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Improved survival among colon cancer patients
with increased differentially expressed pathways
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Abstract

Background: Studies of colorectal cancer (CRC) have shown that hundreds to thousands of genes are differentially
expressed in tumors when compared to normal tissue samples. In this study, we evaluate how genes that are
differentially expressed in colon versus normal tissue influence survival.

Methods: We performed RNA-seq on tumor/normal paired samples from 175 colon cancer patients. We
implemented a cross validation strategy to determine genes that were significantly differentially expressed between
tumor and normal samples. Differentially expressed genes were evaluated with Ingenuity Pathway Analysis to
identify key pathways that were de-regulated. A summary differential pathway expression score (DPES) was
developed to summarize hazard of dying while adjusting for age, American Joint Committee on Cancer (AJCC)
stage, sex, and tumor molecular phenotype, i.e., MSI, TP53, KRAS, and CIMP.

Results: A total of 1,138 genes were up-regulated and 695 were down-regulated. These de-regulated genes were
enriched for 19 Ingenuity Canonical Pathways, with the most significant pathways involving cell signaling and
growth. Of the enriched pathways, 16 were significantly associated with CRC-specific mortality, including 1
metabolic pathway and 15 signaling pathways. In all instances, having a higher DPES (i.e., more de-regulated genes)
was associated with better survival. Further assessment showed that individuals diagnosed at AJCC Stage 1 had
more de-regulated genes than individuals diagnosed at AJCC Stage 4.

Conclusions: Our data suggest that having more de-regulated pathways is associated with a good prognosis and
may be a reaction to key events that are disabling to tumor progression.

Please see related article: http://dx.doi.org/10.1186/s12916-015-0307-6.
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Background
Cancer is a multifaceted disease, characterized by dys-
regulation of multiple genes in multiple pathways. Gene
expression studies have demonstrated the extent to
which genes are altered in tumors. Studies of colorectal
cancer (CRC) have shown that hundreds to thousands of
genes are differentially expressed in tumors when com-
pared to normal tissue samples [1]. While gene expres-
sion studies are limited in their ability to distinguish the
importance of individual genes that are differentially
expressed in tumors; assessment of unique features of
these genes and their associated pathways has shed light
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on important molecular differences between tumors.
Studies have used gene expression data to classify tumor
phenotypes as well as evaluate tumors with microsatellite
instability [2-4]. Nannini et al. [5] summarized the utility
of gene expression profiling into three categories: mo-
lecular diagnosis and disease classification; molecular
characterization, including molecular staging, treatment
prediction, and prognosis prediction; and target discov-
ery that can lead to new treatment options.
In this study, we perform gene expression analysis

with the goal of molecular characterization and progno-
sis prediction focused on identifying molecular pathways
that are associated with outcome.
Our analysis takes a pathway approach with the goal

of improving our knowledge of molecular diagnosis and
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prognosis prediction. We classify genes that are signifi-
cantly differentially expressed into pathways relevant to
the carcinogenic process for colon cancer. We evaluate
the impact of these significant pathways on survival and
disease stage. We believe that our sequential analytic ap-
proach will provide insight into the carcinogenic process
and provide a better understanding of the biological sig-
nificance of these pathways in colon cancer as well as
insight into therapeutic possibilities.

Methods
We used RNA from 175 tumor and normal pairs who
were part of the Diet, Activity, and Lifestyle study, which
is an incident, population-based, case-control study of
colon cancer conducted in Utah, the Kaiser Permanente
Medical Research Program (KPMRP), and the Twin
Cities Metropolitan area. Normal tissue was taken from
tissue adjacent to the tumor and was determined to be
free of any tumor cells by the study pathologist. Tumor
and non-tumor colonic tissue (subsequently referred to
this as ‘normal’) for RNA extraction were available from
the Utah and KPMRP sites. Cases had to have tumor
registry verification of a first primary adenocarcinoma of
the colon and diagnosed between October 1991 and
September 1994. Tumor tissue was obtained for 97% of
all Utah cases diagnosed and for 85% of all KPMRP
study participants [6], including those who signed in-
formed consent and those retrieved by local tumor regis-
tries and sent to study investigators without personal
identifiers. The study was approved by the Institutional
Review Board of the University of Utah and at KPMRP.
We have previously assessed these tumor samples for

Tumor protein p53 (TP53) and KRAS mutations, the
CpG island methylator phenotype (CIMP) using the
classic panel [7], and MSI based on the mononucleotides
BAT26 and TGFβRII and a panel of 10 tetranucleotide
repeats that were correlated highly with the Bethesda
Panel [8]; our study was carried out prior to the Be-
thesda Panel development. We consider tumor molecu-
lar phenotype in our evaluation of survival since we have
shown their association with survival [9,10]. Samples
were selected to maximize numbers based on tumor
molecular phenotype or TP53, KRAS, CIMP, and MSI
tumor status.

