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Abstract

Background: There are growing demands for predicting the prospects of achieving the global elimination of
neglected tropical diseases as a result of the institution of large-scale nation-wide intervention programs by the WHO-
set target year of 2020. Such predictions will be uncertain due to the impacts that spatial heterogeneity and scaling
effects will have on parasite transmission processes, which will introduce significant aggregation errors into any
attempt aiming to predict the outcomes of interventions at the broader spatial levels relevant to policy making. We
describe a modeling platform that addresses this problem of upscaling from local settings to facilitate predictions at
regional levels by the discovery and use of locality-specific transmission models, and we illustrate the utility of using
this approach to evaluate the prospects for eliminating the vector-borne disease, lymphatic filariasis (LF), in sub-Saharan
Africa by the WHO target year of 2020 using currently applied or newly proposed intervention strategies.

Methods and Results: We show how a computational platform that couples site-specific data discovery with model
fitting and calibration can allow both learning of local LF transmission models and simulations of the impact of
interventions that take a fuller account of the fine-scale heterogeneous transmission of this parasitic disease within
endemic countries. We highlight how such a spatially hierarchical modeling tool that incorporates actual data
regarding the roll-out of national drug treatment programs and spatial variability in infection patterns into the
modeling process can produce more realistic predictions of timelines to LF elimination at coarse spatial scales, ranging
from district to country to continental levels. Our results show that when locally applicable extinction thresholds are
used, only three countries are likely to meet the goal of LF elimination by 2020 using currently applied mass drug
treatments, and that switching to more intensive drug regimens, increasing the frequency of treatments, or switching
to new triple drug regimens will be required if LF elimination is to be accelerated in Africa. The proportion of countries
that would meet the goal of eliminating LF by 2020 may, however, reach up to 24/36 if the WHO 1% microfilaremia
prevalence threshold is used and sequential mass drug deliveries are applied in countries.
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Conclusions: We have developed and applied a data-driven spatially hierarchical computational platform that uses the
discovery of locally applicable transmission models in order to predict the prospects for eliminating the macroparasitic
disease, LF, at the coarser country level in sub-Saharan Africa. We show that fine-scale spatial heterogeneity in local
parasite transmission and extinction dynamics, as well as the exact nature of intervention roll-outs in countries, will
impact the timelines to achieving national LF elimination on this continent.

Keywords: Neglected tropical diseases, Vector-borne diseases, Lymphatic filariasis, Sub-Saharan Africa, Spatial scale,
Parasite transmission heterogeneity, Hierarchical modeling, Scientific computational discovery of knowledge, Data
discovery, Data-driven parasite transmission modeling, Mass drug administration, Vector control, Parasite elimination

programs

Background

Recently, there has been increasing interest in assessing
the prospects of currently applied and proposed nation-
wide interventions for achieving the global elimination
or control of the major preventable helminthic diseases,
ranging from soil-transmitted helminthiases to schisto-
somiasis, onchocerciasis, and lymphatic filariasis (LF)
[1-5]. Partly, this is in response to the urgent policy
demands for more accurate scientific information for de-
termining if the roadmap set by the World Health
Organization (WHO), based on sustaining and expanding
drug access programs, will accomplish the elimination or
control of these neglected tropical diseases (NTDs) by the
target year of 2020 [6]. In part, this interest also reflects
the recent advances made in the areas of data science and
computational epidemiology that increasingly enable the
parameterization and execution of complex mechanistic
models for simulating the outcomes of interventions
reliably over large spatial domains [7-11].

Previous modeling studies aiming to evaluate the pros-
pects of meeting the goals of NTD programs at large
regional or country scales have mainly employed two
basic approaches. First, generalized parasite transmission
models relying on parameter values obtained from lim-
ited datasets have been used to simulate intervention
outcomes for a range of input values [1, 2, 12]. In
essence, this approach assumes that employing models
parameterized at point-support spatial scales, i.e., using
parameters and model structures originally defined from
data collected at a few spatial sites, invariantly across a
region is valid for mimicking regional-scale parasite
population dynamics [13—15]. More recently, approaches
that use global grid-based parameter search methods for
calibrating transmission models against either mean
national-level infection values or a range of subgrid
values within countries have been applied for undertak-
ing these modeling investigations [1-5]. While these
studies have provided important strategic insights into
the impacts of intervention options on likely timelines to
parasite elimination, an implicit assumption behind these
methods is stability and stationarity in the fine-scale

