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Abstract

Background: The clinical significance of progesterone receptor (PgR) expression in estrogen receptor-negative
(ER-) breast cancer is controversial. Herein, we systemically investigate the clinicopathologic features, molecular
essence, and endocrine responsiveness of ER—/PgR+/HER2— phenotype.

Methods: Four study cohorts were included. The first and second cohorts were from the Surveillance, Epidemiology,
and End Results database (n=67,932) and Fudan University Shanghai Cancer Center (n = 2,338), respectively,
for clinicopathologic and survival analysis. The third and fourth cohorts were from two independent publicly
available microarray datasets including 837 operable cases and 483 cases undergoing neoadjuvant chemotherapy,
respectively, for clinicopathologic and gene-expression analysis. Characterized genes defining subgroups within the
ER-/PgR+/HER2- phenotype were determined and further validated.

Results: Clinicopathologic features and survival outcomes of the ER—/PgR+ phenotype fell in between the
ER+/PgR+ and ER—/PgR— phenotypes, but were more similar to ER—/PgR—. Among the ER—/PgR+ phenotype,
30 % (95 % confidence interval [Cl] 17-42 %, pooled by a fixed-effects method) were luminal-like and 59 %
(95 % Cl 45-72 %, pooled by a fixed-effects method) were basal-like. We further refined the characterized
genes for subtypes within the ER—/PgR+ phenotype and developed an immunohistochemistry-based method
that could determine the molecular essence of ER—/PgR+ using three markers, TFF1, CK5, and EGFR. Either
PAMS50-defined or immunohistochemistry-defined basal-like ER—/PgR+ cases have a lower endocrine therapy
sensitivity score compared with luminal-like ER—/PgR+ cases (P <0.0001 by Mann-Whitney test for each study
set and P <0.0001 for pooled standardized mean difference in meta-analysis). Immunohistochemistry-defined
basal-like ER—/PgR+ cases might not benefit from adjuvant endocrine therapy (log-rank P=0.61 for sufficient
versus insufficient endocrine therapy).

Conclusions: The majority of ER—/PgR+/HER2— phenotype breast cancers are basal-like and associated with a
lower endocrine therapy sensitivity score. Additional studies are needed to validate these findings.
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Background

The progesterone receptor (PgR) is a downstream relative
of the estrogen receptor (ER), which activates the expres-
sion of PgR via the estrogen-responsive element located in
the promoter region of the PgR gene. Adequate expression
of PgR indicates a functional ER-a and ER-a pathway [1].
Loss of PgR expression in ER-positive (ER+) breast cancer
potentially defines a subgroup with impaired function in
the ER pathway, which probably gains limited benefit from
endocrine therapy [2—4].

Clinically, it is generally agreed upon that all newly-
diagnosed primary breast cancers should be evaluated for
ER and PgR protein expression by immunohistochemistry
(IHC). Although some researchers have suggested that the
ER-negative/PgR-positive (ER-/PgR+) phenotype does not
actually exist and may represent technical artifacts [5-7],
an increasing body of evidence has shown that ER-/PgR+
tumors exist both biologically and clinically [8, 9]. More-
over, an ER-/PgR+ breast cancer cell line had been
described earlier [10], indicating a mechanism of PgR
expression regulation independent from ER-a.

The recently updated St. Gallen consensus on early-stage
breast cancer recommends making clinical treatment
decisions based on the surrogates of molecular subtypes
(luminal-A, luminal-B, HER2-positive, and basal-like)
defined by ER, PgR, HER?2, and Ki67 [11]. The St. Gallen
panelists failed to categorize the ER-/PgR+/HER2-
phenotype into the four molecular subtypes, while some
other guidelines treated the ER-/PgR+/HER2- phenotype
as a luminal-B subtype. The ER-/PgR+ group accounts
for 1 -5 % of all breast cancers [2, 8]. Even after repeated
reassessment of ER and PgR in these cases as the American
Society of Clinical Oncology/College of American Patholo-
gists (ASCO/CAP) guidelines recommend [12], at least
50 % of ER—/PgR+ remained [2, 5].

Some efforts have been made to reveal the molecular es-
sence of ER—/PgR+ breast cancer. Using gene-expression
profile information, Itoh et al. [13] proposed that, among
these patients, 20 % were luminal-like and 65 % were basal-
like, indicating for the first time that ER-/PgR+ breast
cancer is a mixed group. In the current study, we in-
cluded four large cohorts of breast cancer cases and
systemically studied the clinical features and molecular
essence of the ER-/PgR+ phenotype. Furthermore, we
established a feasible and reliable IHC-based method to
determine the subtype of each ER-/PgR+ case to guide
individualized treatment. Because HER2+ breast cancers
represent a biologically distinct subgroup [14], we ex-
cluded HER2+ cases from this study.