RNA processing
RNA was extracted from formalin-fixed paraffin-embedded
tissues. We assessed slides and tumor blocks that were
prepared over the duration of the study prior to the time
of RNA isolation to determine their suitability. Older
slides produced comparable RNA quality as more recent
slides; RNA quality was not correlated with time lapse be-
tween slide preparation and mRNA preparation. The
study pathologist reviewed slides to delineate cancer and
normal tissue. Cells were dissected from 1 to 4 sequential
sections on aniline blue stained slides using a hematoxylin
and eosin slide for reference. Total RNA was extracted,
isolated, and purified using the RecoverAll Total Nucleic
Acid isolation kit (Ambion). RNA yields were determined
using a NanoDrop spectrophotometer.

Sequencing library preparation
Library construction was performed using the Illumina
TruSeq Stranded Total RNA Sample Preparation Kit
with Ribo-Zero. Briefly, ribosomal RNA was removed
from 100 ng total RNA using biotinylated Ribo-Zero oli-
gos attached to magnetic beads that are complimentary
to cytoplasmic rRNA. Following purification, the rRNA-
depleted sample is fragmented with divalent cations un-
der elevated temperatures and primed with random hex-
amers in preparation for cDNA synthesis. First strand
reverse transcription is accomplished using Superscript
II Reverse Transcriptase (Invitrogen). Second strand
cDNA synthesis is accomplished using DNA polymerase
I and Rnase H under conditions in which dUTP is
substituted for dTTP, yielding blunt-ended cDNA frag-
ments in which the second strand contains dUTP. An
A-base is added to the blunt ends as a means to prepare
the cDNA fragments for adapter ligation and block
concatemer formation during the ligation step. Adapters
containing a T-base overhang were ligated to the A-tailed
DNA fragments. Ligated fragments were PCR-amplified
(13 cycles) under conditions in which the PCR reaction
enables amplification of the first strand cDNA product,
whereas attempted amplification of the second strand
product stalls at dUTP bases and is therefore not repre-
sented in the amplified library. The PCR-amplified li-
brary was purified using Agencourt AMPure XP beads
(Beckman Coulter Genomics). The concentration of the
amplified library was measured with a NanoDrop spec-
trophotometer and an aliquot of the library was re-
solved on an Agilent 2200 Tape Station to define the
size distribution of the sequencing library.

Sequencing and data processing
Sequencing libraries (18 pM) were chemically denatured
and applied to an Illumina TruSeq v3 single read flow
cell using an Illumina cBot. Hybridized molecules were
clonally amplified and annealed to sequencing primers
with reagents from an Illumina TruSeq SR Cluster Kit
v3-cBot-HS. Following transfer of the flowcell to an Illu-
mina HiSeq instrument, a 50 cycle single-read sequence
run was performed using TruSeq SBS v3 sequencing re-
agents. The single-end 50-base reads from the Illumina
HiSeq2500 were aligned to a sequence database contain-
ing the human genome chromosomes (build GRCh37/
hg19, February 2009, from UCSC Genome Bioinformatics
[11]) plus all splice junctions generated using the USeq
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MakeTranscriptome application (version 8.8.1, [12]).
Alignment was performed using Novoalign (version
2.08.01, [13]), which also trimmed any adapter se-
quence. Following alignment, genome alignments to
splice junctions were translated back to genomic co-
ordinates using the USeq SamTranscriptomeParser ap-
plication. The resulting alignments were sorted and
indexed using the Picard SortSam application (version
1.100, [14]). Aligned read counts for each gene were
calculated using the pysam [15] and SAMtools [16]. A
python script using the pysam library was given a list
of the genome coordinates for each gene, and counts
to the exons and UTRs of those genes were calculated.
Gene coordinates were downloaded from the UCSC
Genome Bioinformatics website [11].
Our data were compared to 51,041 molecular features

