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Abstract

Background: Against the backdrop of renewed efforts to control tuberculosis (TB) worldwide, there is a need for
improved methods to estimate the public health impact of TB programmes. Such methods should not only address
the improved outcomes amongst those receiving care but should also account for the impact of TB services on
reducing transmission.

Methods: Vital registration data in India are not sufficiently reliable for estimates of TB mortality. As an alternative
approach, we developed a mathematical model of TB transmission dynamics and mortality, capturing the scale-up
of DOTS in India, through the rollout of the Revised National TB Control Programme (RNTCP). We used available
data from the literature to calculate TB mortality hazards amongst untreated TB; amongst cases treated under
RNTCP; and amongst cases treated under non-RNTCP conditions. Using a Bayesian evidence synthesis framework,
we combined these data with current estimates for the TB burden in India to calibrate the transmission model. We
simulated the national TB epidemic in the presence and absence of the DOTS programme, measuring lives saved
as the difference in TB deaths between these scenarios.

Results: From 1997 to 2016, India’s RNTCP has saved 7.75 million lives (95% Bayesian credible interval 6.29–8.82
million). We estimate that 42% of this impact was due to the ‘indirect’ effects of the RNTCP in averting transmission
as well as improving treatment outcomes.

Conclusions: When expanding high-quality TB services, a substantial proportion of overall impact derives from
preventive, as well as curative, benefits. Mathematical models, together with sufficient data, can be a helpful tool in
estimating the true population impact of major disease control programmes.
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Background
India is the highest tuberculosis (TB)-burdened country
in the world, accounting for about a quarter of all inci-
dent cases and TB deaths [1]. Following a review of the
erstwhile National TB Programme (NTP) in 1992, the
Government of India decided to implement the Revised
National TB Control Programme (RNTCP), adopting
the internationally recommended Directly Observed
Treatment, Short Course (DOTS) strategy [2] based on
five principles: political and administrative commitment;
good-quality diagnosis; uninterrupted supply of quality
drugs; directly observed treatment (DOT); and systematic

monitoring and accountability. Following a pilot from
1993 to 1996, the RNTCP was formally launched in 1997
and expanded in a phased manner to all the districts in
the country by 2006 [3].
While DOTS remains a mainstay of TB control today,

recent years have seen a shift in the ways in which
DOTS programmes, such as RNTCP, are evaluated. For
example, a major goal for RNTCP was to meet the pri-
mary targets of case detection of at least 70% of smear-
positive incident TB cases and a cure rate of at least 85%
in these cases. The TB-related Millennium Development
Goals (MDGs) and the WHO’s Stop TB Strategy empha-
sized impact as well as programmatic implementation
[4–6]: they posed targets of halving TB mortality and
prevalence by 2015, compared to 1990, and reversing
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trends in TB incidence. More recently, the End TB strat-
egy calls for concerted action to reduce TB deaths by
95% between 2015 and 2035 [7].
There is therefore increasing emphasis on how many

TB deaths are averted (‘lives saved’) by improving TB ser-
vices. The main approach to this question has been to
multiply the number of patients treated under RNTCP by
the percentage reduction in case fatality rates under
RNTCP compared to the erstwhile NTP [8, 9]. While
straightforward and transparent, a limitation of this ap-
proach is that it does not account for ‘indirect’ effects, that
is, the fact that effective treatment reduces opportunities
for transmission by shortening a patient’s infectious
period. Lives are thus saved by averting transmission as
well as by improving treatment outcomes [10, 11].
A strong vital registration system is the most direct

approach for estimating lives saved. However, India’s
vital registration system captures less than half of the
total deaths: it has several challenges, including poorer
coverage in earlier years, non-reliability of data on
underlying cause of death (COD) and a high proportion
of garbage coding [12–14]. These issues preclude direct
measurement of TB-specific mortality rates.
Mathematical modelling offers an alternative approach,

