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Moody microbes or fecal phrenology: what @
do we know about the microbiota-gut-
brain axis?
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Abstract

Introduction: The microbiota-gut-brain axis is a term that is commonly used and covers a broad set of functions
and interactions between the gut microbiome, endocrine, immune and nervous systems and the brain. The field is
not much more than a decade old and so large holes exist in our knowledge.

Discussion: At first sight it appears gut microbes are largely responsible for the development, maturation and adult
function of the enteric nervous system as well as the blood brain barrier, microglia and many aspects of the central
nervous system structure and function. Given the state of the art in this exploding field and the hopes, as well as

the skepticism, which have been engendered by its popular appeal, we explore recent examples of evidence in
rodents and data derived from studies in humans, which offer insights as to pathways involved. Communication
between gut and brain depends on both humoral and nervous connections. Since these are bi-directional and
occur through complex communication pathways, it is perhaps not surprising that while striking observations
have been reported, they have often either not yet been reproduced or their replication by others has not been

successful.

Conclusions: We offer critical and cautionary commentary on the available evidence, and identify gaps in our
knowledge that need to be filled so as to achieve translation, where possible, into beneficial application in the

clinical setting.
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Introduction

Communication between the gut and brain occurs con-
stantly, largely at a subconscious level, and plays a critical
role in maintaining optimal health. Indeed, it is even sug-
gested that defects in gut-brain axis communication are
an underlying cause of functional bowel disorders such as
irritable bowel syndrome (IBS) [1] and potentially contrib-
ute to inflammatory bowel diseases [2]. This gut-brain axis
consists of “hard-wired” anatomical connections, involving
vagal and spinal nerves, and humoral components pro-
vided by the microbiota and their products, gut tissues,
endocrine and immune systems.

* Correspondence: forsytp@mcmaster.ca

'Department of Medicine, McMaster University, Hamilton, Ontario, Canada
“McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario,
Canada

Full list of author information is available at the end of the article

( BioMed Central

The gastrointestinal tract, in addition to being the largest
endocrine organ, is a nexus of communication between
the highest concentration of immune cells in the body,
a network of 200-600 million neurons and the trillions
of bacteria, fungi and viruses [3] that constitute the human
gut microbiota. With this knowledge it seems reasonable
to think that intestinal bacteria would influence gut to
brain communication and potentially lead to modulation
of central nervous system (CNS) function. However, only
in the past decade, with advances in sequencing technol-
ogy, metabolomics and neurophysiology, has the concept
of the microbiota-gut -brain axis gained serious attention.

To date there is good evidence that the gut microbiota
do play a role in normal CNS development and, in par-
ticular, influences systems associated with stress response,
anxiety [4—6] and memory [7]. Exposure to certain key
commensals can also attenuate the effects of early life
stress on CNS development [8, 9]. It is also clear that
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exposure to specific non-pathogenic bacteria can modulate
brain chemistry and behavior in adult animals [10, 11].
Overall, evidence for the existence of a microbiota gut—
brain axis is strong. Indeed, growing awareness of the level
of integration between host and microbes has led to the
suggestion that most living organisms can no longer be
considered as individuals; and must be considered holo-
bionts, “whose anatomical, physiological, immunological
and developmental functions evolved in shared relation-
ships of different species” [12]. Within the context of the
holobiont paradigm, the influence of the gut microbiota
over brain development, mood, motivation and behaviour
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is a natural consequence of the co-evolution of a multi-
species organism.

While the potentially paradigm shifting [13] implica-
tions of the microbiota-gut-brain axis have garnered
much attention in recent years [14—16], we are, never-
theless, at the very early stages of our understanding of
this field, and there is limited information, though much
speculation, on the complex communication systems
involved (Fig. 1).Here we briefly review our current un-
derstanding of the mutualistic relationship between gut
microbes and the CNS, highlighting recent progress,
while identifying gaps in our knowledge and limitations
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Fig. 1 Proposed mechanisms and pathways of the microbiota-gut-brain axis: Gut microbes synthesize a vast array of neuroactive molecules
including neurotransmitters such as GABA and through fermentation, short chain fatty acids, which have effects on the nervous system. The
intestinal microbiota also has direct and indirect effects of on the intestinal epithelium, local mucosal immune system, enteric nervous system
and spinal and vagal nerves. Mediators and signals from these systems, including cytokines and neurotransmitters, modulate central nervous
system (CNS) function and neuroendocrine responses such as the hypothalamus pituitary adrenal axis (HPA). In turn signals from the CNS and
neuroendocrine system, including cortisol, catecholamines and acetylcholine, can alter gut microbiota composition. While such bi-directional
signaling has been identified, definitive evidence for the specific roles of these pathways in communication between gut microbes and the
brain is largely lacking
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of current methodologies used to explore the microbiota-
gut-brain axis.

Hard-wired connections

The major afferent anatomical connections between the
gut and the brain include vagal and spinal nerves, their
ganglia and the spinal cord. However, within the gut,
there are two types of sensory nerves; the extrinsic pri-
mary afferent neurons with somata outside the gut, and
intrinsic primary afferent neurons (IPANs) with somata
within the gut wall. Recent research has identified that
certain bacteria and bacterial components in the lumen
of the gut can modulate both extrinsic and intrinsic intes-
tinal sensory systems, with consequences for peristalsis,
nociception, brain chemistry and mood [10, 11, 17-19]
(Fig. 2). Clearly, better knowledge of the neuronal projec-
tion pathways by which such signals reach the brain is
critical to understanding the microbiota-gut-brain axis. It
is also important to emphasize that communication in this
axis is bi-directional, and there is strong evidence that, for
example, stress has a significant effect on the composition
and function of the gut microbiota [20-23].