in the gene table. Of these, 33,876 were excluded be-
cause of low to no expression in colon tissue or because
they were non-coding or had no known function. We
used the BioMart tool on the Ensembl website [17], to
create a list of known regions linked to protein-coding
genes from the human GRCh38 gene annotation dataset.
We included the 17,165 features on 17,141 genes in-
volved in protein coding for data analysis.
Statistical methods
Of the 197 initial tumor/normal pairs, 5 subjects failed
quality control based on the low number of sequence
counts for both tumor and normal, and 17 were dropped
because either the normal or tumor pair failed quality
control, leaving 175 subjects with high quality data for
inclusion in the analysis. From this pool of subjects, we
randomly assigned people to group “A” or “B” to cross-
validate findings pertaining to differentially expressed
genes. To prevent biasing the data towards those genes
differentially expressed among people who were alive
since our population had more alive individuals than
those who had died, we used balanced groups of people
who died and matched people who were alive to those
who died based on age category and sex. To assess dif-
ferences in overall tumor vs. normal tissue expression
level, we performed a paired comparison, resampling the
data 20 times, and permuting the data 1,000 times using
the program SAMseq implemented in the ‘samr’ package
of R [18] for each group [19,20]. Fold-change was calcu-
lated as the ratio of the means of tumor expression to
the means of normal expression. Further bioinformatics
analysis and survival and stage analysis included the en-
tire sample of eligible participants, analyzing only those
features that were significantly differentially expressed in
both groups A and B with a P <0.05 and over a two-fold
change in expression level between normal and tumor
tissue.
Bioinformatics analysis was performed on the list of
Ensemble IDs found to be significantly differentially
expressed between tumor and normal tissue at a P value
of <0.05 with a two-fold change in both Group A and
Group B. Our goal in the bioinformatics analysis was to
identify key pathways that were deregulated in colon
cancer and assess the potential impact of those pathways
on survival. We utilized QIAGEN’s Ingenuity Pathway
Analysis (IPA) [21] with the following criteria: A total of
1,138 unregulated features and 695 down-regulated fea-
ture Ensembl IDs were uploaded to IPA, and all but five
were successfully mapped to Ingenuity. The five un-
mapped IDs were: ENSG00000184682, ENSG0000021
4999, ENSG00000251184, ENSG00000244255, ENSG
00000167046; the first two IDs are for genes that were
down-regulated and the last three are IDs for genes that
were up-regulated. The IPA settings were as follows for
General Settings: only genes from Ingenuity Knowledge
Base were used, and both indirect and direct relation-
ships were considered; for Network: both causal and
interaction networks were included, for Interaction we
included endogenous chemicals and we used the defaults
set by Ingenuity, 35 molecules per network and 25 net-
works per analysis; for Data Sources: all data sources
were used; for Confidence: only experimentally observed
relationships were considered; for Species: all species
were included; for Tissue: no specific tissue was selected;
for Mutations: all mutations were included. For Species
and Tissue selections, the ‘stringent filter’ option was se-
lected. For the Canonical Pathways Analysis the selected
scoring method was the B-H Multiple Testing Correc-
tion P value and for this method all pathways that score
between 0 and 6.47 are displayed.
Genes that were significantly differentially expressed

were grouped into pathways based on IPA summary
data. This involved several steps. First, individuals were
given a score for each differentially expressed gene de-
pending on their level of differential expression: 1 was
assigned to individuals in the bottom quartile of the
distribution of differential expression (i.e., closer to nor-
mal), 2 was assigned to individuals whose differential
expression for the gene was between the 25th and 75th

percentile of the population differential expression, and
3 was assigned to those whose tumors were in the top
(>75th percentile) level of differential expression. Next,
individual differential gene expression scores (DGES)
were summed to obtain a differential pathway expression
score (DPES) for genes in the pathways that were statis-
tically significant after adjusting for multiple compari-
sons as described by Benjamini and Hochberg [22]. A
higher DPES correlates with more genes being differen-
tially expressed. DPES were categorized into tertiles for
survival analysis using a Cox Proportional Hazard mo-
del, adjusting for age, sex, American Joint Committee on
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Cancer (AJCC) stage, and tumor molecular phenotype
(TP53, KRAS, MSI, and CIMP) using SAS 9.4 (SAS
Institute, Cary, NC, USA). We report hazard ratios
(HR) and 95% confidence intervals (CI) associated with
survival. Survival data were obtained from local tumor
registries and reported as months survived from date
of diagnosis to date of last contact or lost to follow-up.
We report HR associated with CRC death where other
causes of death were censored. Similar categories were
used to evaluate mean DPES expression levels across
AJCC stages of 1 through 4.

Results
We analyzed gene expression in tumor/normal paired
samples from 175 colon cancer patients using RNA-seq.
Of these tumors, 47.9% were proximal and 52.1% were
distal colon and were similar for both Group A and B
(Table 1). Evaluation of tumor molecular phenotype
Table 1 Description of the study population