providing a systematic framework for capturing the dynam-
ics of TB transmission and enabling estimates of program
impact. Combined with Bayesian evidence synthesis
methods, such models can incorporate evidence and uncer-
tainty from a range of disparate sources, including mortality
rates and epidemiological and programmatic data [15, 16].
Previous analyses by RNTCP estimated that the

programme averted 1.26 million deaths from 1997 to
2006 [17], using a method similar to that described
above: comparing mortality rates amongst those treated
within the programme with those treated in the erst-
while NTP, which was operational since 1962 (as de-
scribed, for example, in [10]). In the present work we
incorporate transmission using mathematical modelling.
In what follows, we give a brief overview of some essen-
tial features of RNTCP and the Indian healthcare system
that are relevant to the current analysis. We then de-
scribe the model framework, the different data sources
involved and the Bayesian synthesis framework. We
present results for projected epidemics on a national
scale, in the presence and absence of RNTCP. We show
implications for the lives saved by RNTCP. Finally, we
discuss implications of this work: the limitations of the
model, relevance for other national settings and ques-
tions arising for future work.

Methods
Overview of RNTCP services
India’s RNTCP is the world’s largest national TB
programme in terms of numbers of patients on TB

treatment. When it was launched in 1997 to replace the
erstwhile National Tuberculosis Programme (NTP), its
purpose was to reform and coordinate TB services on a
national level, in line with DOTS standards of TB care.
In particular, improved standards of TB treatment in-
volved enhanced adherence support amongst patients
taking treatment; strengthened patient monitoring; and
the use of a standard treatment regimen [2]. In turn, re-
garding new TB cases, in India this regimen involved
four fully supervised first-line drugs (isoniazid (H), ri-
fampicin (R), pyrazinamide (Z) and ethambutol (E))
given thrice a week for 8 weeks, followed by two par-
tially supervised drugs (H, R) for 16 weeks. Further, to
address the threat of multi-drug-resistant TB (MDR-TB),
Programmatic Management of Drug-Resistant TB
(PMDT) was subsequently introduced in 2007. These
cases are treated with daily dosages of six drugs includ-
ing second-line drugs for a minimum of 24 weeks
followed by four drugs for 18 months, fully supervised
over the full course of treatment.
Overall, these services had not been available in a na-

tionally coordinated way under the erstwhile NTP and,
by addressing these shortfalls, RNTCP aimed to
maximize adherence and cure rates amongst patients on
TB treatment. Here, we refer to these improvements col-
lectively as ‘RNTCP services’.
However, another major feature in the Indian health-

care system is the private sector, where a substantial pro-
portion of TB patients receive care. Vast, fragmented
and unregulated, this sector provides TB care that is
often substandard [18–22]. Available evidence suggests,
firstly, that before RNTCP scale-up, the erstwhile NTP
and the private sector had comparable standards of TB
care [23, 24], and secondly, that there have not been sig-
nificant improvements in the private sector since that
time [20, 25]. In the present work, we therefore only dis-
tinguish RNTCP vs non-RNTCP services, taking the lat-
ter to combine both the erstwhile NTP and the private
healthcare sector. We estimate lives saved by RNTCP
services by comparing TB mortality against a counterfac-
tual where TB care simply continued at the standard of
the NTP and the private sector (‘non-RNTCP’), pro-
jected forward without change.

The modelling framework
We developed a deterministic, compartmental mathemat-
ical model to capture the essential dynamics of diagnosis,
treatment and transmission of TB in India, including the
scale-up of RNTCP services. Key transmission and delay
parameters in the model were calibrated by fitting the
model to WHO estimates of incidence and prevalence in
India (Table 1) [1]. Further, we used values from the litera-
ture for mortality hazards amongst cases undergoing
treatment in RNTCP and amongst cases undergoing
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treatment elsewhere. Mortality hazards for untreated cases
were obtained from studies identified in a systematic re-
view on the natural history of untreated TB [26]. Incorp-
orating these hazards in the transmission model, we
estimated the lives saved by RNTCP between 1997 and
2016. To estimate uncertainty intervals, we embedded this
process in a Bayesian framework to systematically capture
contributions from uncertainty in the model inputs (mor-
tality hazards and other parameters) as well as in the cali-
bration targets (incidence and prevalence [27]). Further
details of these components are given below.