Methods

Four study cohorts

Cohort 1 was obtained from the database of the Surveil-
lance, Epidemiology, and End Results (SEER) program in
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the United States. Cohort 2 was retrieved from the
Fudan University Shanghai Cancer Center (FDUSCC).
Cohort 3 was a publicly available gene expression micro-
array dataset previously published elsewhere [15]. Cohort
4 was also a publicly available dataset including patients
undergoing neoadjuvant chemotherapy [16]. The basic
characteristics of the four cohorts are shown in Table 1.
The study flowchart diagram is shown in Additional file 1:
Figure S1. In addition, we analyzed 64 consecutive cases
with the ER-/PgR+/HER2- phenotype from FDUSCC
between 2005 and 2011 to validate IHC-based markers
of subtype classification (characteristics of the 64 cases
are available in Additional file 2: Table S1). The datasets
(cohorts 1, 3, and 4) we used in this study are publically
available and no permissions were required. The research
protocols of cohorts 1, 3, and 4 were determined to be
qualified for institutional review board exemption by the
Ethical Committee of the Shanghai Cancer Center of
Fudan University. The research protocols for cohort 2 and
64 consecutive ER-/PgR+/HER2- cases were reviewed
and approved by the Ethical Committee of the Shanghai
Cancer Center of Fudan University. All participants pro-
vided written informed consents.

For cohort 1, obtained from the SEER database consisting
of 18 population-based cancer registries, we selected
patients diagnosed with invasive breast cancer between
January 1, 2010, and December 31, 2013 (SEER provides
HER2 status after 2010). We identified 67,932 HER2-
negative patients according to the following criteria:
female, surgical treatment (either mastectomy or breast-
conservation), AJCC stages I-III, pathologically confirmed
invasive ductal carcinoma, unilateral, known ER/PgR/
HER2 status, known time of diagnosis, and breast can-
cer as the first cancer at diagnosis. SEER database does
not conduct central review for ER/PgR/HER2. Since we
enrolled the cases after 2010, the positivity of ER and
PR expression should be according to the ASCO/CAP
guideline (21 % of tumor cells with nuclear staining)
[12]. Data extraction was performed by SEER*Stat soft-
ware v8.1.5 [17]. The outcome of interest was breast
cancer-specific survival (BCSS), which was calculated from
the date of diagnosis to the date of breast cancer death.
Patients who died of other causes were censored at the
date of death.

For cohort 2 from FDUSCC, we included 2,338 con-
secutive HER2— cases of primary operable invasive breast
cancer between January 1, 2008, and December 31, 2011.
This is a well-characterized series of patients, whose clini-
copathologic and follow-up information were maintained
on a prospective basis [18]. Patient treatments were based
on St. Gallen consensus [11, 19]. The cut-off for ER/PgR
positivity was =1 % of tumor cells with nuclear staining
[12]. Pathologic HER2 status was defined according to
ASCO/CAP guidelines [20]. Re-assessment of ER-/PgR+
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Table 1 Clinicopathologic characteristics of patients with HER2-negative breast cancer included for analysis

Characteristics Cohort 1: SEER Cohort 2: FDUSCC  Cohort 3: Publicly available cases  Cohort 4: Publicly available NCT cases
N=67932 % N=2338 % N =837 % N =483 %
Age, years (IQR) 61 (51-70) 53 (45-60) 55 (45-65) 50 (42-58)
Tumor size
TO-1 42,281 622 1,132 484 155 388 33 6.8
T2 20,253 298 1,004 429 210 526 244 50.5
13-4 5398 79 202 8.6 34 8.5 206 427
Lymph nodes
Negative 47,078 693 1,168 502 285 473 150 311
Positive 20,854 30.7 1,161 498 317 52.7 333 689
Grade
I 17,172 262 39 17 102 132 31 6.8
Il 29,359 447 1610 689 244 316 173 38.1
lIand UD 19,129 291 689 295 426 552 250 55.1
Subgroup
ER+/PgR+ 50,679 746 1,686 721 391 46.7 216 447
ER+/PgR- 7,075 104 177 76 130 155 72 149
ER-/PgR+ 561 08 34 1.5 36 43 17 35
ER-/PgR- 9617 142 441 189 280 335 178 36.9
Median follow-up, months (IQR) 11 (5-17) 37 (25-50) 49 (20-72) 36 (21-49)

FDUSCC Fudan University Shanghai Cancer Center, IQR Interquartile range, NCT Neoadjuvant chemotherapy, SEER Surveillance, Epidemiology and End Results

program, UD Undifferentiated

cases was carried out routinely. The outcome for this co-
hort was relapse-free survival (RFS), which was calculated
from the date of diagnosis to the date of the first event of
local, regional, or distant metastasis of breast cancer.