pattern-process relationships used to develop the trans-
mission models [13, 14, 16—18]. If spatial nonstationarity
or heterogeneity occurs in these pattern-process relation-
ships, then significant aggregation errors can occur, se-
verely biasing the model predictions produced and used at
broader or coarser spatial levels [16—18]. Such predictions
will significantly underestimate the full range of hetero-
geneity in infection dynamics and consequently the
outcomes of interventions across a spatial domain [19].

We have previously shown how a key variable con-
nected with LF elimination, viz., infection breakpoints or
thresholds, is highly sensitive to local transmission
conditions, and how this heterogeneity in the values of
this variable can play a significant role in generating
between-site variability in the timelines to parasite
elimination as a result of applying interventions across a
spatially heterogeneous domain [20-22]. This outcome
indicates the crucial need to address spatial heterogene-
ities in LF transmission dynamics if better predictions of
the interventions proposed to eliminate this parasitic
disease are to be delivered. It also implies that modeling
frameworks that do not address such heterogeneity will
not be able to offer the explicit predictions across space
required by policy makers desiring to understand where
programs are working and where they are unlikely to
meet goals so that tactically targeted remedial actions
focused on these aberrant sites can be applied. These
considerations imply that to support undertaking better
model-based LF control decision analysis at large re-
gional or global scales, development and use of predic-
tion platforms that can address the full range as well as
uncertainty in the expected system response across the
entire spatial domain of interest will be of paramount
importance [13].

Learning parasite transmission models that take a fuller
account of heterogeneous dynamics across a spatial do-
main is a difficult task, but the increasing availability of
geolocated demographic, intervention, and disease data
[23-26] together with growing advances made in compu-
tational science approaches to knowledge discovery, par-
ticularly in the areas of (1) high performance grid-based
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computing and programming [8, 11], (2) data discovery,
integration, and assembly [11, 19, 27-31], and (3) data-
driven approaches for inferring models from measure-
ments [32-38], mean that simulating disease dynamics
and responses to interventions effectively across heteroge-
neous spatially structured environments at large scales are
now becoming increasingly feasible. Bayesian data-driven
modeling frameworks have received considerable atten-
tion in this regard given their ability for not only facilitat-
ing the induction of a dynamical system from data, but
also in the use of multiple data sources for constraining
the parameters of a model to capture the local transmis-
sion features of a spatial setting [21, 22, 33, 39-41].

In this paper, we describe the development of a
spatially hierarchical data-driven computational platform
to serve as a tool for supporting the simulation of the
heterogeneous transmission dynamics and control of the
major vector-borne macroparasitic disease, lymphatic fil-
ariasis, across a major endemic spatial domain, focusing
here on the sub-Saharan African continent. We begin by
describing how such a platform can allow estimation of
the local population dynamics of this disease across this
spatially complex disease-endemic continent by facilitat-
ing the learning of locality-specific transmission models
from georeferenced data. We then use the discovered
local models in conjunction with LF intervention data
assembled for each relevant endemic country to high-
light how such a system can be used to investigate the
emergent policy questions germane to the elimination of
this highly debilitating disease from this important en-
demic continent, viz., (1) which countries are on course
to meet the LF elimination target year of 2020, (2) which
are unlikely to meet this goal, and (3) which remedial
strategies are best suited to enhance disruption of para-
site transmission most effectively in the latter case. We
also contrast the findings with those resulting from re-
cently conducted national-level intervention modeling
work [1-5, 12] by focusing on two themes: (1) the im-
portance of constraining model parameters to reflect the
complexity of subgrid transmission heterogeneities with
multiple localized input data and (2) the need for ad-
dressing such heterogeneous transmission dynamics for
minimizing aggregation error when making coarse-scale
predictions.