Transmission model structure
Figure 1 illustrates the compartmental model structure.
For simplicity, the model ignores distinctions between
different forms of TB, for example, smear-positive/
smear-negative/extrapulmonary TB or adult/pediatric
TB. Instead, the model assumes a rate of infection (par-
ameter β, to be estimated) that is essentially averaged
over these different forms of TB. With less than 5% of
TB cases in India being HIV-coinfected [1], we ignore
the role of HIV in these dynamics.
The rate r (to be estimated) reflects the delay from the

start of symptoms to the initiation of TB treatment
under RNTCP or elsewhere: accordingly, it reflects the
sum of the initial patient delay before care seeking, along
with the subsequent delay before diagnosis and initiation
of treatment, during which a patient may visit several
different providers. The model distinguishes types of
providers only at the point of treatment initiation, as-
suming that a proportion p of first-line treatment initia-
tions are in RNTCP (the ‘TRNTCP’ compartment), and
the remainder are elsewhere (‘Tnon-RNTCP’ compartment).
As described below, we chose the time evolution of p to
capture RNTCP scale-up. Here, the differences between
RNTCP and non-RNTCP services are: (1) higher rates of
treatment completion and success under RNTCP; (2)
lower mortality while on treatment; (3) a lower risk of

acquisition of MDR-TB from first-line treatment under
RNTCP; (4) the availability of standard second-line
treatment in RNTCP. For a given parameter set, we ini-
tialized the model by simulating the TB epidemic to
equilibrium, in the absence of RNTCP. We then pro-
jected the model forward in time from 1997 to 2016, in-
corporating RNTCP scale-up from 1997 to 2007 and
allowing for an annual 1.2% increase in total population
size from 1997 onwards. We then assessed the model fits
to the calibration data as of 2016, as described below.
Flows between compartments, including the infection

process, were captured by a system of differential equa-
tions. Model parameters are listed in Table 2. Further
technical details, including the governing equations, are
given in Additional file 1.

Capturing scale-up of RNTCP services
For the proportion of cases p(t) receiving first-line treat-
ment through RNTCP at a given time t, we used
programme data for RNTCP geographical coverage (Fig. 2,
blue points) as a proxy for scale-up, modelled using a lo-
gistic function (Fig. 2, blue curve; see figure legend for as-
sociated coefficients). In the model, the parameter pmax

(the ultimate ‘plateau’ for p(t)) was subsequently chosen to
give the correct, cumulative notifications (public-sector
treatment initiations) up to 2015.
Similarly, for coordinated MDR-TB services (PMDT),

as a proxy for scale-up we used data for the numbers of
MDR-TB cases notified to the programme (Fig. 2, red
points). The red curve G(t) illustrates the logistic func-
tion used to model the pace of PMDT scale-up, with co-
efficients again given in the legend. In the model we
took q(t) = qmaxG(t), where the parameter qmax was
chosen to give the correct cumulative number of notifi-
cations of MDR-TB up to 2015.

Epidemiological data
We calibrated the model to TB incidence and preva-
lence. WHO estimates for TB incidence have recently
been revised upwards substantially, in light of growing
evidence that the true TB burden in India is greater than
was previously recognized [1]. We used the updated,
2015 estimates for incidence. However, in the absence of
similarly updated prevalence estimates, we drew instead
from a recent analysis pooling subnational prevalence
surveys at different sites in India and reported in [27],
taking this estimate to represent national TB prevalence
in 2015. While information on trends would be helpful,
the most recent WHO estimates in incidence trends are
based on further assumptions, namely that trends for
incidence mirror those in the Annual Risk of TB Infec-
tion (ARTI) [1, 28]. Therefore, to avoid fitting our model
to what is essentially another model, we limited the cali-
bration only to the single time points described above,