For cohort 3, retrieved from 36 publicly available breast
cancer microarray datasets [15], among the original 5,715
unique breast cancer with expression profiles, 837 cases
were identified to be HER2-negative and had information
on immunohistochemical ER, PgR, and HER2 status. The
normalization of gene expression data was performed by
Haibe-Kains et al. [15]. Hybridization probes were mapped
to Entrez GenelD as described by Shi et al. [21]. When
multiple probes mapped to the same GenelD, the one with
the highest variance was used. All untreated patients had
surgery, although information was not available for all
datasets. The PAM50 classifier was applied to the data to
determine the intrinsic subtype of each case as previously
described [22]. The survival outcome of interest was RFS.

For cohort 4, we selected 483 HER2- patients who
participated in a prospective Institutional Review Board-
approved biomarker discovery study at MD Anderson
Cancer Center as published previously elsewhere [16].
The cut-off for ER/PgR positivity was =1 % of tumor cells
with nuclear staining. All patients received neoadjuvant
chemotherapy containing a taxane/anthracycline-based
regimen (followed by endocrine therapy if ER+). In our
analysis, cases with indeterminate ER and PgR had been

excluded, and the outcome for analysis was distant RFS
(DRES). Detailed methods for RNA purification and
microarray hybridization have been reported previously
[16, 23]. Gene expression profiling with Affymetrix U133
gene chips was performed. Gene expression levels were
derived from multiple oligonucleotide probes on the
microarray that hybridize to different sequence sites of
a gene transcript (probe sets). Gene expression data are
available under Gene Expression Omnibus accession num-
ber of GSE25066. The PAM50 classifier was applied to
determine the subtype of each case [22].

Gene expression measurement

In cohorts 3 and 4, each ER-/PgR+ case was assigned an
intrinsic subtype by the PAM50 classifier [22]. The original
gene expression profile data were only available in cohort 4.
Using these original data [16], we compared the gene
expressions of interest between different subtypes of
ER-/PgR+. To determine the functional ER pathway,
mRNA expression of estrogen-responsive genes, TFF1
(pS2), GREBI1, and PDZK1, were measured [24]. Expression
of basal-associated cytokeratins (CKs) and EGFR were mea-
sured [25, 26]. Moreover, because the claudin-low subgroup
is associated with a specific subtype of triple-negative breast
cancer, mesenchymal stem-like [27], we also measured
the expression of the epithelial-mesenchymal transition-
associated gene CDHI and claudin genes to discriminate
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mesenchymal stem-like from basal-like [28]. Probe sets
used for measurement of mRNA expression are listed
in Additional file 3: Table S2. Expression data were nor-
malized with the MAS5 algorithm, the mean was cen-
tered to 600 and log2 was transformed as previously
described [13].

An endocrine therapy sensitivity score was calculated
by the average log2 transformed expression values of ER,
PgR, BCL2, and SCUBE2 with following measurement:
(0.8*ER + 1.2*PGR + BCL2 + SCUBE2)/4 as previously
described in OncotypeDX [29]. This ER group score
could predict of response to tamoxifen and a higher
score indicates a higher sensitivity to endocrine ther-
apy [30, 31]. For 64 cases (consecutive cases with the
ER-/PgR+/HER2- phenotype from FDUSCC) with forma-
lin-fixed paraffin-embedded samples, the method of RNA
extraction and real-time PCR is provided in Additional
file 4: Supplemental Methods. PCR primers are listed in
Additional file 5: Table S3.

Immunohistochemistry

IHC was performed in the 64 cases from FDUSCC ac-
cording to the standard procedure [25]. Staining patterns
were as follows: cytoplasmic and/or membranous stain-
ing for EGFR and CK5, and cytoplasmic staining for
TFF1 (pS2). The cutoff value for positivity for TFF1 was
10 % [32]; CK5 and EGER scored positive if any (weak
or strong) staining was observed as previously described
[25]. The antibodies used were reported in our previous
study [33].