Methods

Overview of modeling framework

Our proposed approach for addressing the problem of
dealing with spatial heterogeneities in LF transmission
and extinction dynamics for generating predictions of
the effects of interventions at the required aggregated
policy levels ranging from district to national scales is
essentially hierarchical in nature. In particular, it is based
on three coupled components: (1) methods to facilitate
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assembly/discovery of the relevant model input data at
local settings, (2) a data-driven modeling method that
can use such data for identifying locality-specific LF
models, and (3) an algorithm for combining the hetero-
geneous simulations from local settings for making
upscaled regional predictions. Below, we begin by de-
scribing the methods used to execute each of the three
components above, and follow this by outlining the sci-
entific workflow we used to implement this hierarchical
modeling approach for performing this study.

LF data assembly

Developing site-specific parasite transmission models
crucially requires input data, viz., exogenous forcing var-
iables and initial state variables, defining a site to facili-
tate constraining a model’s parameter space so that the
effects of local transmission conditions are captured reli-
ably [21, 22, 42, 43]. For modeling impacts of interven-
tions, the type of control carried out in a site together
with data on frequency, coverage, and duration are also
similarly required. A challenge concerns the availability
of all of these data at every site selected in the modeling
process; if these data are not available everywhere, then
it raises the question of how best to learn about the
model inputs for every required location from the avail-
able sparse data [33]. These data, when available, are
normally also contained within multiple databases main-
tained by various data providers, with each dataset
having unique data access protocols, file formats, and se-
mantics [27, 29, 30]. This heterogeneity and the gaps in
source data mean that to derive the input data needed to
develop and run site-specific LF models, informatics and
analytical tools that can combine empirical data discov-
ery with data integration and estimation protocols will
also be required [10, 33, 39]. Below, we describe the
combination of data discovery and estimation methods
we followed to assemble the site-specific data needed to
carry out our landscape-wide modeling exercise under
each type/category of input data.

Baseline microfilaremia (mf) age prevalence

We used a unique LF database containing mf preva-
lence data for a large number of endemic settings in
Africa (a total of 664 data points assembled from the
published and gray literatures), which we had previously
compiled for use with a Bayesian geostatistical model to
construct LF prevalence maps for this continent [44].
These data are mapped in Fig. 1a, and the database in-
cludes country and village names, latitude and longitude
of the villages, the number of individuals examined and
mf positives detected, both stratified by age, as well as key
infection-related environmental variables estimated for
each site. However, as the existing mf surface map pro-
vides only overall mf prevalence values interpolated over a
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Fig. 1 Mapped inputs for modeling the baseline transmission dynamics and effects of interventions against lymphatic filariasis (LF) in sub-Saharan
Africa. a A smooth map of the estimates of LF prevalence is shown. The map was created using a multivariate Bayesian generalized linear spatial
model, as described in [44]. b Smooth maps of the annual biting rates (ABRs) of Anopheles and Culex mosquitoes were created by simple kriging
of ABR data obtained from literature searches and public databases (e.g., the Malaria Atlas Project (MAP)/Malaria Risk in Africa (MARA) databases).
The observed data points are also shown. The Culex distribution is patchier than that of Anopheles, so we consider the Anopheles model to apply
wherever Anopheles mosquitoes are implicated in transmission (Table 1). Only in those areas where Anopheles mosquitoes are not implicated at
all did we use the Culex model. Note, however, that given the sparseness of the ABR data as shown on the map, we used model-estimated ABR

values in the modeling exercise described in the text (see Methods). ¢ Country-level coverages of bed nets (i.e, insecticide-treated nets (ITNs)
interpolated from Admin1 data. Smoothed annual maps were developed for 2000-2012; here we show data for years 2000, 2007, and 2012

grid rescaled to 1 km x 1 km resolution [44], and as the
LF models require age-stratified infection data at every site
for parameterization purposes, we needed to estimate the
mf age prevalences from the overall community mf preva-
lence for those sites where such data were unavailable.
This was done by converting the community-level overall
prevalence into three representative standardized mf age
prevalence curves [45], by first constructing an age