The gut microbiome is necessary for the normal develop-
ment of the enteric nervous system [17, 24]. Germ free
mice have decreased nerve density, a decreased number of
neurons per ganglion, and an increased proportion of my-
enteric nitrergic neurons in the jejunum and ileum [24].
The changes in neural density are associated with decreased
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frequency and amplitude of muscle contractions in the
jejunum and ileum of germ free mice. A decrease in excit-
ability of myenteric IPANSs has also been demonstrated
in germ free animals [17]. Exposing germ-free mice to a
normal gut microbiota (conventionalization) normalized
both density and activity of enteric neurons [17, 24].

It has been the general understanding that IPANs are
primary afferent for gut motility and secretory reflexes
while extrinsic sensory neurons are primary afferent for
signals to the central nervous system. Until very recently
these sensory systems were believed to be separate, with
IPANs unable to contribute synaptically to impulses that
reach the brain.

However, recent research by Perez-Burgos et al. [25] has
identified a nicotinic intramural sensory synapse between
the IPANs and the vagus that may have major implications
for our understanding of the microbiota-gut-brain axis.

We and others have previously demonstrated that
introducing certain bacteria into the gut alters brain
chemistry and behavior only if the afferent vagus is intact
[10, 11, 18, 26]. Perez-Burgos et al. identified that the ma-
jority of the multiunit vagal afferent action potentials
evoked by the L.rhamnosus strain were dependent on
intramural synaptic transmission and were silenced after
nicotinic or total synaptic blockade. Furthermore, vagal
afferent firing rates correlated monotonically with IPAN
excitability, a relationship almost entirely dependent on
IPAN/vagal synaptic transmission. The connection between
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Fig. 2 Hardwired connections between gut microbes and the brain: Gut microbes can modulate activity of spinal and vagal sensory neurons.
Vagal sensory neuron may assume both primary afferent and interneuron functions via activation of enteric nervous system to vagal fiber
nicotinic sensory synapse. Distinct bacterial species have been demonstrated to modulate neural activity through inhibition of the TRPV1 and
KCa3.1 ion channels on spinal and intrinsic primary afferents respectively
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gut microbes, IPANs and the vagus is further supported
by the observations that mesenteric afferent signaling
following IPAN stimulation is almost completely absent
in germ-free mice but restored following conventionaliza-
tion of the adult animals [27]. While it is not clear
how the gut microbiota contribute to normal ENS de-
velopment and function, alterations in gut microbiota
also impact the intestinal and CNS glial cells that pro-
vide support and nourishment for neurons as well as
regulating synaptic transmission. Kabouridis et al. [28]
demonstrated that antibiotic treatment reduced the
number of glial cells within the intestinal mucosa, while
Erny et al. [29] reported that in germ free mice or conven-
tional mice treated with broad spectrum antibiotics, mat-
uration and function of microglia in the brain was
attenuated. It is therefore possible that reduced glial cell
numbers and function may underlie at least some of the
ENS, and CNS, deficits in GF animals and therefore might
underlie the consequences of disturbances in the normal
balance of gut microbiota (dysbiosis).

The sheer density of IPANs in the human gut (100
million compared to 50,000 extrinsic sensory vagal and
spinal neurons) may make their role as the initial neural
sensor of luminal stimuli seem obvious. However, until
the study of Perez-Burgos et al. [25] there was no known
mechanism whereby sensory signals from these neurons
could be communicated to the brain. This work has ef-
fectively redrawn the map of hard-wired gut-brain com-
munication suggesting that IPANs relay or gate signals
originating from microbes in the lumen to the vagal sen-
sory ganglia. What remains to be identified is how IPAN
to vagus nerve gating is regulated, and what determines
sensory responses that remain in the gut, such as axon
reflexes, versus those that are transmitted to the vagus,
and thus communicated to the brain. Furthermore, we
do not know how IPANs contribute to the ability of
vagal signaling to distinguish between pathogenic and
non-pathogenic microbial stimuli [30]. While there is
clear evidence that certain ingested pathogenic [31] and
non-pathogenic [10, 11, 25] bacteria can modulate vagal
activity and subsequently brain chemistry and behavior,
to date there is no direct evidence that the vagus nerve
is involved in mediating signals from changes in the resi-
dent gut microbiota to the brain. Indeed the only study
to address this directly, utilizing antibiotics to disrupt
the microbiota, suggests that neither the vagus nor the
autonomic nervous system is involved [32].

While much of the discussion and research related to
neural components of the microbiota-gut-brain axis have
focused on the vagus nerve, it is clear the spinal affer-
ents also play a role particularly in relation to microbial
modulation of visceral pain perception. Several investiga-
tors have shown that ingestion of specific microbes can
reduce or inhibit visceral pain induced by gut distension
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in rodents [33—35]). In the case of one particular organism
Lactobacillus rhamnosus JB-1, the reduction in visceral
pain perception was associated with altered signaling in
dorsal root ganglion (DRG) fibres in rats [33].

One of the key receptors responsible for pain perception
in the gut is a member of the vanilloid receptor family, the
transient receptor potential vanilloid 1 (TRPV1) [36]. The
major cellular expression of TRPV1 in the gastrointestinal
tract is in spinal and vagal primary afferent neurons [36].
In a recent investigation of the mechanisms underlying
the anti-nociceptive activity of Lactobacillus reuteri DSM
17938 [37], it was demonstrated that introduction of this
organism into the intestinal lumen decreased the firing
frequency of nociceptive spinal fibres, but not vagal fibres
in the mesenteric nerve bundle. Further investigation re-
vealed that the anti-nociceptive activity of this L. reuteri
strain likely rests on the ability of the organism to directly
or indirectly act as a potent specific blocker of TRPV1
ion channels in extrinsic spinal primary sensory fibres
and their corresponding DRG cell bodies. Of note, the
antinociceptive activity of the L.rhamousus JB-1 strain
was independent of TRPV1 antagonism. These findings
suggest that the mechanism of action of anti-nociceptive
bacteria may differ at the molecular level according to
species and strains.