Table 1 Calibration targets for the model. Estimates for
incidence and proportion MDR are taken from the Global TB
Report 2016, while prevalence estimates are taken from a recent
pooled analysis of prevalence surveys in India, reported in [27]

Indicator Calibration target

Incidence in 2015 217 (112–355) per 100,000
population

Prevalence in 2015 253 (195–312) per 100,000
population

Proportion MDR 3.1% (2.6–3.7) (averaged over new
and retreatment cases)

Cumulative notifications to public
sector (1997–2015)

19.61 million (17.65–21.57 million)
(allowing for 10% error)

Out of the above, cumulative MDR
notifications (2007–2015)

92,753 (83,478–102,028) (allowing
for 10% error)
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leaving it to the uncertainty estimation to capture the
different trends that would meet these targets. We mod-
elled these incidence and prevalence estimates and their
accompanying 95% uncertainty intervals, using lognor-
mal probability distributions, to incorporate these distri-
butions in the Bayesian melding procedure described
below.

Mortality hazards
Owing to challenges with vital registration data [9, 12], we
drew from the literature for different mortality hazards in
the model. In particular, we populated four different types
of mortality: amongst untreated TB (μUTB), amongst those
receiving treatment in RNTCP (μRNTCP); amongst those
receiving treatment outside RNTCP (μnon-RNTCP); and
amongst those who have undergone failure or default (μB).

For data on μUTB, sources were drawn from a system-
atic review [26]. We analysed the survival data from
these studies to estimate the overall hazard of mortality,
allowing for variation between studies using exponential
regression with random effects. For μRNTCP, as discussed
in the Additional file 1, we drew from programmatic
data, constructing uncertainty to capture the annual
variability in these data. There was less information on
μnon-RNTCP and μB, each informed by only one source in
the peer-reviewed literature [29, 30]. Accordingly, we
adopted estimates from these respective sources, while
allowing for broad uncertainty around these estimates.

Estimating lives saved
For a given set of model parameters, we simulated the
numbers of TB deaths in the presence and absence of

Fig. 1 Summary of the compartmental model structure. The left-hand side of this figure corresponds to drug-sensitive TB, while the right-hand side
(having compartments labelled with dashes) corresponds to multi-drug-resistant (MDR) TB. The population is divided into different compartments,
representing states of disease and care seeking, with flows between compartments given by the rates shown in the diagram (see also Table 1).
Concentrating on the left-hand side for illustration, uninfected individuals (U), upon acquiring infection, either enter a state of latent infection (L)
or develop pre-treatment active disease (A). The rate r denotes the delay between the start of infectious symptoms and the first TB treatment
initiation. We allow here for first-line treatment initiation either under non-RNTCP (Tnon-RNTCP) providers or under RNTCP (TRNTCP). From either sector
a certain proportion of patients may default or fail treatment without being retained in care (B): these patients subsequently seek care again
after a given delay. Each of these stages carries a per-capita TB mortality rate, estimated from the literature as described in the main text. Finally,
individuals may be cured either through treatment or spontaneously (R). The right-hand side of this figure has slightly more complexity to
account for different pathways for MDR diagnosis: these include drug resistance being recognized at the point of TB diagnosis; after
non-response to first-line treatment; or not at all. The compartment S'RNTCP denotes MDR-TB patients who are receiving second-line
treatment in RNTCP. Further details and model equations are shown in Additional file 1. For clarity, the figure omits exogenous reinfection (which
moves individuals from R to L and I, in the same ratios as from U) and relapse (which moves individuals from R to I)
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Table 2 Parameter values used and estimated in the model. Numbers in brackets show the uncertainty ranges used in the
simulations (for input parameters) or Bayesian credible intervals (for parameters being estimated)

