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Mitochondrial oxidative stress drives tumor
progression and metastasis: should we use
antioxidants as a key component of cancer
treatment and prevention?
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Abstract

The functional role of oxidative stress in cancer
pathogenesis has long been a hotly debated topic. A
study published this month in BMC Cancer by Goh et
al., directly addresses this issue by using a molecular
genetic approach, via an established mouse animal
model of human breast cancer. More specifically,
alleviation of mitochondrial oxidative stress, via
transgenic over-expression of catalase (an anti-oxidant
enzyme) targeted to mitochondria, was sufficient to
lower tumor grade (from high-to-low) and to
dramatically reduce metastatic tumor burden by >12-
fold. Here, we discuss these new findings and place
them in the context of several other recent studies
showing that oxidative stress directly contributes to
tumor progression and metastasis. These results have
important clinical and translational significance, as
most current chemo-therapeutic agents and radiation
therapy increase oxidative stress, and, therefore, could
help drive tumor recurrence and metastasis. Similarly,
chemo- and radiation-therapy both increase the risk
for developing a secondary malignancy, such as
leukemia and/or lymphoma. To effectively reduce
mitochondrial oxidative stress, medical oncologists
should now re-consider the use of powerful anti-
oxidants as a key component of patient therapy and
cancer prevention.
Please see related research article: http://www.
biomedcentral.com/1471-2407/11/191

Introduction
Mitochondrial oxidative stress has long been implicated
in normal aging, and a host of human diseases, includ-
ing cancer and neurodegenerative disorders, such as
Alzheimer’s disease. In support of this idea, vegetarians,
who consume a diet rich in anti-oxidants, have reduced
rates of cancer incidence, have longer life expectancies,
and suffer less from dementia [1-3].
Similarly, breast cancer patients taking anti-oxidants

showed reduced rates of recurrence, as well as less risk
of mortality [4]. In fact, N-acetyl-cysteine (NAC), a
powerful anti-oxidant, has anti-tumor properties, and
has been recommended for melanoma chemo-preven-
tion [5]. Finally, metformin therapy, a powerful anti-oxi-
dant which reduces reactive oxygen species (ROS)
production from mitochondrial complex I, has been
associated with a lower risk of various epithelial cancers,
in more than 11 studies [6,7].
A simple PubMed search reveals that nearly 9,000

articles have been published linking oxidative stress with
cancer pathogenesis. Thus, it is surprising that anti-oxi-
dants are not routinely used as a component of cancer
therapy and prevention.

Genetic reduction of mitochondrial oxidative
stress reduces tumor grade and inhibits
metastasis
This month in BMC Cancer, Goh and colleagues [8] use
an established mouse model of breast cancer tumor for-
mation and metastasis (MMTV-PyMT) to explore the
role of mitochondrial oxidative stress in cancer patho-
genesis. To reduce mitochondrial oxidative stress, they
targeted a powerful anti-oxidant protein (catalase; which
inactivates hydrogen peroxide) to mitochondria. This
was achieved by modifying catalase with the addition of
an N-terminal mitochondrial targeting signal and the
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deletion of a C-terminal peroxisome targeting sequence.
Transgenic mice harboring mito-catalase have been pre-
viously shown to have an extended lifespan, consistent
with the idea that mitochondrial oxidative stress directly
contributes to normal aging [9].
Remarkably, MMTV-PyMT mice expressing mito-cat-

alase showed a significant reduction in tumor grade
(from high-grade to low-grade), and a dramatic reduc-
tion in lung metastatic tumor burden (>12-fold). Thus,
it appears that genetic reductions in mitochondrial oxi-
dative stress prevent i) normal aging, as well as ii)
tumor progression, and iii) metastasis. Regardless of the
exact mechanism, their results suggest that we should
be treating cancer patients with powerful anti-oxidants,
as a form of chemotherapy (either alone or following
other therapies).
Previous studies evaluating the use of anti-oxidants in

breast cancer patients have shown mixed results
[4,10,11]. However, this may be because some studies
are population-based without standardized treatments
and/or only certain subtypes of breast cancer are sensi-
tive to anti-oxidants. For example, breast cancers with a
loss of stromal caveolin-1 (Cav-1) generate higher levels
of reactive oxygen species (ROS) [12-14], as compared
to breast cancers expressing high levels of stromal Cav-
1. Loss of stromal Cav-1 is predictive of recurrence,
metastasis, and poor clinical outcome, and as such is a
new biomarker for breast and prostate cancer [15,16].