Microbes and enteroendocrine responses

While neural pathways play an important role in the
microbiota-gut-brain axis it is not known how bacteria
in the lumen or mucoepithelial layer signal to sensory
neurons in the gut. Enteroendocrine, and perhaps other
epithelial cells, contain and release a variety of sensory
mediators that might activate IPAN, vagal and spinal termi-
nals within the intestine [38]. Putative sensory mediators
include serotonin, substance P, somatostatin, CCK, GABA,
ATP, and a range of hormones including leptin, orexin,
[39, 40]. Two recent studies have identified that compo-
nents of the normal microbiota regulate host gut seroto-
nergic pathways {Reigstad [41, 42]. Previous studies had
established that colonization of germ-free (GF) mice with
normal human or mouse derived fecal microbiota signifi-
cantly accelerates whole-gut transit. These changes in gut
motility occur through a mechanism, dependent at least
partially, on 5-HT3/4 receptor signaling, suggesting that
the gut microbiota may modulate the gut serotonergic
pathways of the host [43]. Reigstad et al. [42] utilized
GF or humanized (GF colonized with human fecal
microbiota) mice to investigate this phenomenon and
demonstrated that while human- and mouse-derived
complex microbial communities did not alter the sensitiv-
ity of the gut to exogenous 5-HT they did increase colonic
tryptophan 5-hydroxylase 1 (TPH1) protein and tissue
5-HT concentration. This suggested that increased 5-HT
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production was responsible for the increase in gut transit
time with colonization.

In a separate study, Yano et al. [41] demonstrated that,
in particular, spore-forming bacteria (Clostridia species)
from the mouse and human microbiota promote 5-HT
biosynthesis from colonic enterochromaffin cells (ECs),
which supply 5-HT to the mucosa, lumen, and systemic-
ally to the bone marrow (circulating platelets). Here,
microbiota-dependent effects on gut 5-HT was shown
not only to modulate GI motility but also to have impli-
cations for host physiology beyond the gut, enhancing
platelet activation and aggregation. It is possible these
findings are relevant to the microbiota-gut-brain axis, as
the modulation of the ENS and gut motility by the EC
derived 5-HT may itself influence the composition of
gut microbiota, as well as afferent pathways, and conse-
quently brain chemistry and behavior. However the direct
consequences of microbiota-induced increases in periph-
eral 5-HT have yet to be explored in terms of affecting the
content and distribution of 5-HT in the brain.

In an attempt to determine the mechanisms under-
lying the ability of the spore forming bacteria to pro-
mote peripheral serotonergic pathways, Yano et al.
[41] assessed metabolite level changes in response to
conventionalization and identified 47 metabolites that
correlated positively with increased 5-HT production.
They went on to test the ability of 16 of these metabolites
to induce 5-HT in enterochromaffin cell cultures. Among
these, a-tocopherol, butyrate, cholate, deoxycholate,
p-aminobenzoate, propionate, and tyramine all en-
hanced 5-HT production [41]. Similarly, Reigstad et al.
[42] demonstrated that butyrate and acetate caused
concentration-dependent increases in TPH1 expression by
an enteroendocrine cell line. Taken together these studies
indicate the gut microbiota, and in particular spore form-
ing Clostridia, promote peripheral 5-HT production and
that a range of metabolites produced by the microbes can
induce 5-HT production in vitro. Which, if any, of these
metabolites is involved in promoting 5-HT in vivo remains
to be determined. Furthermore, it is not known if there
are any human conditions where a disrupted microbiota
leads to modulation of the serotonergic pathways or that
modification of conventional microbiota can boost 5-HT
production in a physiologically meaningful way.

Probiotic and prebiotic modulation of the gut-brain axis

To date, the most of the evidence for modulation of the
gut-brain axis by microbes comes from assessing changes
in brain function and behavior following oral administra-
tion of specific bacteria that are often putative probiotics
[16]. While an intact vagus seems critical to the ability
many of such bacteria to modulate brain chemistry and
behavior [10, 44], the underlying mechanisms of action
are largely unknown. Host factors and environment,
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including resident microbiota, likely play an important
role in determining the efficacy of “psychoactive” bacteria.
Indeed, the ability of L. helveticus to attenuate anxiety-like
behavior in mice was demonstrated to be genotype and
diet-dependent [45].

Specific bacterial strains or even isolated components
of microbes are able to acutely modulate both intrinsic
and extrinsic gut sensory neuron activity in ex vivo prep-
arations suggesting that the modulation of the resident
microbiota does not play a major role in mediating their
effects [18, 19, 46, 47]. However, a recent in vivo study
indicates that certain effects of psychoactive bacteria on
the brain do require long-term exposure [48]. Mice re-
ceiving the psychoactive bacteria L. rhamnosus JB-1 for
28 days and were subjected to magnetic resonance spec-
troscopy weekly and again 4 weeks after cessation of
treatment. Glutamate/glutamine levels increased in the
brain following 2 weeks of treatment while GABA levels
were elevated only after 4 weeks. The fact that no neuro-
transmitters were elevated before 2 weeks of treatment
has parallels with the known delays in the clinical thera-
peutic effects of antidepressants despite their acute
pharmacological actions [49]. Follow up 4 weeks follow-
ing cessation of treatment revealed that NAA and GABA
levels had returned to baseline levels but, significantly,
glutamate/glutamine levels remained elevated. This sug-
gests that even though organisms such as L. rhamnosus
are generally regarded as a transient colonizers and do
not persist in the gut, at least some of the effects on
brain chemistry may be prolonged.

While experiments utilizing oral treatment of bacteria
do provide evidence that microbes can modulate gut-
brain communications it is important not to conflate such
results with the actions of the resident gut microbiota. It is
entirely possible that transient exposure of the entire
GI tract to specific organisms triggers mechanisms of
immune and neural modulation inaccessible to the per-
manent bacterial communities/colonizers.