Statistical analysis

Comparisons of patient and tumor characteristics were
performed using the x> test or two-sample ¢-test. Survival
curves were constructed using Kaplan—Meier method and
tested by log-rank test. Multivariate adjusted hazard ratios
(HRs) with 95 % confidence intervals (CIs) were calculated
using the Cox proportional hazards model. The Mann—
Whitney test was used to test gene expression differences.
To analyze the combined results, we employed a two-step
approach [34]. At first, the individual participant data
from each study were analyzed separately (i.e. to obtain
the results of each cohort). Then, the results were syn-
thesized in the second step using a suitable model for
meta-analysis of aggregate data. The meta-analysis was
conducted in adherence to the standards of quality [35].
To pool the proportions, we used the command “meta-
prop_one” in Stata. According to a previous study [36],
the score methods are recommended for proportion
interval estimates and in our study the Wilson score
confidence intervals were computed. We also assessed
the heterogeneity among cohorts by using Cochran x>
Q statistics and /* statistics. If P values <0.05 or I*>25 %
were obtained, we determined that there was a significant
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heterogeneity [35]. Use of a fixed-effects method (Inverse-
variance method) or a random-effects method (DerSi-
monian and Laird method) was performed according to
heterogeneity. When we compared survival estimates
of ER-/PgR+ versus ER+/PgR+ and ER-/PgR- versus
ER+/PgR+, we used multivariate meta-analysis (command
“mvmeta” in Stata). Multivariate meta-analysis has been
described previously [37, 38]. The method we used was re-
stricted maximum likelihood and the variance-covariance
matrix was defined as “unstructured”. Statistical analyses
were performed with Stata v.14.0 and SPSS v.17. Two-
sided P <0.05 was considered statistically significant.

Results

Clinicopathologic features and survival outcomes of
breast cancer with ER-/PgR+/HER2—- phenotype

In HER2- cases, the ER-/PgR+ phenotype accounted
for 0.8-4.3 % among the four cohorts, with the pooled
overall proportion of 2.5 % (95 % CI, 1.4-3.6 %, by a
random-effects method), which is consistent with previ-
ous reports [2, 8, 9, 39]. Of note, in the consecutive
cases from cohorts 1 and 2, the overall proportion of the
ER-/PgR+ phenotype was 1.1 % (95 % CI, 0.5-1.7 %, by
a random-effects method).

We compared the clinicopathologic characteristics of
tumors of the ER-/PgR+ phenotype with those of the
ER+/PgR+ and ER-/PgR- phenotypes (Additional file 6:
Table S4). ER-/PgR+ tumors were associated with sig-
nificantly younger age at onset, larger tumor size, higher
positive node rate, and higher grade (all P <0.001) com-
pared with ER+/PgR+ tumors in cohort 1. These differ-
ences were successfully validated in most but not all the
other cohorts. For instance, difference in tumor size ob-
served in cohort 1 failed to be validated in cohort 3. When
compared with the ER-/PgR- phenotype, ER-/PgR+ tu-
mors showed characteristics that were similar to or slightly
more favorable than those of the ER—/PgR- phenotype.

Significant differences in survival between ER-/PgR+
and ER+/PgR+ were observed in cohorts 1-3 but not in
cohort 4 either in univariate analysis (Fig. 1) or after adjust-
ment (cohort 1: HR =3.26 [95 % CI, 1.71-6.22], P <0.001
for BCSS after adjustment for age, tumor size, lymph nodes
status, and grade; cohort 2: HR = 2.61 [95 % CI, 1.20-5.67],
P=0.016 for RFS after adjustment for age, tumor size,
lymph nodes status, and grade; cohort 3: HR =2.68 [95 %
CI, 1.10-6.55], P=0.030 for RES after adjustment for age,
lymph nodes status, and grade; cohort 4: HR =1.09 [95 %
CI, 0.26—4.64], P =0.90 for DRES after adjustment for age,
tumor size, lymph nodes status, grade, and pathological
complete response; Table 2). In contrast, there were numer-
ical but insignificant differences between ER—/PgR+ and
ER—/PgR— phenotypes. Generally, ER—/PgR+ showed sur-
vival outcomes midway between ER+/PgR+ and ER—/PgR—,
although the survival curve of ER—/PgR+ was more similar
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Fig. 1 Kaplan-Meier estimates of survival are shown according to ER and PgR status in the four cohorts. (a) Breast cancer-specific survival (BCSS)
of cohort 1; (b) Relapse-free survival (RFS) of cohort 2; (c) RFS of cohort 3; (d) Distant relapse-free survival (DRFS) of cohort 4. Log-rank P values
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to that of the ER—/PgR— cases. The fact that survival
outcomes in cohorts 1-3 could not be observed in cohort
4 might be because of limited number of ER—/PgR+ cases
(n=17) and highly selected patients (with locally advanced
disease and who underwent neoadjuvant chemotherapy)
in that cohort. Furthermore, we investigated the pooled
survival outcomes of ER-/PgR+ versus ER+/PgR+ and
ER—/PgR- versus ER+/PgR+ by using multivariate meta-
analysis (method: restricted maximum likelihood), the
pooled HR was 2.67 (95 % CI, 1.77-4.05) for ER—/PgR+
versus ER+/PgR+ and 3.97 (95 % CI, 3.38-4.66) for
ER-/PgR— versus ER+/PgR+. Taken together, the clinico-
pathologic features and survival outcomes of the ER—/PgR+
phenotype fell in between the ER+/PgR+ and ER-/
PgR- groups but were closer to the latter.