Total population Group A1 Group B

n % n % n %

Sex Male 94 53.7 18 48.6 14 34.1

Female 81 46.3 19 51.4 27 65.9

Center Kaiser 106 60.6 22 59.5 23 56.1

Utah 69 39.4 15 40.5 18 43.9

Site Proximal 78 47.9 16 45.7 21 53.8

Distal 85 52.2 19 54.3 18 46.2

Vital status Alive 104 59.4 15 40.5 24 58.5

CRC death 39 22.3 22 59.5 17 41.5

Other death 17 9.7

Unknown 15 8.6

AJCC stage 1 40 23.0 6 16.2 8 19.5

2 56 32.2 9 24.3 14 34.1

3 57 32.8 15 40.5 9 22.0

4 21 12.1 7 18.9 10 24.4

TP53 Non-mutated 98 56.0 22 59.5 26 63.4

Mutated 77 44.0 15 40.5 15 36.6

KRAS Non-mutated 127 72.6 26 70.3 31 75.6

Mutated 48 27.4 11 29.7 10 24.4

MSI Stable 143 81.7 30 81.1 33 80.5

Unstable 32 18.3 7 18.9 8 19.5

CIMP Low 130 74.3 27 73.0 27 65.9

High 45 25.7 10 27.0 14 34.1

Mean STD Mean STD Mean STD

Age 65.2 10.2 64.8 10.9 63.2 11.3
1Groups A and B were randomly selected to determine differentially expressed
genes for further analysis.
AJCC, American Joint Committee on Cancer; CIMP, CpG island methylator
phenotype; MSI, Microsatellite instability; STD, Standard deviation.
showed that 25.7% were CIMP high, 18.3% were MSI,
27.4% were KRAS mutated, and 44% were TP53 mu-
tated. The average age of the study participants included
in these analysis was 65.2 years. Groups A and B were
used to determine if significant differentially expressed
genes were similar for most variables.
Of the 17,141 genes evaluated, using the parameter of

two-fold change in addition to a P <0.05 for both
groups, 1,138 were significantly up-regulated and 695
were significantly down-regulated between tumor and
normal tissue. Of the 1,833 genes identified as having
significant differential expression, 1,567 were linked to
Cancer, while 1,290 were linked to Gastrointestinal Dis-
eases in IPA. The main molecular and cellular functions
that these genes contributed to were cellular growth and
proliferation (715 genes with gene enrichment P values
of 1.89 × 10-43 to 2.01 × 10-05), cell death and survival
(632 genes with gene enrichment P values from 5.39 ×
10-33 to 20.4 × 10-05), cell cycle (316 genes with enrich-
ment P values from 6.25 × 10-26 to 2.19 × 10-05), cellu-
lar movement (415 genes with enrichment P values of
1.51 × 10-21 to 2.22 × 10-05), and cellular assembly and
organization (275 genes with enrichment P values of
2.79 × 10-20 to 7.75 × 10-06). Additional file 1 has a
complete list of differentially expressed genes analyzed
and their level of expression.
We also linked these genes to major canonical path-

ways in IPA, summarized in Figure 1; green refers to
down-regulated genes and red to up-regulated genes
within the pathway. Our significant differentially ex-
pressed genes were significantly enriched in 30 pathways
(Additional file 2 shows genes in our data that were as-
sociated with these pathways). For the most part, the
pathways with the majority of genes being significantly
down-regulated were in metabolic pathways (Thyroid Hor-
mone Metabolism, Malatonin Degredation I, Seratonin
Degradation, Superpathway of Melatonin Degradiation,
and Nicotine Degradation III and II). The other two meta-
bolic pathways, Superpathway of Serine and Glycine Bio-
synthesis and Purine Nucleotides De Novo Biosynthesis,
were only up-regulated. The other 22 pathways that were
differentially expressed were signaling pathways, where
the majority of genes were up-regulated. Exceptions to
this were Complement System and Eicosanoid Signaling
where the majority of de-regulated genes were down-
regulated.
In order to analyze a pathway’s prognostic value, we

constructed a DPES that captures the extent to which a
pathway is de-regulated in a given individual. Evaluation
of DPES with CRC-specific mortality showed significant
reduced mortality as the number of differentially ex-
pressed genes increased for several signaling pathways
(Table 2). Of the pathways significantly enriched for
genes that were differentially expressed between tumor



Figure 1 Significant canonical pathways identified from IPA. The pathways were statistically significant at the 0.05 level after adjustment for
multiple comparisons. (a) Metabolic pathway. (b) Signaling pathway.
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and normal tissue in our data, 16 were significantly asso-
ciated with CRC-specific mortality. One of these, Purine
Nucleotides de Novo Biosynthesis II was a metabolic
pathway that was up-regulated, while the other 15 were
signaling pathways. In all instances, a higher DPES (T3)
was associated with better survival. Similar associations
were observed when looking at expression in tumors only.
Additional file 3: Figures S1, Additional file 4: Figure S2,
and Additional file 5: Figure S3 show Kaplan-Meier curves
for the first three pathways listed in Table 2.
We further assessed mean levels of DPES by stage