More recently investigators have begun to explore the
possibility of modulating gut brain communication by
altering resident microbiota through diet, particularly
the use of prebiotics that promote the growth of specific
potentially beneficial bacteria.

Early support for the suggestion that, in addition to
any direct effects of nutritional components, diet-induced
changes in bacterial diversity may influence behavior came
from a study by Li et al. [50]. Mice fed a diet containing
50 % lean ground beef were found to have a greater diver-
sity of gut bacteria than those receiving standard rodent
chow. The increase in bacterial diversity was associated
with an increase in working and reference memory and re-
duced anxiety-like behavior.

More recently a number of studies have investigated
the effects of feeding non-digestible oligosaccharides on
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the CNS. These oligosaccharides pass mainly unabsorbed
through the small intestine into the colon and are con-
sidered prebiotics as they have been demonstrated to
promote the growth of specific gut bacteria including
members of the genus Bifidobacterium and Lactobacillus
[51, 52]. Mice fed with the human milk oligosaccharides
(HMO), 3'Sialyllactose or 6'Sialyllactose, for 2 weeks prior
to being exposed to a social disruption stressor were pro-
tected against a stressor induced increase in anxiety-like
behavior associated changes in gut microbiome profile
[53]. Similarly, feeding a mix of non-digestible galacto-
oligosaccharides (GOS) was demonstrated to protect
against endotoxin induced anxiety-like behavior and to
attenuate increases in cortical levels of 5-HT2A recep-
tor and IL-1 P [54].

In unstressed animals, chronic oral administration of
the most abundant HMO, 2’-Fucosyllactose, to mice and
rats [55] resulted in enhanced hippocampal long-term po-
tentiation (LTP); a process associated with learning mem-
ory and fear processing. This effect on LTP was related to
better performance of animals in tests of spatial learning,
working memory and operant conditioning. In addition,
chronic administration of 2'-FL increased the expression
of molecules involved in the storage of newly acquired
memories, including the postsynaptic density protein 95,
phosphorylated calcium/calmodulin-dependent kinase II
and brain-derived neurotrophic factor in cortical and sub-
cortical structures.

While such studies may be suggestive of dietary/pre-
biotic modulation of the microbiota-gut brain axis, it is
important to note that the prebiotic oligosaccharides
tested all have direct effects on the host independent of
the gut microbiota. Sialyllactose is a source of sialic acid
which is particularly important for brain development
and for cognitive functions. Dietary sialic acid is utilized
by brain cells to form gangliosides and sialylated proteins
such as neural cell adhesion molecule (NCAM) [56, 57].

Fucosylated HMOs, including 2'-FL, directly diminish
colon motor contractions in an ex vivo model, suggest-
ing a direct modulation of enteric nerves [58], while
GOS have recently been demonstrated to directly modu-
late the immune system, altering dendritic cell function
in vitro [59]. Further studies on the ability of specific oli-
gosaccharides to influence brain chemistry and behavior
will be required to discriminate between the microbial
contribution of the prebiotic versus direct action on host
tissues.

Antibiotic disruption of the microbiota

The effects of changes in the composition of the gut
microbiota on behavior and brain chemistry have also
been explored using antibiotic treatments. Bercik et al.
[32] demonstrated that in adult BALB/c mice, oral ad-
ministration of neomycin and bacitracin along with the
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antifungal agent primaricin lead to a transient change in
the composition of the gut microbiota with associated
changes in behavior, including increased exploratory
drive and decreased apprehension in both the step down
and light/dark preference tests. Antibiotic treated animals
also had altered BDNF levels in the brain, being decreased
in the amygdala while increased in the hippocampus [32].
Furthermore, these investigators showed that fecal trans-
plantation from the NIH Swiss mouse strain (anxiolytic)
to the more anxious germfree BALB/c strain within
2 weeks induced in the host the behavioural phenotype of
the donor. Similarly, the reverse experiment in which
BALB/c provided the donor fecal transplant to the NIH
strain also reproduced in the recipients the donor pheno-
type. The nature of the molecules and/or microbiota
responsible for this extraordinary alteration in behavior
await exploration.

In a more recent study, Desbonnet el al. [60] tested
the behavior of conventionally housed mice treated with
a cocktail of antibiotics from weaning (post-natal day
21) onwards. With continuous antibiotic treatment the
adult mice exhibited a depleted and restructured gut
microbiota together with reduced anxiety-like behavior
and cognitive deficits. Changes in behavior in antibiotic
treated mice were associated with altered dynamics of the
tryptophan metabolic pathway, increased serum trypto-
phan and decreased kynurenine levels, while analysis of
brain chemistry revealed reduced BDNE, oxytocin and
vasopressin expression.

As was the case with exposure to specific organisms, it
appears that certain antibiotic treatment regimens can
also modulate nociception, independently of gut-brain
signaling pathways associated with anxiety and cognition.
Using a rat model, O’Mahony et al. [61] demonstrated that
transient disruption of the gut microbiotia with vancomycin
early in life (postnatal day 4 to 13) had no effect on anxiety
like behavior or cognitive performance but did lead to
long-term increases in visceral hypersensitivity in male but
not female animals. Investigators also noted a decrease in
the alpha-2 adrenoceptors and TRPV1 in the lumbo-sacral
section of the spinal cord of the vancomycin-treated rats in
adulthood [61]. This indicates that early exposure to vanco-
mycin leads to permanent alterations in central nervous
system pathways. Furthermore, the effect of antibiotic treat-
ment on TRPV1 expression, taken together with evidence
that exposure to specific bacteria can modulate activity of
this ion channel [37] suggests TRPV1 is a key component
of microbial modulation of gut-brain signaling particularly
in relation to nociception.