Parameter name Symbol Value Note/source

Average number of infections per
drug-susceptible (DS) TB case per year

β 10.7 [5.8–13.6] Estimated

Average number of infections
per MDR-TB case per year

βmdr 2.00 [1.62–2.62] Estimated

Per care seeking attempt, probability of
seeking care in the public sector
(following RNTCP scale-up)

pmax 0.34 [0.25–0.58] Estimated to get reported
notifications from 1997–2015

Proportion of MDR-TB cases whose drug
resistance is recognized at the point of TB
diagnosis and who start appropriate treatment

qmax 0.07 [0.06–0.09] Estimated to get reported
notifications from 2007–2015

Reduction in force of infection owing
to previous infection

C 0.5 Assumed

Proportion of infections undergoing
‘rapid’ progression

k 0.15 Vynnycky and Fine, 1997 [42]

Rate of breakdown from remote
infection to active disease

h 0.001 y-1 Horsburgh et al., 2010 [43]

Rate corresponding to the delay from the
start of symptoms to the initiation of treatment
(whether in public or private sector)

r 3.29 y-1 [0.83–5.70] Estimated

Mean duration of first-line treatment τFL 2 y-1 Corresponding to 6 months of
treatment duration

Rate of default from non-RNTCP treatment dRNTCP 1.06 y-1 Uplekar et al. 1998 [29]

Rate of default from RNTCP treatment dnon-RNTCP 0.049 y-1 Corresponds to 4.8% default in
RNTCP (TB India, 2015 [34]) (averaged
over smear-positive, smear-negative
and extrapulmonary TB)

Rate of repeat care seeking after
recurrence or failure

w 4 y-1 Corresponds to 3 months of
delay period

Annual recurrence rate ρ 0.003 y-1 Corresponds to lifetime recurrence
risk of 17% (Sun et al., 2013 [44])

Rate of primary MDR acquisition from
patient treated under RNTCP

m 0.02 y-1 TB India, 2015 [34]

Mean duration of second-line treatment τSL 0.5 y-1 Corresponding to 2 years of
treatment duration

Spontaneous cure rate σ 0.166 y-1 Corresponds to 50% spontaneous
cure in 3 years alongside with
TB mortality (Tiemersma et al., 2011 [26])

Proportion cure of drug-susceptible
(DS)-TB in RNTCP after first-line treatment

αpub 0.87 TB India, 2015 [34]

Proportion cure of DS-TB in non-RNTCP
after first-line treatment

αprv 0.51 Uplekar et al., 1998 [29]

Proportion cure of MDR-TB in RNTCP
after first-line treatment (excluding self-cure)

α’pub 0.24 TB India, 2015 [34]

Proportion cure of MDR-TB in
non-RNTCP after first-line treatment

α’prv 0 Assumed

Proportion cure of MDR-TB with
second-line treatment
(excluding self-cure)

α’pub2 0.48 TB India, 2014 [45]

Per-capita mortality hazard
before diagnosis

μUTB 0.086 (95% CI 0.075–0.11) y-1 See Additional file 1

Mortality hazard during RNTCP treatment μRNTCP 0.076 (95% CI 0.069–0.095) y-1 See Additional file 1

Mortality hazard during non-RNTCP treatment μnon-RNTCP 0.27 (95% CI 0.22–0.33) y-1 See Additional file 1

Mortality hazard following default and treatment failure μB 0.28 (95% CI 0.22–0.36) y-1 See Additional file 1
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RNTCP services from 1997 to 2016, estimating lives
saved as the excess deaths between these two scenarios,
and assuming no change in the ‘non-RNTCP’ standard
of care over this period. The uncertainty in key model
inputs (primarily, per-capita mortality hazards) and cali-
bration targets (incidence, prevalence and percent MDR
in 2015) gives rise to uncertainty in estimates for model
parameters (β, βMDR, r, pmax and qmax) and thereby in
model estimates for lives saved. To drive this ‘propaga-
tion’ of uncertainty from inputs to outputs in a system-
atic way, we incorporated the error probability
distributions described above for mortality hazards, inci-
dence and prevalence, together with uniform priors for
the model parameters, in a Bayesian posterior density
(see Additional file 1 for further details). We used Bayes-
ian melding [31] to sample from this posterior density to
accumulate 250,000 samples for the model parameters.
For each sample we then calculated the number of lives
saved, to find an ensemble of estimates. From this en-
semble we extracted the 2.5th, 50th and 97.5th percen-
tiles, ultimately to gain point and uncertainty estimates
for the lives saved by RNTCP. We refer here to these
uncertainty estimates as ‘credible intervals’ (CrI), to dis-
tinguish them from the ‘confidence intervals’ arising
from frequentist statistical approaches.
We also sought to distinguish the TB lives saved dir-