(Table 3) and observed that those diagnosed at AJCC
Stage 1 had more differentially expressed genes than in-
dividuals who were diagnosed at AJCC Stage 4. This
trend was present for most pathways, although the ma-
jority did not reach statistical significance, which may be
indicative of limited power from the few individuals with
an AJCC Stage 4 tumor.
To help interpret these results, we assessed upstream

regulators using IPA. The top upstream of molecules as-
sociated with the de-regulated genes in our data were
TGFB1 (P = 8.14 × 10-46), beta-estradiol (P = 1.21 × 10-41),
TP53 (P = 1.90 × 10-38), CDKN1A (P = 1.41 × 10-37), and
MYC (P = 4.59 × 10-36) (Table 4). It is interesting to note



Table 2 Associations between the differential gene expression score and colorectal cancer-specific mortality

Pathways T1 HR1 (referent) T2 HR1 (95% CI) T3 HR1 (95% CI)

Cell Cycle Control of Chromosomal Replication 1.00 0.36 (0.17, 0.77) 0.37 (0.16, 0.87)

Estrogen-mediated S-phase Entry 1.00 0.38 (0.18, 0.81) 0.35 (0.15, 0.81)

Thyroid Hormone Metabolism II 1.00 1.26 (0.57, 2.78) 1.60 (0.71, 3.63)

Hepatic Fibrosis / Hepatic Stellate Cell Activation 1.00 0.73 (0.33, 1.58) 0.75 (0.34, 1.65)

Cell Cycle: G1/S Checkpoint Regulation 1.00 0.39 (0.19, 0.81) 0.44 (0.18, 1.07)

Melatonin Degradation I 1.00 1.58 (0.71, 3.54) 1.44 (0.66, 3.12)

Serotonin Degradation 1.00 1.29 (0.58, 2.87) 1.48 (0.68, 3.23)

Superpathway of Melatonin Degradation 1.00 1.58 (0.71, 3.54) 1.44 (0.66, 3.12)

Cyclins and Cell Cycle Regulation 1.00 0.41 (0.20, 0.87) 0.28 (0.12, 0.67)

Cell Cycle: G2/M DNA Damage Checkpoint Regulation 1.00 0.35 (0.16, 0.75) 0.34 (0.15, 0.78)

GADD45 Signaling 1.00 0.34 (0.15, 0.74) 0.36 (0.15, 0.82)

Mismatch Repair in Eukaryotes 1.00 0.51 (0.23, 1.10) 0.38 (0.17, 0.88)

Mitotic Roles of Polo-Like Kinase 1.00 0.54 (0.26,1.16) 0.43 (0.19, 1.01)

Agranulocyte Adhesion and Diapedesis 1.00 0.68 (0.31, 1.49) 0.59 (0.27, 1.32)

Hereditary Breast Cancer Signaling 1.00 0.40 (0.19, 0.85) 0.33 (0.14, 0.78)

Granulocyte Adhesion and Diapedesis 1.00 0.73 (0.34, 1.59) 0.54 (0.24, 1.23)

Nicotine Degradation III 1.00 1.59 (0.73, 3.47) 1.59 (0.68, 3.70)

Nicotine Degradation II 1.00 1.81 (0.81, 4.05) 1.93 (0.86, 4.34)

TP53 Signaling 1.00 0.39 (0.18, 0.84) 0.34 (0.14, 0.78)

Axonal Guidance Signaling 1.00 0.49 (0.21, 1.11) 0.86 (0.41, 1.81)

Aryl Hydrocarbon Receptor Signaling 1.00 0.42 (0.20, 0.92) 0.36 (0.16, 0.80)

Role of BRCA1 in DNA Damage Response 1.00 0.46 (0.22, 0.97) 0.33 (0.14, 0.81)

ATM Signaling 1.00 0.43 (0.20, 0.92) 0.34 (0.15, 0.80)

Complement System 1.00 1.28 (0.56, 2.93) 1.01 (0.41, 2.51)

Superpathway of Serine and Glycine Biosynthesis I 1.00 0.43 (0.18, 1.03) 0.30 (0.13, 0.69)

Atherosclerosis Signaling 1.00 0.70 (0.32, 1.56) 0.88 (0.41, 1.87)

Role of CHK Proteins in Cell Cycle Checkpoint Control 1.00 0.44 (0.21, 0.90) 0.35 (0.14, 0.86)

RAN Signaling 1.00 0.36 (0.16,0.81) 0.39 (0.17, 0.86)

Purine Nucleotides De Novo Biosynthesis II 1.00 0.36 (0.17, 0.77) 0.26 (0.10, 0.66)

Eicosanoid Signaling 1.00 0.97 (0.44,2.14) 0.91 (0.40, 2.08)