However, overall, rodent studies of the effect of anti-
biotic administration on the development of visceral
hypersensitivity have been contradictory [62, 63]. For ex-
ample, Rifaximin has been shown to prevent chronic stress-
induced visceral hypersensitivity, mucosal inflammation
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and impaired mucosal barrier function, an effect associ-
ated with an increased abundance of Lactobacillus in the
ileum of the rats [64]. While the same study showed that
neomycin did not prevent visceral hypersensitivity [64]. It
is clear that the consequence of antibiotic treatment on
physiological responses associated with the gut-brain axis
is dependent on the antibiotics given, the animal model
used and the timing and duration of treatment in relation
to the developmental stage of the animal.

The use of antibiotics may be important tools for in-
vestigating the impact of microbiota disruption on mood
and behavior. However, caution must be taken when
interpreting the results of such studies as the antibiotics
themselves may have effects in addition to and unrelated
to their antimicrobial actions. Bacitracin, for example, is
a protease inhibitor and has been demonstrated to have
neurotoxic and/or antinociceptive effects when delivered
to the brain [65, 66]. Furthermore, minocycline, a syn-
thetic tetracycline antibiotic, has been shown to exert
neuroprotective effects and to delay motor alterations,
inflammation and apoptosis in various animal models of
neurodegenerative diseases and traumatic brain injury
[67, 68]. The neuroprotective effect of minocycline is
dependent on the ability of the antibiotic to inhibit acti-
vation of microglia [69] and attenuate inducible nitric
oxide synthase (iNOS) expression in brain, leading to a
decrease in free-radical damage [70]. More recently,
minocycline has been demonstrated to protect against
malathion induced depression [71] and valproic acid in-
duced autistic behavior [72] in rodents. Furthermore,
this antibiotic has been reported to be effective in pa-
tients with various psychiatric conditions, but this has
yet to be tested in a large randomized clinical trial [73].
While largely untested, it seems highly plausible that
certain antibiotics could also have direct effects on
neural function when delivered to the “little brain” (enteric
nervous system) in the gut. Indeed there is evidence
that many antibiotics, including vancomycin, can directly
modulate colonic epithelial ion transport ex vivo by de-
pressing neuroepithelial cholinergic neurotransmission
[74]. Furthermore, erythromycin has been demonstrated
to reduce nerve-mediated intestinal contractions via
pre-junctional inhibitory effects on the release of sub-
stance P and acetylcholine from nerves in the myenteric
plexus of the guinea-pig ileum [75].

In a study by Bercik et al. [32] a causal relationship
between antibiotic driven changes in microbiota and
behavioral effects was inferred by the demonstration that,
in contrast to oral antibiotic treatment, intraperitoneal
injection of the antibiotics did not influence behavior.
However, their results did not rule out local, direct, effects
of antibiotics in the gut or the effects of longer-term ad-
ministration. Given the extremely high concentrations of
antibiotic that have been used to deplete and/or disrupt
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the microbiota in animal models, a careful investigation of
direct effects on the ENS, epithelial cells and immune cells
would seem to be prudent. Furthermore, it will be import-
ant to conduct studies utilizing clinically relevant doses of
antibiotic to identify if “real world” levels of microbiota
disruption, particularly during the neonatal developmental
period, can have long-term consequences for brain func-
tion and behavior.

Fecal transplants to understand the microbiota-gut-brain
axis
Notwithstanding the caveats of antibiotic use described
above, antibiotic depletion when combined with fecal
transfer a useful tool for exploring the effect of distinct
gut microbiota compositions on the gut brain axis. The
use of gut microbiota transfer into germ-free animals
has been used previously to suggest that distinct behav-
ioral traits of mouse strains may be transferred to germ
free mice by the fecal microbiota [32]. However, the ex-
perimental use of germ-free mice has limitations. These
animals are known to have, inter alia, altered brain
chemistry, increased blood brain barrier permeability, an
underdeveloped ENS, reduced peripheral 5-HT production,
altered gut motility and physiology, and many immune sys-
tem deficits [5, 6, 17, 41, 42, 76]. How these profound alter-
ations in the physiology of germ-free animals influence the
impact of specific transferred organisms is unknown, how-
ever fecal bacterial communities transplanted into either
normal or germ-free mice do not necessarily replicate the
donor community in composition and/or function [77].
Use of antibiotic depletion of the microbiota avoids
these limitations of germfree status and the potential
direct effects of antibiotics on the host can be mitigated
by comparing microbiota with distinct compositions
transferred into identically treated control animals. Using
such an approach Bruce-Keller et al. [78] demonstrated
that mice given the microbiota from donors fed a high fat
diet had significant and selective disruptions in explora-
tory, cognitive, and stereotypical behavior compared with
mice receiving control diet microbiota. These behavioral
changes occurred in the absence of significant differences
in body weight. The high-fat diet microbiota also dis-
rupted markers of intestinal barrier function, increased
circulating endotoxin, and increased lymphocyte expres-
sion of ICAM-1, TLR-2, and TLR-4. This study does sug-
gest that changes in gut microbiota composition due to
dietary changes can influence neurologic function and
specifically that the microbiota may contribute to neuro-
logic complications of obesity. However, one potential
confounding factor of this study is that animals received
by bi-weekly oral gavage with microbiota throughout the
experiment. There is the potential that oral exposure to
specific organisms within the gavaged microbiota may
have effects on the nervous and immune system as they
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transit through the GI tract, that would not be influenced
by changes in composition of resident microorganisms.

Microbiome profiles in neurodevelopmental and mood
disorders

Given the potential for alterations in the gut microbiota
to modulate and alter brain function and behavior via
neural, immune and endocrine pathways, there has
been an increasing interest in determining a micro-
biome profile, or specific “causal” organisms, associated
with behavioural and neuro-developmental conditions
such as autism, major depression and even perceived
temperament in toddlers [79].