structure for the community in question using the pertin-
ent national demography profile and then estimating the
mf positives in each of the constructed age classes (e.g.,
1-10, 11-20, etc.) based on the shape of each of the linear,
plateau, and convex mf curves likely or expected to occur
in a typical endemic site (see Additional file 1: Figure S1).
Note that we consider such derived site-specific age preva-
lence curves as representing the baseline condition in the
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year 2000 before large-scale mass drug administration
(MDA) programs began to be implemented by the Global
Programme to Eliminate Lymphatic Filariasis (GPELF) in
Africa. This, however, cannot be expected to be the case
for the 11 countries in West Africa (Benin, Burkina Faso,
Cote d'Ivoire, Ghana, Guinea Bissau, Guinea, Mali, Niger,
Senegal, Sierra Leone, and Togo) that had participated in
the Onchocerciasis Control Program (OCP), which began
in these countries in 1975 [46, 47]. Apart from vector con-
trol (VC), these former OCP countries also had been
treated with ivermectin under the community-directed
treatment with ivermectin (CDTI) program over a period
of 15 years from 1988 to 2002. Such prolonged mass treat-
ment could have significantly reduced the prevalences of
LF, as indeed was the case in Sierra Leone, where LF mf
prevalences across various sites dropped by rates that
ranged between 80 to 100% prior to the delivery of LF
MDA under the national LF control program [48]. To ac-
count for the impact of CDTI in the above 11 OCP coun-
tries, we used this information conservatively and reduced
the site-specific map-extracted mf prevalences in all these
countries uniformly by 75%, and all baseline model fittings
were carried out using these reduced mf prevalences.

Vector mosquito species and annual biting rates (ABRs)
Information on the presence of LF vector mosquito spe-
cies in countries can be obtained from the published
literature, including from WHO [49]. Since there are very
sparse corresponding spatial data available on ABR
(Fig. 1b), we developed a reverse engineering approach to
produce model-generated data to overcome this gap. This
was done by estimating sets of plausible ABR values from
the ensembles of fitted parameter vectors such that the
model-generated mf prevalences matched either the ob-
served or geostatistically extracted mf prevalence in a site
(see details of the Bayesian melding-based ensemble mod-
eling approach given in Additional file 1). Comparison
of such model-generated ABRs for sites where mea-
sured ABRs were available showed that we were able
to reasonably recover these values wusing this
approach (Additional file 1: Figure S2).

Intervention data on mass drug administration (MIDA)

The WHO preventive chemotherapy and transmission
control (PCT) databank (http://www.who.int/neglected_-
diseases/preventive_chemotherapy/lf/en/) provides the
following information about the transmission and control
status of LF world-wide: (1) LF endemic countries given
by regions; (2) the mapping status of LF prevalence in the
countries of these regions provided as completed, in pro-
gress, or not started; (3) information on drug regimens ap-
plied during the years in which MDA was administered;
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(4) years of annual MDA with the numbers of implemen-
tation units (IUs) covered in individual years at the coun-
try level; and lastly (5) information on national program
drug coverages achieved during the period 1999-2013 for
all countries undergoing annual LF MDA. In Africa, as of
2013 these data show that 23 countries have completed
mapping status for LF; these countries have either already
implemented several rounds of annual MDA or are yet to
start MDA (Additional file 1: Table S2).

An examination of the MDA data available from the
PCT databank (Additional file 1: Table S2) showed that
not all endemic IUs received MDA since the start of
mass treatment in a given country. An analysis of the
data showed a clear occurrence of three distinct phases
of MDA implementation in the period 2000-2013 in
terms of the numbers of IUs starting annual mass treat-
ments in each country (Table 1). These three phases can
be termed as the initial phase covering the first 1-3
years of mass treatments, the expansion phase (lasting
for 4-5 years after the initial phase), and the later/satur-
ation phase in which almost all endemic IUs in a coun-
try started implementing annual MDAs. In addition, we
also found a fourth group of IUs present in all LF
endemic African countries except Togo, where MDA ap-
parently had not begun or no MDA information was
available by 2014-2015. We presumed that these IUs
would begin annual MDAs from 2016 in all the simula-
tions described below.