Intrinsic molecular subtypes within ER-/PgR+/HER2-
phenotype

Intrinsic molecular subtypes of breast cancer have been
thoroughly studied [14, 40], but previous research failed
to assign the ER—/PgR+ phenotype to one specific and
stable molecular subtype [41]. Cohorts 3 and 4, but not
cohorts 1 and 2, had available information of intrinsic
molecular subtypes defined by gene expression profile.
We therefore explored the distribution of known intrinsic
subtypes within the ER—/PgR+ phenotype in cohorts 3
and 4. Independent cohorts 3 and 4 showed similar results
and the ER—/PgR+ phenotype had a higher likelihood of

being the basal-like subtype (Table 3). When we combined
these two cohorts together using a meta-analytic approach
(command “metaprop_one” in Stata), 30 % (95 % CI, 17—
42 %, by a fixed-effects method) of ER—/PgR+ phenotype
was luminal-like and 59 % (95 % CI, 45-72 %, by a fixed-
effects method) were basal-like. Both the luminal-like and
basal-like subtypes accounted for about 89 % of the whole
ER-/PgR+ group.

Because we had the original gene expression data of
each case in cohort 4, we could investigate the ESR1
gene (ER) expression in the ER—/PgR+ phenotype in this
cohort. A log2-transformed expression value of >10.18
was considered as ER+ by mRNA according to a threshold
established in previous publications [13, 23]. Five of 17
(29 %; 95 % CI, 10-56 %) patients who were IHC ER— had
high expression of ESR1 mRNA and may be considered as
false-negative IHC results. The majority of the ER—/PgR+
phenotype (71 %) showed low ESR1 mRNA but variable
PGR mRNA (Additional file 7: Figure S2), indicating the
existence of a ER—/PgR+ phenotype.

Characterized gene expression of ER-/PgR+/HER2-
phenotype

Having found that the ER—/PgR+ phenotype was shared
between luminal-like and basal-like groups at the molecu-
lar level, we further sought the characterized genes for
luminal-like and basal-like ER—/PgR+ subgroups. The ori-
ginal gene expression data were only available in cohort 4,



Table 2 Univariate and multivariate analysis of survival for ER and PgR subgroups

YSTEL (S1L0T) 2UPIPa)y DING D 12 NA

Subgroups  Cohort 1: BCSS Cohort 2: RFS Cohort 3: RFS Cohort 4: DRFS
HR (95 % ClI) P1 P2 HR (95 % Cl) P1 P2 HR (95 % CI) P1 P2 HR (95 % Cl) P1 P2
Univariate Adjusted” Univariate Adjusted” Univariate Adjusted® Univariate Adjusted®

ER+/PgR+ 1 (ref) 1 (ref) <0.001¢ 1 (ref) 1 (ref) <0.001¢ 1 (ref) 1 (ref) 0.006° 1 (ref) 1 (ref) <0.001¢

ER—/PgR+ 467 (255- 326 (1.71- <0001 <0001 276 (127-  261(120- 0017 0016 251 (1.11-  268(1.10- 0028 0030 0.78 (0.19- 109 (026- 079 0.90
8.57) 6.22) 5.99) 5.67) 5.68) 6.55) 3.27) 4.64)

ER—/PgR— 726 (6.10- 412 (333- <0001 <0001 365(271-  410(3.03- <0001 <0001 259 (1.36- 251 (1.21- 0003 0013 333 (2.16- 366215~ <0001 <0.001
8.64) 5.09) 4.92) 5.54) 4.93) 5.20) 5.15) 6.23)