How does mitochondrial oxidative stress drive
tumor growth and metastasis?
What are the possible mechanism(s) by which mitochon-
drial oxidative stress contributes to tumor initiation and
progression? Since the transgenic over-expression of
“mitochondrial” catalase in these experiments is targeted
to the whole body, it remains unknown whether the find-
ings of Goh et al. [8] are related to reductions in oxida-
tive stress in epithelial cancer cells, in the surrounding
stromal cells, or in both cellular compartments.
One possibility is that mitochondrial oxidative stress

in epithelial cancer cells leads to ROS production and
ensuing DNA damage, resulting in an increased muta-
tion rate and tumor evolution, via the positive selection
of tumor cell mutations that confer a growth advantage
(Figure 1). In support of this notion, there is substantial
evidence that another anti-oxidant enzyme, namely
mitochondrial SOD2 (which de-activates super-oxide),
behaves as a potent tumor suppressor protein [17-19].
Another possibility is that mitochondrial oxidative

stress in tumor stromal cells, such as cancer associated
fibroblasts, may have genetic and metabolic conse-
quences that promote tumor growth (Figure 1).
In fact, MMTV-PyMT mice require an activated

tumor stroma for the development of metastasis. Cross-

talk between macrophages and epithelial cells via CSF-1
and EGF ligands is needed for progression [20]. Simi-
larly, activation of their fibroblastic stroma by deletion
of the Cav-1 gene (thereby increasing oxidative stress
[12]) significantly promotes lung metastasis (>4-fold) in
MMTV-PyMT mice [21,22].
More recent studies have shown that cancer cells

induce oxidative stress in adjacent stromal fibroblasts,
thereby conferring the cancer associated fibroblast phe-
notype [12,23]. Oxidative stress (due to ROS over-pro-
duction) in cancer associated fibroblasts then leads to
genetic instability in adjacent cancer cells (DNA damage
and aneuploidy) via a “bystander effect”, driving tumor-
stroma co-evolution [12]. ROS over-production in can-
cer associated fibroblasts also drives the onset of autop-
hagy and mitophagy in these cells, resulting in aerobic
glycolysis, with lactate and ketone production (the
“Reverse Warburg Effect”) [14]. Energy-rich metabolites
(lactate, pyruvate, ketones, and glutamine) are then
transferred to “hungry” cancer cells, promoting mito-
chondrial biogenesis and anabolic growth in these
tumor cells [24]. This event, in turn, promotes tumor
growth and protects these cancer cells against apoptosis
[12-14]. This new model of tumorigenesis has been
termed “The Autophagic Tumor Stroma Model of Can-
cer Metabolism” [25,26]. The in vivo relevance of this
model for breast and prostate cancer has been con-
firmed using the new biomarker Cav-1 [15,16,27]. When
stromal Cav-1 is lost in cancer associated fibroblasts
(due to the onset of oxidative stress, hypoxia, and/or
autophagy) [12-14,28,29], this is highly predictive of
tumor recurrence, metastasis, and drug-resistance [15].
For example, triple negative breast cancer patients with
high stromal Cav-1 have a 12-year survival rate of >75%
[30]. In contrast, triple negative breast cancer patients
with a loss of stromal Cav-1 have a five-year survival
rate of < 10% [30].
The association between loss of stromal Cav-1 and