To date the greatest efforts in this area have been di-
rected towards autism spectrum disorders (ASD) with
several studies suggesting alterations in gut microbiome
composition (reviewed in [80]). However, even here
speculation far outstrips good evidence of a causative
role for gut microbes (a pubmed search for articles pub-
lished in a single year (2015) using the terms “autism
and microbiome” gave 46 hits, 44 of which were reviews
and only 1 an assessment of the microbiome in ASD
subjects). While a number of studies have identified dif-
ferences in the microbiota of ASD versus neurotypical
controls, the results are inconsistent (Table 1). Much of
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the inconsistency may result from differing methodolo-
gies used to evaluate the microbiome and the small
numbers of subjects in many studies. However, even when
similar genome sequencing methods are used, conflicting
results have been obtained. Assessment of the three major
phyla has revealed decreased [81], increased [82] or
unchanged [83, 84] ratios in the relative abundance of
Firmicutes and Bacteroidetes together with increased or
decreased abundance of Proteobacteria [81-83]. Similarly
inconsistent findings have been reported in relation to
clostridia and Bifidobacteria [81, 85-87].Furthermore,
while many individual studies identify distinct bacteria
that appear “abnormal” in ASD, the small number of sub-
jects assessed in many of these studies suggests the poten-
tial for type I errors especially in relation to OTUs of
relatively low abundance.

To date, there have only been only three studies
comparing the fecal microbiota of depressed and non-
depressed subjects [88-90]. These studies identified
an overrepresentation of Bacteroidetes phyla and genus
Alistipes but differ in findings related to overall diversity.
Furthermore, while Jiang et al. [88] identified a negative
correlation between Faecalibacterium prausnitzii (FP) and
the severity of depression symptoms, Naseribafrouei et al.
[89] found no single OTU or clades that correlated with

Table 1 Studies using genome sequencing techniques to determine gut microbiome composition in subjects with Autism
Spectrum Disorder (ASD). bTEFAP, Bacterial tag-encoded FLX amplicon pyrosequencing; FISH, Fluorescence in situ hybridization

Study details Differences in microbiome composition (ASD vs. controls) at taxonomic levels
Authors Subjects Samples | Methodology Phylum Genus/Family Species
Finegold et al. Fecal bTEFAP None Desulfovibrio, I
2010 33 ASD Bacteroidetes Bacteroides vulgatus
[81] Proteobacteria '
8 controls Bifidobacterium longum,
Actinobacteira, Dialister invisus, l
7 sibling Firmicutes l Clostridius leptum
controls
Williams et al. llealand | Pyrosquencing None
2011 23 ASD cecal and quantitative | Firmicutes
[82] biopsies real-time PCR Proteobacteria I Sutterella t
9 controls
Bacteroidetes l
Kang et al. Fecal bTEFAP None None
2013 20 ASD Prevotella, l
[83] Coprococcus
20 controls
Parracho etal. | 58 ASD Fecal FISH None None
2005
[86] 10 controls Clostridium histolyticum '
group
12 sibling
controls
Gondalia et al. Fecal bTEFAP None None None
2012 51 ASD
[87]
53 sibling
controls
Son et al. Fecal Pyrosquencing None None
2015 55 ASD and quantitative Chloroplast
[84] real-time PCR Asteroleplasma I
44 sibling Thalassospira
controls
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depression. The observations of Szczesniak et al. [90] in
addition to their fecal microbiome analysis also showed an
increased level of fecal isovaleric acid in depressed pa-
tients, pointing out that this was neurotoxic and could
cross the blood brain barrier.

Variation in results may occur based on how and when
samples are collected and stored, the methods used to
extract and sequence DNA and approaches to data
analysis. These studies also need to include information
on potential confounding factors such as gender, age, use
of antibiotics, probiotics or anti-fungals, history of im-
mune disorders including allergy and autoimmune disease,
the presence of GI-symptoms and information on diets
and use of supplements. Even variables such as stool
consistency can have an impact on the microbiome profile
measurements [91], and should be taken into account.
The selection of the correct control populations is also im-
portant. In studies of major depression Jiang et al. [86]
used healthy controls while Naseribafrouei et al. [87] re-
cruited outpatients from a neurological units and it has
been suggested this may account for the inconsistencies in
comparative diversity between those subjects with major
depressive disorder and controls in the two studies [88,
89]. Similarly, a recent comparison between ASD patients
and neurotypical siblings found no difference in micro-
biome composition, in contrast to a number of studies
examining unrelated controls [84].

Moreover, the majority of studies have been limited to
evaluating the microbial community in fecal material,
yet studies in animal models and humans indicate that
compartment-specific niche differences need to be taken
into account in order to understand how the microbiota
might impact host health. For example, a study using a
restraint stress model in mice demonstrated the differen-
tial effect of stress on the composition of the luminal
versus mucosa-associated colonic community [92]. The
restraint stress induced compartment-specific shifts in
the community-wide profile of the colonic microbiota,
but only impacted the diversity of the mucosa-associated
community. In addition only the mucosa-associated
community showed a decrease in the relative abundance
of Lactobacillus Sp. Utilizing intestinal biopsies, Williams
et al. [82] was able to assess the microbial community of
the intestinal mucoepithelial layer in children with autism
spectrum disorder and GI disease compared to children
with GI disease alone. These authors showed decreases in
Bacteroidetes, increases in the ratio of Firmicutes to
Bacteroidetes, and increases in Betaproteobacteria; changes
that were associated with decreased expression levels of di-
saccharidases and hexose transporters in intestinal tissue.