Here we provided both unadjusted and adjusted values of HR of BCSS/RFS/DRFS to show the survival effect of ER/PgR status

P1: Pairwise P value for univariate analysis (by log-rank test). ER+/PgR+ group as reference

P2: Pairwise P value for multivariate analysis (by Cox regression). ER+/PgR+ group as reference

BCSS Breast cancer-specific survival, CI Confidence interval, DRFS Distant relapse-free survival, HR Hazard ratio, ref Reference, RFS Relapse-free survival
@Adjusted for age, tumor size, lymph nodes status, and grade

PAdjusted for age, lymph nodes status, and grade. Tumor size is not adjusted because only half of cases have available information on it

“Adjusted for age, tumor size, lymph nodes status, grade, and pathological complete response

9Overall P value for univariate analysis (by log-rank test)

L1 o 9 abed
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Table 3 Relationship between immunohistochemistry-based subgroups and PAM50-based intrinsic subtypes

Gene-expression based subtype (by PAM50 classifier)

IHC-based subgroup (HER2-) Total (n) Luminal-A (n) % Luminal-B (n) % Basal (n) % HER2+ (n) %  Normal-like (n) % P

Cohort 3 <0.001
ER+/PgR+ 391 179 458 168 430 20 51 7 18 17 43
ER—/PgR+ 36 6 167 6 167 20 556 3 83 1 238
ER—/PgR- 280 9 3227 96 207 739 25 89 12 43

Cohort 4 <0.001
ER+/PgR+ 216 126 583 50 231 13 60 12 56 15 6.9
ER—/PgR+ 17 3 176 1 59 1 647 1 59 1 59
ER—/PgR- 178 2 1.1 3 1.7 142 798 14 79 17 9.6

IHC Immunohistochemistry

but not in the remaining three cohorts. Figure 2 shows the
differential expression of candidate genes across different
intrinsic subtypes within the ER—/PgR+ phenotype. Higher
expression of TFF1 and GREBI is significantly associated
with luminal-like (Mann—Whitney test P=0.005 and P=
0.02, respectively, Fig. 2a), while increased expression of CK5
(KRT5) or EGFR tended to be associated with basal-like
(Mann—Whitney test P=0.05 and P =0.007, respectively,
Fig. 2b). The combination of TFF1 with CK5 or EGFR

significantly discriminated luminal-like ER—/PgR+ from
basal-like ER—/PgR+ (Fig. 2c). Of note, the basal-like sub-
type within ER-/PgR+ did not show claudin-low or CDH1-
low features compared with the luminal-like subtype.

Refine the subtypes within the ER-/PgR+/HER2- phenotype
by IHC markers

Based on the findings of characterized gene expression
for luminal-like and basal-like ER—/PgR+, we further

A
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Fig. 2 Expression of featured genes in tumors with the ER-/PgR+ phenotype. Box plots of expression of estrogen-responsive genes (a) and basal,
claudins, and mesenchymal stem genes (b) for subtypes within ER-/PgR+/HER2- cases from cohort 4. (c) Ratio of TFF1 to EGFR or to CK5 for
basal-like (n=4), luminal-like (n=11), and other subtypes (n = 2). P values are for comparisons between luminal-like and basal-like by Mann-Whitney
test. The probe sets used for gene expression are 205009_at for TFF1, 205862 _at for GREB1, 205380_at for PDZK1, 201820_at for KRT5, 205157_s_at for
KRT17, 209351 _at for KRT14, 201428_at for CLDN4, 202790_at for CLDN7, 203953_s_at for CLDN3, 201130_s_at for CDH1, and 201983_s_at for EGFR.
(d) Kaplan—Meier estimates of relapse-free survival according to subgroups within the ER-/PgR+ phenotype using immunohistochemistry-based TFF1
(pS2), KRT5 (CK5), and EGFR. Three groups were defined as follows: luminal-like is defined as TFF1-positive and any CK5 and/or EGFR staining; basal-like
is defined as TFF1-negative and positive for at least one marker of CK5 and EGFR; the remaining cases are in the undetermined group.
Log-rank P values for pairwise comparison are shown. BL, Basal-like; LL, Luminal-like; NS, Not significant