Wnt/ß-catenin Signaling 1.00 0.38 (0.17, 0.85) 0.44 (0.20, 0.99)
1Hazard ratios (HR) and 95% confidence intervals (CI) adjusted for age, sex, AJCC stage, TP53, and KRAS mutations, CIMP, and MSI. T1, Tertile 1 and Referent group;
T2, Tertile 2; T3, Tertile 3; tertiles are based on the distribution of the Differential Pathway Expression Score with higher tertile having greater differential
expression. Bold text highlights those pathways that were statistically significantly associated with colorectal cancer-specific survival.
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that TP53, which was predicted to be inhibited in our
data, was actually up-regulated, although only significant
in Group A and therefore not included in the analysis.
This suggests that an indirect relationship with other
molecules could have resulted in this shift in expected
activation. The major network regulators regulated by
the TGFB1, TP53, and MYC are shown in Figure 2a, b,
and c, respectively. There were 20 mechanistic network
regulators for TGFB1, 20 for TP53, and 22 for MYC that
were significantly enriched in our data based on the
number of differentially expressed genes belonging dir-
ectly and indirectly to these networks (Additional file 6:
Table S3 shows genes in our data that were directly or
indirectly regulated by these pathways).

Discussion
Our data illustrate the complexity of colon cancer and
the extent to which genes are significantly differentially
expressed in tumors. These differentially expressed genes
are associated with many pathways and functions, many
of which are associated with survival and provide insight
into the broader carcinogenic process. Our data suggest
that tumors with the most differentially expressed genes
in key pathways are associated with better survival and



Table 3 Associations between significant pathways and AJCC stage

Stage 1 Stage 2 Stage 3 Stage 4

Pathway # Features (Genes) Mean1 STD Mean STD Mean STD Mean STD P value2

Cell Cycle Control of Chromosomal Replication 15 31.0 9.4 30.5 8.8 30.1 7.4 27.0 8.6 0.11

Estrogen-mediated S-phase Entry 13 27.1 7.7 26.2 6.8 26.2 5.8 23.3 6.9 0.06

Thyroid Hormone Metabolism II 12 24.3 5.5 24.3 5.5 24.7 5.7 22.8 5.6 0.33

Hepatic Fibrosis/Hepatic Stellate Cell Activation 39 78.4 14.0 78.5 13.1 80.7 14.1 73.1 14.3 0.17

Cell Cycle: G1/S Checkpoint Regulation 19 38.8 10.4 38.2 9.7 38.6 8.3 34.6 9.7 0.13

Melatonin Degradation I 16 32.1 6.7 32.7 6.7 32.6 6.8 30.7 7.1 0.45

Serotonin Degradation 17 34.7 7.3 34.5 7.1 34.8 7.7 32.5 7.5 0.28

Superpathway of Melatonin Degradation 16 32.1 6.7 32.7 6.7 32.6 6.8 30.7 7.1 0.45

Cyclins and Cell Cycle Regulation 20 41.2 10.9 40.3 10.1 40.4 8.6 36.3 9.9 0.09

Cell Cycle: G2/M DNA Damage Checkpoint Regulation 15 31.2 9.8 30.1 8.7 30.0 7.9 26.8 9.0 0.09

GADD45 Signaling 9 18.9 5.6 18.3 5.2 17.8 4.4 16.4 5.2 0.11

Mismatch Repair in Eukaryotes 8 16.9 4.8 16.2 4.6 15.9 4.1 14.4 5.1 0.06

Mitotic Roles of Polo-Like Kinase 17 35.5 9.6 34.6 9.0 34.0 8.0 30.9 8.6 0.07

Agranulocyte Adhesion and Diapedesis 34 70.6 11.4 68.3 9.8 70.5 11.2 65.6 13.3 0.13

Hereditary Breast Cancer Signaling 24 50.1 13.9 48.7 13.3 48.2 12.2 43.9 13.4 0.10

Granulocyte Adhesion and Diapedesis 32 66.3 10.6 64.8 9.5 66.8 10.6 61.3 12.6 0.10

Nicotine Degradation III 13 25.8 5.9 26.8 5.9 26.3 5.9 24.9 6.2 0.59

Nicotine Degradation II 14 27.8 6.2 28.8 6.4 28.2 6.4 26.9 6.6 0.59

p53 Signaling 20 40.8 11.2 40.6 10.4 40.7 9.7 36.4 11.0 0.15

Axonal Guidance Signaling 60 121.2 20.6 121.9 20.7 122.5 21.1 113.5 22.9 0.18

Aryl Hydrocarbon Receptor Signaling 25 51.4 13.5 50.1 11.6 50.6 10.7 46.3 12.8 0.16