ectly by improved programmatic conditions from the
lives saved as a result of reduced opportunities for trans-
mission: to separate such ‘direct’ and ‘indirect’ effects,
we sought to estimate direct effects alone, by controlling

for transmission. In particular, we calculated the force of
infection λRNTCP tð Þ acting in the simulated, ‘RNTCP’ sce-
nario. Controlling for transmission effects requires that
the same force of infection, as a function of time, should
apply even in the absence of RNTCP. Accordingly, we
simulated this latter scenario with the force of infection
given not as a function of prevalence (as is usually the
case), but imposed as the pre-determined λRNTCP tð Þ: We
then calculated the lives saved owing to direct effects as
the difference in TB mortality between these scenarios.
Further details are provided in Additional file 1.

Results
Table 2 gives the estimates for the model parameters.
Epidemic trajectories implied by these estimates are il-
lustrated in Fig. 3, showing projections for incidence and
prevalence in the presence and absence of RNTCP. The
figure also illustrates the simulation uncertainty in these
trajectories arising from the uncertainty in model inputs.
Additional file 1: Figure S1 shows estimates for the an-

nual numbers of TB-related deaths in the presence and
absence of RNTCP. The difference between these two
scenarios gives the annual lives saved by RNTCP, pre-
sented in Fig. 4, together with a separation of direct and
indirect effects (see also Table 3 for numbers supporting
these plots). Overall, these results suggest that between
1997 and 2016, there were 7.75 million lives (95% CrI
6.29–8.82 million) saved by RNTCP. Of this impact,
3.28 million lives (95% CrI 2.58–4.02 million) (roughly
42%) were attributable to ‘indirect’ effects of reducing

Fig. 2 Scale-up of RNTCP services. Blue points show data for the proportion of geographical coverage of RNTCP [33], while red points show data
for the proportion of geographical coverage of PMDT for MDR-TB [33]. As described in the text, these data were used to determine logistic
functions capturing the timing and pace (‘steepness’) of scale-up. Resulting functions are superimposed as blue and red curves, with the following
parametric forms: F(t) = 1/[1 + Exp(4 · 2 - 0 · 76* t)] (RNTCP scale-up), G(t) = 1/[1 + Exp(20 - 1 · 37* t)] (PMDT scale-up). Note that a value of 1 on the
y-axis does not imply that the proportion of TB patients treated by RNTCP is 100%; rather, this proportion is given by pmax F(t), where pmax is a
parameter to be estimated (see Methods). That is, F(t) (and similarly G(t)) simply represent the proportion of ultimate coverage reached, at a given
time during scale-up
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transmission, the remainder attributable to the direct
programmatic effects that would have arisen in the ab-
sence of any transmission impact. Additional results
(Additional file 1: Table S3) suggest that a total of 42.48
million TB patients (95% CrI 33.94–47.91 million) were
cured through TB treatment over the same period.
Additional file 1: Table S3 additionally separates lives

saved by drug susceptibility status, suggesting that

RNTCP and PMDT together averted 1.50 million MDR-
TB deaths (95% CrI 1.22–1.74 million) from 1997–2016.
However, not all of this impact was due to PMDT: be-
cause of the effects of RNTCP in reducing transmission
even before the initiation of PMDT in 2007, there were
fewer patients on first-line treatment than might other-
wise have occurred, and thus fewer opportunities for the
acquisition of drug resistance during treatment. Overall