Follow-up Time (months)
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validated three characterized markers by IHC to deter-
mine an individual case as a certain subtype by a feasible
IHC method. Because EGFR and CK5 (coded by KRT5)
expression rates are not high (55-65 %) in basal-like cases
[25, 42], we employed both EGFR and CK5 to single out
basal-like to a large extent. We performed this analysis in
the 64 ER—/PgR+/HER2- cases from our single institute
between 2005 and 2011 because we could obtain their tis-
sue samples for IHC assay but could not get formalin-
fixed paraffin-embedded samples in cohorts 1, 3, and 4.
We characterized the 64 cases into three groups by ex-
pression of TFF1, EGFR, and CK5. Basal-like and luminal-
like subtypes were identified and constituted 63 % (40 of
64; 95 % CI, 50-74 %) and 23 % (15 of 64; 95 % CI, 14—
36 %) of the tumors studied, respectively (Additional file 2:
Table S1). The basal-like subgroup displayed the worst
prognosis relative to the other two subgroups while the
luminal-like cases tended to have the most favorable RFS
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(Fig. 2d). After adjustment for other prognostic factors
such as age at diagnosis, tumor size, node status, and
grade, the three-marker defined subgroup was an inde-
pendent prognostic factor for relapse (HR of 2.4; 95 % CI,
1.17-5.03; P = 0.017).

Sensitivity to endocrine therapy of subtypes within
ER-/PgR+/HER2- phenotype

Survival analysis in 55 out of the 64 ER-/PgR+ cases
from FDUSCC according to adjuvant endocrine therapy
is shown in Additional file 8: Table S5. Patients with a
luminal-like ER-/PgR+ subtype benefited more from
sufficient adjuvant endocrine therapy (defined as under-
going cumulative endocrine treatment for more than
one year) than insufficient treatment (less than one year
or no endocrine therapy; log-rank P =0.06. Fig. 3a). In
contrast, the basal-like subgroup did not benefit from
endocrine therapy (log-rank P =0.61. Fig. 3b). Because
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Fig. 3 Sensitivity to endocrine therapy of subtypes within ER-/PgR+ phenotype. Kaplan-Meier estimates of RFS according to sufficient endocrine
therapy or not in the luminal-like (@) and basal-like (b) subgroup in 55 out of the 64 ER-/PgR+/HER2- cases. An endocrine therapy sensitivity
score was also calculated according to the subgroups within the ER-/PgR+ group in the 17 cases from cohort 4 (c) and in the 64 cases from
cohort 2 (d). The subgroups within the ER-/PgR+ were evaluated by PAM50 in cohort 4 and by immunohistochemistry in the 64 cases.

P values of sensitivity score between luminal-like and basal-like are <0.0001 for both sets (Mann-Whitney test). LL, Luminal-like; UN,
Undetermined; BL, Basal-like
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of limited cases and rare events, the survival outcome of
multivariate analysis was unavailable.

To find more evidence to support the above findings, we
evaluated the sensitivity to endocrine therapy at the mo-
lecular level by calculating the ER group score (reflects the
endocrine responsiveness) in two sets of ER—/PgR+/HER2—
cases. The first set was from cohort 4, including 17 cases,
and the second set was from cohort 2, including 64 cases.
It seemed that luminal-like cases (identified by either
PAMS50 classifier or IHC-based TFF1/CK5/EGFR makers)
had a higher score of sensitivity to endocrine therapy
compared with basal-like cases (Mann—Whitney test P
values <0.0001 for both sets; Fig. 3¢, d). When we com-
bined the two sets using a meta-analytic approach (meta-
analysis of continuous outcomes, Hedges' g method), the
luminal-like cases had higher score of sensitivity to endo-
crine therapy compared with basal-like cases (standardized
mean difference of 3.45 with 95 % CI, 2.65-4.26; P <0.0001,
by a fixed-effects method). Further analysis showed that
basal-like ER—/PgR+/HER2— cases had endocrine therapy
sensitivity scores as low as those in triple-negative cases
(P =0.80, by a fixed-effects method).

Discussion

In the present study, we systemically investigated the
clinicopathologic features and molecular essence of a
clinically rare but biologically occurring ER—/PgR+/HER2—
phenotype. We revealed that the clinicopathologic features
and survival outcomes of this phenotype fell in between
ER+/PgR+ and ER—/PgR— and were more similar to the
ER-/PgR- phenotype. For the intrinsic subtype of ER—/
PgR+ tumors, about 30 % were luminal-like and 60 %
were basal-like. Moreover, we developed a feasible THC-
based method using three markers, TFF1, CK5, and EGFR,
to determine the prognosis-relevant subtype of each ER—/
PgR+ case, which may assist oncologists in making treat-
ment decisions. ER—/PgR+ cases with basal-like character-
istics may eliminate long-term but ineffective endocrine
therapy and lead to individualized chemotherapy.