While the majority of microbiome studies focus on
phyla and class level changes a recent investigation of
the gut microbiome of patients with atopic dermatitis
opens the possibility that sub-species level changes may
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have implications for the physiology of the host [93]. Their
initial findings were that FP were increased in these pa-
tients. This was surprising as reduced abundance of FP
had been reported to correlate with disease in patients
with Crohn’s disease [94]. Song et al. [93] reported that
enrichment of a subspecies of FP that are low producers
of butyrate is strongly associated with atopic dermatitis.
This intraspecies compositional change in FP reduced
the number of high-level producers of butyrate and
propionate that have anti-inflammatory effects, and in
keeping with this, fecal samples from patients with atopic
dermatitis also showed decreased levels of butyrate and
propionate. This may be relevant to the microbiota-gut
brain axis as short-chain fatty acids (SCFA) such as butyr-
ate are also suggested to play a role in modulating neural
function, peripheral 5-HT production and have potent
anti-depressant like activity [41, 42, 95, 96].

It is clear that larger studies with more consistent
methodology that can be replicated independently, are
required if we are to address the issue of whether the
gut microbiome of individuals with specific mood or
neurodevelopmental disorders are truly different from
controls and if so what those differences are, and even-
tually if these differences are an association or related to
causation. The question of causality is complicated by
the bi-directional nature of gut-brain signaling. So while
behavioral mood or neurodevelopmental disorders may
be associated with dysbiosis it is also clear that changes
in the CNS impacts the gut microbiota. For example, ex-
posure to psychosocial stress, in addition to altering brain
chemistry and inducing anxiety like behavior, also disrupts
the gut microbiota. Although, the magnitude and direction
of the compositional shift may vary between host genotype
and/or models of stress [20—22].

Similarly, exposure to immune challenge or valproic acid,
which induce autism-like behavior in mice, also lead to
shifts in the microbiome profile [97, 98]. This then begs the
question, could host induced changes in the gut microbiota
in turn modulate the host? A recent study by De Palma et
al. [99] suggests this may be the case. These investigators
demonstrated that, in mice, early-life stress alters the
colonic microbiota composition, enhances hypothalamic—
pituitary—adrenal axis (HPA) and colonic cholinergic
neural activity with associated anxiety-like behavior and
behavioral despair. Using germ-free mice it was demon-
strated that the enhanced HPA and cholinergic activity
were independent of the microbiota. However, the micro-
biota were necessary, but not sufficient, for the induction
of behavioral changes, indicating that a combination of
host and microbial factors are required.

Microbial metabolites and the microbiota-gut brain axis
To propose a causal relationship between specific microbes
or groups of microbes and mood or neurodevelopmental
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disorders there should be a viable mechanism through
which these microbes might drive changes in brain function
and behavior. This might include the production or re-
duction in the levels of specific metabolites. However,
the simple ability of organisms to produce specific me-
tabolites known to be neuromodulators is not enough:
they must be shown to have physiologically relevant
impact on the levels of these metabolites or to occupy a
unique niche within the gut where localized production
of these metabolites will influence the host.

There has been much discussion of the roles of short-
chain fatty acids (SCFAs) in this regard. Resulting from
the fermentation of largely insoluble carbohydrates and
fibres by certain components of the gut microbiota,
SCFA, mainly acetate, propionate and butyrate are fre-
quently regarded as having a beneficial impact on
health. They provide energy for colonocytes, improve
ion absorption, have anti-inflammatory properties, and
regulate serotonin production and enterochromaffin
cell numbers [41, 42, 100]. Furthermore butyrate, an
effective histone deacetylase inhibitor, has been reported
to have greater antidepressant-like effects than fluoxetine
in a mouse model [96]. Conversely, high levels of mi-
crobial SCFA production, particularly propionic acid,
has been proposed to have detrimental effects on brain
development that may lead to autism like behaviors
[101]. This has been based on demonstrations that ad-
ministration of propionic acid by intracerebral injection
(or by subcutaneous or oral routes) during key stages
of early life development, induces behavioral changes in
rodents that correlate with autism [102—104]. The asso-
ciation is further supported by evidence of increased
SCFA in stool of autistic children compared with neu-
rotypical controls [105]. However, no assessment has
yet been made of whether modulation or disruption of
the gut microbiota can result in systemic SCFA levels
that are in anyway comparable to the neurotoxic levels
achieved following the high (typically 250-500 mg/kg)
subcutaneous or oral dose utilized in the rat models
[102-104], or that the rat model might reasonably reflect
serum levels of SCFA in autistic children.

Nonetheless, a study in an animal model of autism
suggests that exposure to specific microbes may attenuate
some autism-like behaviors [97]. Injection of pregnant
mice with a viral mimic (POLY L:C) resulted in disrupted
gut microbiota, increased intestinal permeability and typ-
ical stereotypical autistic behaviors in the offspring that
lasted into adulthood. Furthermore they identified in a
metabolomics approach a molecule, which when adminis-
tered to naive mice, largely reproduced the behavioral ab-
normalities. Oral administration of B. fragilis to pregnant
mice before and immediately after birth restored micro-
biota changes, increased intestinal barrier integrity and
significantly diminished autistic behaviors. While the

Page 10 of 14

administration of B. fragilis did not prevent all of the
behavioral abnormalities, the findings suggest that viral
infection over the course of pregnancy may produce
lasting effects, which are potentially reversible by the
oral administration of particular bacteria.

The concept of microbial endocrinology [106] has now
gained general acceptance. Originally coined in relation
to observations that stress, via secretion of catecholamines,
could influence the number of potential gut pathogens and
influence their proliferation and virulence, the term was ex-
tended to include the suggestion that bacterial synthesis of
neurotransmitters such as GABA, histamine and 5-HT,
plays a role in mediating effects on the gut brain axis with
potential impact on mood and behavior [107, 108]. Cer-
tainly, evidence that neurotransmitters produced by the
host can influence the function of components of the
microbiota supports the concept of shared signaling
pathways. For example in the QseC sensor kinase of
the pathogen Escherichia coli O157:H7 is a receptor for
host derived epinephrine/norepinephrine activation which
leads to transcription of virulence genes in the bacteria
[23, 109]. Conversely there is increasing evidence that
signaling molecules of quorum sensing systems, used
by bacteria to communicate and coordinate their ac-
tions [110], can also bind to mammalian receptors, in-
cluding taste receptors [111], and directly influence the
host [111-113]. A very recent study also indicates that
quorum-sensing peptides from Clostridium species can
penetrate the blood brain barrier [114]. However, while
the concept of microbial endocrinology is attractive
and highly plausible, to date there is no evidence that
disruption or change of the gut microbiota leads to sig-
nificant changes in microbe derived neurotransmitters,
or that these influence brain function. With the possible
exception of histamine mediated effects of L. reuteri and
L. rhamnosus on the immune system [115, 116], there is
as yet no evidence that such neurotransmitters influence
the microbiota-gut-brain axis.