oxidative stress in the tumor stroma has also been con-
firmed by transcriptional profiling and bears a striking
resemblance to the gene expression profiles of Alzhei-
mer’s disease (which is also directly linked to oxidative
stress) [31,32]. In fact, when the gene profile of Alzhei-
mer’s disease brain was intersected with the transcrip-
tional profiles from the tumor stroma of patients with
breast cancer, this was sufficient to identify which breast
cancer patients would undergo metastasis [32]. Thus,
oxidative stress is common to both of these biological
processes (cancer and neuro-degeneration), and may
underlie their pathogenesis [31,32].
In order to further test the validity of this model and

its dependence on mitochondrial oxidative stress,
Capozza, Lisanti, and colleagues over-expressed mito-
chondrial SOD2 in cancer associated fibroblasts [33]. As
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predicted, over-expression of mitochondrial SOD2 in
cancer associated fibroblasts was indeed sufficient to
inhibit tumor growth by nearly two-fold [33]. These
results indicate that mitochondrial SOD2 also behaves
as a tumor suppressor in the stromal microenvironment
[33]. Importantly, cytoplasmic SOD1 was ineffective in
this stromal context, supporting a specific role for mito-
chondrial oxidative stress.
Similarly, oxidative stress is known to be sufficient to

convert normal fibroblasts to myo-fibroblasts or cancer
associated fibroblasts, via activation of two key tran-
scription factors, namely HIF1-alpha and NFkB
[12,14,34-36]. Thus, one way to genetically pheno-copy
the effects of oxidative stress is to over-express activated
forms of HIF1-alpha or NFkB [34]. As such, fibroblasts
expressing activated HIF1-alpha or NFkB are sufficient

to promote tumor growth, up to three-fold [34].
Furthermore, activation of HIF-alpha or NFkB in fibro-
blasts drives a loss of stromal Cav-1 via lysosomal
degradation, and activates the autophagic program
resulting in mitophagy, a shift towards aerobic glycoly-
sis, and lactate production [34]. Fibroblasts harboring
activated HIF1-alpha or NFkB, then provide lactate and
other recycled nutrients to feed cancer cells [34].
Additional lines of evidence also support the idea that

oxidative stress in the tumor stroma plays a key role in
cancer pathogenesis and tumor spreading. For example,
there are numerous papers directly showing that local
or systemic administration of purified anti-oxidant pro-
teins (that is, catalase or SOD) is sufficient to block
tumor recurrence and distant metastasis in multiple
cancer models [37-39].
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Figure 1 Tumor evolution is fueled by mitochondrial oxidative stress. The experiments by Goh et al. directly show that blocking
mitochondrial ROS inhibits metastasis, indicating that mitochondrial oxidative stress promotes tumor progression and metastasis. The observed
effects most likely involve the effects of ROS on both cancer cells and their surrounding tumor stroma. Cellular processes activated by ROS
include DNA damage, autophagy/mitophagy, and aerobic glycolysis. Complementary studies have shown that ROS-induced activation of
autophagy and aerobic glycolysis in cancer associated fibroblasts provide recycled nutrients (pyruvate, lactate, ketones, and glutamine, among
others) for anabolic cancer cell growth, and protects these cancer cells against apoptosis. Importantly, anti-oxidants will prevent the oxidative
stress, reducing tumor progression and metastasis. NAC, N-acetyl-cysteine; SOD2, mitochondrial superoxide dismutase; M-catalase,
mitochondrially targeted catalase.
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Conclusions
In order to maximize treatment benefits, we will need to
develop new biomarkers (like stromal Cav-1) to predict
which cancer patients will respond best to anti-oxidant
therapy. Unfortunately, most medical oncologists now
recommend against taking anti-oxidants during cancer
therapy, as it “may reduce the effectiveness of che-
motherapies”, which are largely based on increasing oxi-
dative stress [4]. However, in direct contradiction of this
recommendation, a recent breast cancer study directly
shows that anti-oxidant therapy significantly reduces
breast cancer recurrence and mortality [4].
Thus, reductions in mitochondrial oxidative stress in

both cancer cells and their surrounding tumor stroma
may be beneficial for preventing tumor progression and
metastasis. Ultimately, this “new concept” could radically
change how we treat cancer patients, and stimulate new
anti-oxidant strategies for cancer prevention.
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