In our series, the majority of ER—/PgR+ tumors occurred
in younger women with poorly differentiated tumors, which
have been observed in triple-negative cases [43]. At the mo-
lecular level, about 60 % were associated with a basal-like
subtype, while only less than 30 % showed luminal features.
Currently, routine clinical evaluation of subtype is most
valuable in predicting the response to targeted therapy.
Clinical guidelines, such as the St. Gallen consensus,
recommend tailoring adjuvant systemic treatment accord-
ing to subtypes [11]. However, the ER—/PgR+ phenotype is
not mentioned in the 2013 St. Gallen consensus, and the
recommended treatment is therefore undetermined. Al-
though the ER—/PgR+ phenotype belongs to the “hormone
receptor-positive” group and is suggested to use endocrine
therapy, its response to endocrine therapy is low [3, 4, 12].
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According to a collaborative meta-analysis of individual
patient data from 20 trials (n = 21,457) in early breast can-
cer of about 5 years of tamoxifen versus no adjuvant tam-
oxifen by Early Breast Cancer Trialists’ Collaborative
Group [4], the rate ratios were 0.63 (standard error, 0.03)
for ER+/PgR+ disease (P <0.00001) but 0.90 (standard
error, 0.10) for ER—/PgR+ disease (P =0.35). We herein
demonstrated that the majority of ER—/PgR+ cases were
actually basal-like, therefore indicating that treatment of
ER—-/PgR+ cases with long-term endocrine therapy for
5 years or even more is questionable.

Being able to identify the luminal-like subgroup within
the ER—/PgR+ phenotype is important. Our study pro-
vides, for the first time, an effective and feasible IHC
method to distinguish the intrinsic subtype within the
ER-/PgR+ phenotype using three markers, TFF1, CK5,
and EGFR. TFF1 is an indicator of the functional
estrogen-responsive pathway and improves the response to
tamoxifen [44]. KRT5 and EGFR are identified as reliable
basal markers [25]. Moreover, we identified a significant dif-
ference in the sensitivity to endocrine therapy between
luminal-like ER—/PgR+ and basal-like ER—/PgR+. Basal-like
ER-/PgR+ cases obtained limited benefit from endocrine
therapy, while luminal-like ER—/PgR+ cases probably bene-
fited from endocrine therapy despite of ER loss. There are
some potential explanations for this. First, in these cases,
ER-negativity is falsely negative [5]. Technical failure in ER
detection made it difficult to detect positive ER even after
re-assessment by IHC. Second, strong evidence exists
for the presence of plasma membrane ER (only nuclear
staining of ER is recognized as ER-positivity according
to the ASCO/CAP guideline [12]). When estrogen binds
cell surface ER, membrane-initiated stimulation is able to
induce and potentiate the genomic activation of PgR ex-
pression [45, 46]. In this situation, endocrine therapy by
antagonizing or reducing estrogen may also work.

Our study has some limitations. First, we excluded
HER2+ cases and thus our findings could not be applicable
in the ER-/PgR+/HER2+ phenotype. Second, although
it is better to use the same survival endpoint (BCSS, RFS,
or DRES) for analysis, unfortunately, the various cohorts
provide different endpoints and it is impossible to use
the same endpoint for analysis. Third, because of limited
ER-/PgR+/HER2- cases included in analysis of sensitivity
to endocrine therapy and rare survival events, it is still too
early to conclude the causal association between basal-like
ER-/PgR+ tumors and limited benefit from endocrine
therapy. Finally, our study is biased by its retrospective
nature. However, due to the very low incidence of the
ER-/PgR+/HER2- phenotype, it is impractical to conduct
a large-scale prospective trial to test our hypothesis; we
therefore must rely on data from the present large
retrospective study. Our study uses the data from some
prospective observational cohorts and provides a piece
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of state-of-the-art evidence describing the molecular es-
sence of ER—/PgR+ and how to recognize the subtype of a
ER-/PgR+ case using an IHC assay.

Conclusion

In conclusion, the majority of the ER—/PgR+/HER2-
phenotype breast cancer cases are basal-like and a mi-
nority is luminal-like. Detecting immunohistochemical
TFF1, CK5, and EGFR may help to identify the intrinsic
subgroups within this phenotype. Basal-like ER-/PgR+ tu-
mors may obtain limited benefit from endocrine therapy
and further large-scale studies will be necessary to validate
our findings.
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