Role of BRCA1 in DNA Damage Response 14 29.5 8.2 28.6 7.7 27.9 7.3 25.2 7.9 0.05

ATM Signaling 13 27.1 7.5 26.6 7.1 25.6 6.3 23.8 7.0 0.10

Complement System 10 20.7 3.3 19.7 3.4 20.3 3.4 19.3 3.6 0.12

Superpathway of Serine and Glycine Biosynthesis I 4 8.1 2.3 8.0 2.3 8.2 2.0 7.5 2.6 0.34

Atherosclerosis Signaling 20 40.4 6.9 39.9 6.1 41.7 6.7 38.4 8.1 0.32

Role of CHK Proteins in Cell Cycle Checkpoint Control 12 25.0 6.8 24.5 6.4 24.0 5.4 21.4 6.4 0.05

RAN Signaling 6 12.6 4.1 11.8 3.7 12.1 3.4 11.0 4.0 0.15

Purine Nucleotides De Novo Biosynthesis II 5 10.2 3.3 10.0 3.1 10.2 3.0 9.2 3.2 0.26

Eicosanoid Signaling 13 26.1 4.0 26.1 4.3 27.0 4.7 25.0 5.0 0.37

Wnt/ß-catenin Signaling 26 52.7 10.6 52.3 9.5 53.2 10.0 48.9 10.9 0.19
1Mean and SD values are from Differential Pathway Expression Score; 2P values compares differences between Stages 1 and 4.

Table 4 Top upstream regulators of genes significantly differentially expressed in dataset

Upstream regulator Molecule type Predicted activation state P value of overlap Genes in dataset (Number of
regulators from data in network)

TGFB1 Growth factor Activated 8.14 × 10-46 743 (20)

Beta-estradiol Chemical drug Activated 1.21 × 10-41 779 (24)

TP53 Transcription regulator Inhibited 1.41 × 10-37 616 (20)

CDKN1A Kinase Inhibited 4.35 × 10-35 485 (14)

MYC Transcription regulator Activated 4.59 × 10-36 660 (22)

Calcitriol Chemical drug Inhibited 4.51 × 10-34 538 (24)

E2F1 Transcription regulator Activated 1.71 × 10-30 397 (15)

CDKN1A, Cyclin-dependent kinase inhibitor 1A; E2F1, E2F transcription factor 1; MYC, v-myc avian myelocytomatosis viral oncogene homolog; TGFB1, Transforming
growth factor beta 1; TP53, Tumor protein p53.
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Figure 2 Major upstream regulators, TGFB1, MYC, and TP53 enriched by differentially expressed genes in our dataset. (a) TGFB1
upstream regulator of networks where the gene enrichment P values for differential expression was highly significant. (b) MYC primary upstream
regulator of networks where the gene enrichment P value for differential expression was highly significant. (c) TP53 primary upstream regulator of
networks where the gene enrichment P value for differential expression was highly significant.
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less advanced disease stage. The differentially expressed
genes were associated with upstream regulators that
have previously been associated with colon cancer, such
as TGFB1, MYC, and TP53. In our data, these genes
were activated and influenced the downstream genes
and pathways they regulate. It appears that activation
of these pathways improves prognosis. This informa-
tion could potentially be utilized to help determine bio-
markers for treatment modalities that may influence
survival.
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Disruption of multiple biological pathways is a hall-
mark feature of the tumors. Our data illustrates the
number of key pathways involved in the carcinogenic
process and the number of genes showing significant
differential gene expression in both test and validation
data sets, with 1,138 features being significantly up-
regulated and 695 being significantly down-regulated in
both groups. Many of these pathways are comprised of
genes involved in cell growth, differentiation, and apop-
tosis. One of the top pathways that showed significant
differential expression in our data was Cell Cycle Con-
trol of Chromosomal Replication (55.6% of genes in path-
way were significantly differentially expressed in our data).
Additionally, in the Cell Cycle: G1/S Checkpoint Regula-
tion pathway almost 30% of genes in the pathway were
de-regulated in our data. These observations were further
supported by the number of genes involved in key mo-
lecular and cellular functions of cellular growth and prolif-
eration (715 genes), cell death and survival (632 genes),
cell cycle (316 genes), cellular assembly and organization
(275 genes), and cellular movement (415 genes). Also of
interest was the observation that 54.2% of genes that
showed significant differential expression were in the
Estrogen-mediated S-phase Entry Canonical Pathway,
which was the second most enriched pathway from our
data. Estrogen status and hormone therapy have been
shown to reduce risk of developing colon cancer and have
been associated with better survival after diagnosis with
colon cancer [23,24].
The major finding from this study is that better sur-