Information on vector control (VC) methods and
coverages

Information on VC methods for African countries was
assembled from the country-specific Demographic and
Health Surveys (DHS) sites (www.dhsprogram.com) as
well as from WHO [49]. In the majority of countries,
household usage of bed nets, mainly insecticide-treated
nets (ITNs), has been the mainstay of the approach to
control mosquitoes primarily under the Roll Back Mal-
aria program (www.rollbackmalaria.org). We therefore
used the ITN coverage data available for the period
2000-2012 for countries in Africa from the MAP data-
base (Malaria Atlas Project, Oxford: www.map.ox.ac.uk)
in order to derive estimates of VC efforts in this study.
These data are available at the administrative level 1 (i.e.,
region/province level, Admin1 level hereafter), but tend to
exhibit missing information for a few administrative units
in one or more years, which complicated the calculations
of annual VC coverage rates. In order to overcome this
problem, we first created smooth maps of VC coverage
for 2000-2012 using the available Adminl data via simple
kriging carried out using ArcGIS. Then, the national-level
annual VC coverage values were extracted by simple aver-
aging of the smoothed values occurring within each coun-
try boundary. These extracted annual coverages are
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shown in Fig. 1c and Additional file 1: Figure S3. These
data showed the occurrence of high temporal variability
(i.e., they describe sudden jumps from a low to very high
value or vice versa in the coverage values) between years
within a country. We smoothed this temporal variability
in the country-level data by modeling trends in the annual
values observed in each country. As shown in Additional
file 1: Figure S3, this predictive model was able to capture
the general trend in the VC coverage levels in the studied
countries for the period 2000-2012. Thus, in the present
analysis, we used the smoothed annual coverage values for
2000-2012 and the predicted values for the future time
period in all the LF intervention scenarios where VC was
applicable.

Data-driven LF models

The technical details of the LF transmission models used
and the Bayesian melding approach employed to cali-
brate these models to local data, as well as specifics of
how LF MDA and VC interventions are simulated, have
been described extensively previously [21, 22, 50, 51]
and are outlined in Additional file 1. Here, our focus is
on the coupling of this data-driven modeling framework
to input data assembled at local settings (here at the vil-
lage level) as a means for better capturing the effects of
local spatial heterogeneity in LF transmission dynamics
when making predictions of the impacts of applied inter-
ventions at higher spatial scales. We describe the
algorithm that used this coupling for facilitating model-
ing of the outcomes of the various currently applied or
proposed LF intervention strategies within each study
country below.

A spatially hierarchical algorithm for modeling LF
interventions

Our hierarchical algorithm for discovering and using
local LF models for simulating the effects of interven-
tions within each country comprised the following steps:

1. Extracting and retaining a sample of overall mf
prevalence values: This was done by first
constructing an Africa-wide village point map using
data on populated places (city, village) within the
continent contained within the GeoNames geographical
database (http://www.geonames.org). These points were
then overlaid on the smooth LF prevalence map of
Africa [44], and mf prevalence values for all population
points were extracted. This procedure resulted in a total
of 342,386 mf data points for 35 of the LF endemic
countries in Africa. This total does not include data
points for Comoros, as there is a lack of a smooth LF
surface map for the country. For this country, we used
data from the LF literature (see [44] for the source
references) to first estimate the maximum and
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minimum mf prevalences observed within the
country and then used the Latin hypercube
sampling technique to sample a set of 100 values
within this range for use in the modeling analysis.

. Proportionate sampling of 10% representative

mf data points: In order to reduce the

computational time which would be needed to

calibrate and run models for all the extracted data
points, we performed the simulations described
below using a representative subsample comprising

10% of the total extracted data points. This

subsample was obtained using a proportionate

sampling technique to maintain the shape of the
distribution of the original extracted overall mf
prevalence values for a given country. This
proportionate sampling was achieved in two substeps:

(a) We first fitted a nonparametric distribution to the
extracted overall mf prevalence data points for
each of the LF endemic countries. We used the
built-in fitdist method (available in Matlab 2014b)
to fit an empirical distribution to the overall
mf prevalence data with the Epanechnikov ker-
nel option to perform this operation.