Fig. 3 Model projections for annual TB incidence and prevalence, showing projections in the presence of RNTCP (blue region) and in its absence
(red region). To construct these regions, incidence and prevalence curves were determined for each of the parameter sets in the sampled posterior
distribution. From the resulting set of curves, upper and lower boundaries for the trajectories were determined using the 2.5th and 97.5th percentiles
for incidence and prevalence at each time point. The bold lines represent the epidemic trajectories corresponding to the maximum posterior density
(best-fitting parameter set). Circles and uncertainty intervals in black represent WHO estimates for incidence and prevalence

Fig. 4 Model projections for annual lives saved by RNTCP since 1997. The shaded region, showing a 95% credible interval for the epidemic
trajectory, is constructed as described in Fig. 3. The upper region shows overall cumulative lives saved each year, while the lower region aims to
control for reducing transmission over time, to show lives saved directly through improved treatment outcomes alone. Broadly, the vertical
separation between these regions can be interpreted as the lives saved through indirect effects (reducing transmission)
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this amounts to a substantial indirect effect in averting
cases of MDR-TB.

Discussion
Nationally coordinated, high-quality TB services, as em-
bodied by the DOTS strategy, are key in improving out-
comes for patients with TB [32]. A difficult but
important task is to project from this patient-level per-
spective to understand population-level impact. Here we
have applied a mathematical model of TB transmission
to address this need, in the context of the world’s largest
national TB programme using DOTS. Our results sug-
gest that, from 1997 to2016, India’s RNTCP has saved
7.75 million lives with roughly 42% of this impact arising
from preventive, rather than curative, benefits.
As noted earlier, previous work estimated that RNTCP

averted 1.26 million TB deaths from 1997 to 2006 [17]. By
comparison, our work suggests a higher total impact of
1.41 million lives (95% CrI 1.08–1.62 million) saved over
this period (note that Table 3 shows lives saved from 1997
to 2016). A major reason for this difference is that previous
studies did not take into consideration the indirect effects
due to reduced transmission and the lives saved from
MDR-TB. Moreover, we have developed a model consider-
ing several parameters that govern the disease dynamics in
individuals and in the community, while earlier estimations
were based solely on the difference in case fatality rates
under RNTCP and non-RNTCP conditions. As another
comparison, our model suggests that in 2015, TB mortality
in India amounted to 58 (38–75) deaths per 100,000 popu-
lation. This is roughly comparable with, although somewhat
higher than, independent WHO estimates of 36 (29–45)
TB deaths per 100,000 population, in 2015 [1].
While a full cost-effectiveness analysis is beyond the

scope of this study, we consider drug-susceptible (DS)-TB
as a rough indication (separating MDR-TB, as its dispro-
portionate costs would otherwise obscure the cost-impact
ratio amongst DS cases). With an overall expenditure of
USD 2710 million from 1997–2015 excluding PMDT (see
Additional file 1: Table S4) [33, 34], and an estimated 5.64
million lives saved from TB over this time, our results sug-
gest that it has cost USD 480 per DS-TB death averted.
However, TB in India has much ground still to cover. In

particular, much of TB treatment happens not under the

RNCTP, but in a vast and unregulated private healthcare
sector, with evidence of substandard care [18, 21, 35, 36].
Correspondingly, our results suggest that — while TB inci-
dence in India has indeed been reduced over time — it has
nonetheless settled at a new plateau (Fig. 3). In practice, this
plateau reflects the limit of what could be achieved through
the current public sector alone. Engagement with the
private healthcare sector, as well as addressing inefficiencies
in the public health system itself, will be key in addressing
this substantial remainder of India’s TB burden [35, 37].
Our work could also be applied to other national con-

texts. For example, Indonesia and other high-burden coun-
tries in the region also face challenges of a lack of reliable
vital registration data [38]. China has completed several na-
tional prevalence surveys, offering evidence for actual epi-
demiological trends through time in that country [39]. On
the other hand, for settings such as those in South Africa
[40], it is not possible to neglect HIV/TB coinfection as we
have done in the present work: a more developed model
will be a valuable extension for future work.
As with any modelling study, there are limitations to note.