vival is seen in patients with more differential gene ex-
pression and DPES after adjusting for tumor stage and
tumor molecular phenotype of TP53, KRAS, CIMP, and
MSI. This observation was further supported by the
higher DPES being observed for those who were diag-
nosed at AJCC Stage 1 vs. Stage 4. This implies that
genes are activated as part of a cell response mechanism
potentially to promote apoptosis and decrease tumor
growth. Individuals who are able to initiate this response
have better survival and tumors that are less likely to ad-
vance. This observation also supports the concept that
genes downstream respond to upstream events that may
be driving the carcinogenic process. While the phenom-
ena of having more differentially expressed genes being
associated with better survival could seem counterintui-
tive, given disrupted genes and gene regulation are a
hallmark feature of tumors, others have noted similar
observations that tumors from patients who live longer
after cancer diagnosis have more differentially expressed
genes [25]. However, replication of these findings in
other similar datasets is needed.
To help interpret the results, we further evaluated the

top upstream regulators of pathways where we observed
significant enrichment of differentially expressed genes
in our data. Three of the top upstream regulators were
TGFB1, MYC, and TP53; these regulators are frequently
associated with colon cancer. TGFB1 is a growth fac-
tor that has been linked to apoptosis through multiple
mechanisms [26,27] and is required to maintain homeo-
stasis between apoptosis and cell growth. Multiple path-
ways, including MAPK signaling, SMAD, and JNK are
linked to TFGB1 and its role on apoptosis. If TGFB1 is
up-regulated, as it was in our data, it is possible it activates
signaling cascades that lead to cell death, which in turn
would improve survival. MYC regulates many functions,
some that promote tumor growth, while others promote
apoptosis [28]. MYC expression has been associated with
improved survival in the absence of TP53 mutations in
one study [29]. While we attempted to confirm this asso-
ciation, there were too few deaths among those with TP53
mutations to estimate the association; however, an inverse
association was observed for higher MYC differential ex-
pression among those with non-TP53 mutated tumors. In
our data, MYC primarily regulated transcription factors,
playing a key role in downstream gene regulation, through
both direct and indirect gene targeting. The importance of
MYC as a regulator of transcriptional activation and re-
pression in CRC also was noted by the Cancer Genome
Atlas Network [30]. Likewise, TP53, a frequently mutated
gene in colon cancer [31], was significantly up-regulated
in our data, and genes for which TP53 was an upstream
regulator were differentially expressed in our data. As a
tumor suppressor gene, TP53 is involved in apoptosis, so
it is reasonable that enrichment of differentially expressed
genes in this pathway could significantly have a favorable
effect on survival.
There are several possible explanations for our observa-

tions that pathways with increased differential are associ-
ated with better survival. Large gene expression changes
could be due to cell response to over-proliferation and at-
tempt to shut down. Increased gene expression changes
could be destabilizing for the tumor and lead to better
overall survival. Alternatively, expression changes could
be the reaction to immune signaling and infiltration.
This study has several strengths and limitations. First,

we have a rich dataset in which to examine gene expres-
sion profiles of colon tumors. Because we had tumor
and normal paired samples, we were able to evaluate dif-
ferential gene expression. Although our normal tissue
was from colonic tissue adjacent to the tumor, it could
have undergone gene changes and therefore not truly
‘normal’. However, it is the only practical tissue available
for comparison. Our sample was large enough that we
were able to use both a test and retest set of data to
validate findings and only evaluate those differentially
expressed genes with survival that were differentially
expressed in both groups. Our pathway approach en-
abled us to group genes together based on canonical
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pathways rather than evaluate genes individually. Other
pathways and genes that were not identified in IPA could
be important. Additionally, it is important to recognize
that other genes or specific pathways could detrimentally
influence survival. While a linear trend with increasing
de-regulated genes would be expected, frequently this was
not the case. Often, the largest drop in risk was going
from tertile 1 to tertile 2. Additionally, we are only able to
look at gene expression and not actual protein expression.
In summary, our data suggest that having more genes

differentially expressed in colon tumors compared to
normal tissues improves survival and the likelihood of
being diagnosed at a less advanced disease stage. This
may be the signature of a cellular response mechanism
and an ongoing challenge is to identify the key factors
that stimulate the activation of important upstream genes
that are required to mount a cellular response to the initial
drivers in the carcinogenic process and to understand the
cellular response to those initiating events.
Conclusions
Our data suggest that having more de-regulated pathways
is associated with a good prognosis and may be a reaction
to key events that are disabling to tumor progression. This
observation is re-enforced by the observation that people
diagnosed at AJCC Stage 1 had more de-regulated genes
than those diagnosed at AJCC Stage 4. These findings
need confirmation in other studies.
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