(b)We then generated a set of random values (a total
of N¢ points) of overall mf prevalence from the
fitted distribution for a country. Note here that
N is set to comprise 10% of the total extracted
mf points for a given country C. This draw of
random values was accomplished using an
empirical cumulative distribution function (CDF)-
based approach in Matlab while maintaining the
proportionality of the sample sizes in all of the
intervals of the original data. In each case, the
CDF was constructed from the nonparametric
probability distribution function used in the
previous step. These substeps are illustrated in
Additional file 1: Figure S4.

. Fitting models to overall baseline mf prevalence:

There are five substeps involved here:

(a) Select one mf value from the mf prevalence data
sample obtained in step 2(b).

(b)Select N (=2500) parameter vectors. Along with
each sampled parameter vector, an ABR value is
also needed for simulating endemic conditions.
The fzero function in Matlab was used to identify
the value of ABR which, along with the selected
parameter vector, results in a model-predicted
overall prevalence that equals the selected mf
value from step 3(a) within a tolerance of 0.1%.
The minimum and maximum values of ABR
over which the function operated were 0 and
50,000 bites/person/year, respectively. This step
generates a set of N model outputs for the selected
mf value.


http://www.geonames.org/
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(c)Construct the three mf age profiles (namely,
plateau, linear, and convex age curves) for each
picked mf value in step 3(a) using the actual
population demographics of the country and the
corresponding mf age prevalence curve (see
Additional file 1: Figure S1).

(d)Use the sample importance resampling (SIR)
algorithm with replacement to select S (=200)
best-fitting parameter vectors out of the sampled
N (=2500) for each of the age profiles constructed
in step 3(c). This step provides a set of 3S
(=3*200) parameter vectors that have the highest
likelihoods for describing each of three
constructed mf age profiles.

(e) Repeat steps 3(a) through 3(d) for all the
subsampled mf data points for a given country,
resulting in a set of N¢*3*200 best-fitting
parameter vectors per country, where Nc is the
size of subsampled mf data points for any given
country. We note that in the case of Comoros
we used only 100 mf data points, sampled
using Latin hypercube sampling as described
above. In addition to Comoros, the total
number of extracted data points for Djibouti
was only 26. In this case, all data points were
included.

4. Reduced sample of baseline best-fitting models
to simulate LF intervention scenarios: The
minimum and maximum sizes of the 10% sub-
sampled mf data points across 34 countries were,
respectively, 146 (The Gambia) and 4470 (Nigeria),
which meant that a total of 10,587,600 (=N*3*200)
best-fitting parameter vectors were available for
further modeling analyses (e.g., simulating the
impact of LF intervention under different scenarios).
As running intervention simulations for all these
selected parameter vectors proved computationally
intensive, we further reduced the size of the best-
fitting parameter vectors by model selection using a
cluster analysis as follows:

(a) Perform a cluster analysis (we used the
built-in kmeans function with an option of
three clusters in Matlab 2014b; this option was
used because of the presence of three mf age
prevalence curves in the model outputs) of the
best-fitting models to assess the contribution
of the models describing each age curve to
the full ensemble of model-predicted mf age
curves.

(b)Sample 10% of the best parameter vectors
proportionately from each cluster based on
cluster size to produce an ensemble of reduced
size. This is illustrated in Additional file 1:
Figure S5.
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5. Modeling of questions of interest: Perform all
modeling analyses on the reduced ensemble from 4(b)
to address the variables and questions of interest (such
as threshold biting rates and mf/worm breakpoints for
the derivation of values signifying different elimination
probabilities and running simulations of various LF
intervention scenarios). Details of all equations and
parameters related to these modeling activities are
described in Additional file 1.

6. Assessment of LF elimination by 2020 and
simulating impacts of remedial measures:
Interventions were modeled in all countries from
baseline to the year 2020 to assess whether
elimination will be achieved by the target year. For
this evaluation, all interventions were simulated
based on actual MDA and VC coverages until
2015, after which further simulations were carried
out using the most recently recorded MDA
coverage and 58.78% VC coverage. For those
countries which had not started MDA as of 2015,
MDA and VC were assumed to have begun in
2016. We considered a country to have achieved
LF elimination if the mf prevalence from each
model parameter vector selected (as per step 4(b))
for modeling from that country crossed its own
site-specific 95% elimination probability threshold
[22, 50, 52].

