPP and ICP, but
not to any separate MD marker level (glucose, lactate,
pyruvate, or glycerol) or MD ratio. This indicates that
the extremely local nature of this monitoring method
may portray information that does not necessarily trans-
late to a total patient situation.

Consequently, to our knowledge, there exists no cur-
rent interpretation of absolute, relative or trend data of
the current common MD variables that can be strongly
and consistently related to explanatory variables, such
that it lends evident support to clinical decision-making,
a prerequisite for any monitoring system. In addition,
although the distinction of peri- and nonpericontusional
catheter locations appears to provide different informa-
tion, possibly on the basis of different metabolic pro-
cesses, the identification of pericontusional tissue may
be uncertain on CT scans [31]. Using MD as an alert
signal (toward normality-good or away from normality-
bad) [11] appears logical but must be accompanied by
identifiable cause-and-effect relations on the basis of
which to steer interventions. As yet, this information is,
to our knowledge, lacking for MD.

A potential weakness of the study is that the care-
givers were not blinded to the MD data. During periods
when MD displayed possible true ICP and/or CPP
dependencies, these have been identified and acted on.
We do not believe this to be the case, as doctors’
responses to pathological MD values vary greatly. More-
over, no standardized treatment algorithms were
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suggested during this study or in the literature. In addi-
tion, resistance governs the relation between CPP and
flow. This is affected by autoregulation, which we have
no measure of globally or locally. An additional weak-
ness is that we have no direct measure of tissue hypoxia
with which to validate the absence or presence of such
in relation to MD values. A further weakness is that we
have not related MD to interventions such as ventricular
drainage of CSF, additional increase of CPP, Pentothal
infusions or decompressive craniotomies. Therefore, we
cannot exclude that such measures could have had an
impact on MD in our study.

Conclusions

In this study we have used extensive data mining
employing linear and nonlinear techniques to establish
the relationship between MD and ICP and/or CPP,
parameters that are expected to affect local blood flow
and thus, to some extent, oxygen delivery. Our results
indicate that, despite much data indicating highly per-
turbed metabolism, MD shows little correlation to ICP
and CPP within the constraints of these parameters in
the NICU. In addition, ICP or CPP predictions were not
meaningfully improved when catheters were placed in
CT-defined pericontusional locations versus nonpericon-
tusional catheters. In contrast, MD is strongly autocor-
related, and variance is highly explained by intrasubject
data correlations, indicating that the dominant processes
followed with MD in TBI are long-term over a period of
days. In addition, short-term changes of MD are seen to
exhibit extremely weak associations with ICP and/or
CPP. For MD to find a clear place in clinical TBI moni-
toring, it is essential that we establish a better under-
standing of the causes for long-term metabolic
perturbations, and seek additional dynamic markers of
tissue distress [21,50,51]. More studies relating local
MD and MD changes to other measures of tissue
hypoxia, such as local brain tissue oxygenation monitor-
ing and PET are needed. Cerebral microdialysis remains
as yet the only way to repeatedly sample local one-line
extracellular brain chemistry and is as such an impor-
tant tool in TBI research.
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