Clinical studies

Animal models provide powerful tools for identifying
mechanisms of inter-kingdom communication that may
influence the microbiota-gut brain axis. For such experi-
ments, rodents, particularly the mouse, are probably the
most commonly used models. As with all data obtained
from studies in mice, caution must be exercised in ex-
trapolating the potential significance to humans (For a
comprehensive review of the strengths and limitations of
mouse models in microbiome research see [117]). Specif-
ically, the bi-directional communication between micro-
biota and host is host specific and thus even humanized
mice, may not establish the same relationship with specific
organisms as humans. Indeed, it has been concluded that
certain taxa resident in the gut microbiota of the human
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are absent in the humanized mice and mice do not retain
a complete profile of transplanted human fecal microbiota
[118]. It has also been reported that the immune system of
humanized mice does not mature normally [119].

Given the limitations of animal models it is important
that we obtain confirmatory evidence of the significance
and therapeutic potential of the microbiota-gut-brain
axis in human studies. However, to date, there has been
very little evidence that disruption of the gut microbiota
or exposure to specific non-pathogenic organisms will have
the same neurochemical and behavioral effects observed
in animal models. In a double-blind, randomized, placebo-
controlled study, Messaoudi et al. [120] administered a
combination of L. helveticus and Bifidobacterium longum
to healthy women and men for 30 days and then assessed
the recipients’ level of anxiety and depression and 24-h
urinary-free cortisol levels. Daily administration of the
bacteria caused a small but statistically significant im-
provement in scores related to perceived stress, anxiety
and depression compared to placebo. The 24-h urinary
cortisol levels were similarly reduced in subjects receiving
the bacteria. In another clinical pilot study, 39 patients
with a diagnosis of chronic fatigue syndrome were ran-
domly assigned to receive Lactobacillus casei Shirota or
a placebo daily for 2 months. There was a significant
decrease in anxiety, but not depressive symptoms in
the treated group [121].

A recent brain imaging study has provided additional
impressive supportive evidence for a microbiota-gut-
brain axis in humans [122]. This clinical study was
performed in 23 healthy women volunteers with no
gastrointestinal or psychiatric symptoms. The women
were randomly assigned to groups given either a fermen-
ted milk product (containing: Bifidobacterium animalis,
Streptococcus thermophilus, L. bulgaricus, and Lactococcus
lactis) or a placebo, which consisted of a nonfermented
milk product adjusted for taste and texture, twice daily for
4 weeks. Consumption of the fermented milk product had
a robust effect on activity of the brain regions that control
central processing of emotion and sensation, as observed
with functional magnetic resonance imaging before and
after consumption of the fermented milk product.

Another equally interesting study investigated the gut
microbiome in a well-characterized group of alcohol-
dependent subjects admitted to hospital for withdrawal
treatment [123]. A significant subgroup presented with
increased intestinal permeability and marked disruption
of gut microbiota composition whereas the remainder
had gut permeability and microbiota similar to those of
healthy controls. Dysbiosis was characterized by reduced
levels in the anti-inflammatory bacteria FP and Bifido-
bacterium and associated with increased scores of de-
pression, anxiety and alcohol craving. After alcohol
withdrawal for 3 weeks, all biological markers as well
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as psychiatric assessments had improved in the patients
without marked gut permeability. However, in the patients
with increased gut permeability, while this aspect was re-
stored to normal, the dysbiosis and anxiety, depression
and craving scores remained. This study strongly suggests
that the psychiatric symptoms were primarily associated
with the altered gut microbiota.

Conclusions

There are major gaps in our knowledge regarding how
the brain perceives signals from gut bacteria. What is the
commensal-induced chemical code triggering ENS and
vagal discharge associated with an anxiolytic response?
Furthermore, how does the brain process and respond to
the multiple signaling pathways relaying information
from the microbiota? Consequently, to what extent
does disruption of the microbiota or microbe-generated
signals contribute to mood, cognition and the develop-
ment and severity of psychiatric pathology?

Overall, it seems clear that having a gut microbiota is
important to the normal development of the central and
enteric nervous systems as it also is to essential metabolic
activities related to digestion such as appetite, satiety and
glucose homeostasis [124]. How qualitative differences in
the microbiota might influence neural development and
function is less clear. Certainly, the gut microbiota re-
sponds to changes in the neurophysiological state of the
host, as it responds to changes in diet and circadian
rhythm. However we cannot, as yet, claim a profile related
to any neurodevelopmental or mood disorder, or ascribe a
particular organism or group of organisms to “playing a
role” in any such disorders. There is some evidence, in
both animal models and humans, that oral exposure to
transient organisms can modulate brain chemistry and po-
tentially behavior, but there are no clear indications that
altering the resident microbiota would be of therapeutic
benefit. There are intense research efforts being made in
these areas and it is certain that such studies will help us
better understand mental health and the biological under-
pinnings of mood and neurodevelopmental disorders.

Are we at the whim of our microbes? Or are we
expounding “fecal phrenology”? Reality, no doubt, falls
somewhere in between, but much more robust, reprodu-
cible research, particularly in human subjects, is required
before we can confirm the promise of initial experimen-
tation and identify the true implications and therapeutic
potential of the microbiota-gut-brain axis.
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