In the absence of adequate data we have neglected secular
trends that may have affected TB transmission over the last
two decades, such as growing urbanization; an increasing
prevalence of comorbidities, including diabetes; and changes
in socioeconomic and living conditions. We have also used
WHO incidence estimates, themselves derived from certain
assumptions. Nonetheless, our findings should be seen as a
demonstration of principle that could be refined with im-
proved TB burden estimates from India. More robust data
on the trends of TB burden over time (for example, through
a series of prevalence surveys) could help to refine the
model estimates. Moreover, in modelling the TB epidemic at
country level, we have neglected subnational differences
such as urban vs rural TB, as well as the unique burden of
MDR-TB in locations such as Mumbai. Further work could
aim to extend this analysis to these settings.
We have also made several model simplifications, for ex-

ample, assuming a fixed delay before initiating treatment
(even if this delay is estimated). If RNTCP scale-up meant
that patients were diagnosed earlier, or indeed that TB
patients would more readily seek care at newly available
facilities, this would have reduced delays to diagnosis. An
assumption of constant r would thus be conservative with

Table 3 Estimated deaths averted by RNTCP from 1997–2016 CrI credible interval

Direct effects Indirect effects Total lives saved

DS-TB lives saved 3.53 million (95% CrI* 2.86–4.11
million)

2.57 million lives (95% CrI 1.80–3.09
million)

6.25 million lives (95% CrI 4.96–7.14
million)

MDR-TB lives saved 0.71 million (95% CrI 0.61–0.79
million)

0.76 million (95% CrI 0.60–0.96
million)

1.50 million lives (95% CrI 1.22–1.74
million)

Total lives saved 4.23 million lives (95% CrI 3.52–4.89
million)

3.28 million lives (95% CrI 2.58–4.02
million)

7.75 million lives (95% CrI 6.29–8.82
million)

(*): As described in the main text, CrI denotes ‘credible intervals’.
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respect to RNTCP impact. In modelling the absence of the
RNTCP under the counterfactual scenario, we have also as-
sumed that the standard of TB care in non-RNTCP services
has remained roughly constant over time [20, 25]. Nonethe-
less, if non-RNTCP practices have in fact improved in India,
this may reduce the overall lives saved by RNTCP. For sim-
plicity we have also assumed that there is no difference in
long-term outcomes between patients completing RNTCP
and non-RNCTP treatment. With no adherence support in
the private sector, however, patients stopping treatment early
may face increased risks of relapse [41], with attendant risks
of TB mortality. Once again, ignoring this would tend to be
conservative with respect to RNTCP impact. We have also
neglected age structure and the differential mortality that is
likely to apply amongst pediatric cases of TB [42], given the
particular challenges in diagnosing these cases. Another
limitation is that we have not segregated the lives saved
amongst smear-positive and smear-negative cases. Given the
differential case fatality rates as observed amongst untreated
smear-positive and smear-negative cases and that more em-
phasis has been given to smear-positive case detection (cases
having a higher mortality hazard [26]), lives saved are likely
to be underestimates. Finally, in the absence of reliable vital
registration data, we have had to construct mortality esti-
mates from the available literature. Ideally these estimates
could be validated against in-country mortality data; while
these data are currently not sufficiently robust [12], future
TB mortality studies — both nationally and on the subna-
tional level — would be invaluable in informing and refining
these estimates.

Conclusions
While there remains much ground to be covered in
managing India’s TB epidemic, it is also valuable to note
that the RNTCP has had a substantial impact over the
past two decades. In the present work, we show that
over 40% of the overall impact of DOTS in India could
be attributed to reduced transmission. Complex though
this impact may be, mathematical modelling can offer a
helpful tool for understanding these effects, both in
India and for TB control programmes elsewhere.
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