In addition to assessing the achievement of elimin-
ation under the current strategy, several remedial
strategies were also modeled. All remedial strategies
were simulated beginning in 2016 to assess when
elimination can be achieved under these improved
strategies (via increased coverage, frequency of drug
treatment, or by switching to a new combination drug
regimen (Table 2)). Analysis of remedial strategies
was not undertaken for those countries that were pre-
dicted to have achieved LF elimination under their
current approaches. Table 2 outlines all intervention
strategies, current and remedial with corresponding
coverages, used in this work.

Scientific workflow for implementing the modeling
framework

We implemented the scientific workflow depicted sche-
matically in Fig. 2 to perform the spatially hierarchical
modeling exercises reported here. Figure 2a describes
the sequence of steps involved in calibrating the LF
model to local conditions, simulating the impacts of
interventions, and assessing prospects for elimination.
Figure 2b defines the data sources and pipelines we used
for assembly, integration, and transformation of data
into the information required by the LF transmission
models as inputs. Briefly, we began the modeling process
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Table 2 Modeled intervention scenarios

Scenarios MDA type MDA coverage VC coverage
MDA Annual cC cC
MDA2 Annual CcC 80%
MDA3 Annual 80% CcC
MDA4 Annual 80% 80%
Bi-MDA1 Biannual CcC CcC
Bi-MDA2 Biannual cC 80%
Bi-MDA3 Biannual 80% cC
Bi-MDA4 Biannual 80% 80%
IDA1 Annual CcC cC
IDA2 Annual cC 80%
IDA3 Annual 80% CcC
IDA4 Annual 80% 80%

MDA-based LF interventions were simulated for the following 12 intervention
scenarios where MDA represents the standard two-drug regimen (diethylcarbamazine-
albendazole) delivered annually, Bi-MDA represents the standard two-drug regimen
delivered biannually, and IDA represents a triple-drug regimen (ivermectin-
diethylcarbamazine-albendazole) delivered annually. Each type of MDA is combined
with vector control (VC) at either current (CC) or enhanced (80%) coverage

by determining whether key model input data (e.g., base-
line ABR: the number of bites, on average, a person
receives per year) and/or LF infection (mf age profile)
were directly available from existing databases or needed
to be derived for a site. Once these input data were
either collated or estimated, the relevant LF model was
parameterized for individual localities using the Bayesian
melding algorithm, and the quantities of interest for
modeling the prospects of parasite elimination, viz,, the
local infection and vector biting thresholds, were calcu-
lated via the fitted models. Intervention modeling was
then undertaken using the available or estimated data on
MDA coverage and duration and on supplemental VC,
for predicting the timelines to crossing the model-
derived elimination thresholds in each site. Note that if
intervention data are not available, simulations can also
be done using hypothetical intervention scenarios at this
stage. This exercise allowed us to determine if imple-
mented and/or hypothesized interventions will lead to
parasite elimination by a set target date. In cases where
the modeling analysis indicated that interventions (actual
or hypothesized) are unlikely to achieve elimination by a
given target year for a site (e.g., by 2020), simulations for
estimating the required remedial measures (e.g., increasing
MDA coverage and frequency, switching to annual
ivermectin-diethylcarbamazine-albendazole (IDA), includ-
ing or increasing supplementary background VC using
long-lasting insecticidal nets (LLINs)) to meet the goal of
elimination for various target end dates were undertaken,
and the outputs evaluated.
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Results

Learning ensembles of local LF transmission models
Figure 3a shows an example of the fits of the anopheline
LF model (broken bars) to the three characteristic age
profiles (boxes depicting mean prevalences predicted in
each respective age class with the vertical lines showing
the 95% confidence intervals of these means) of expected
mf prevalences derived for a site in Senegal depicting an
overall mf prevalence of 32.1%, as obtained using our
site-specific data-driven modeling algorithm. The corre-
sponding predictions of overall mf prevalences and
ABRs from the model fits to each age profile of infection
are shown in Fig. 3b and c, respectively; these results
highlight not only how our modeling approach can allow
estimation of LF infection patterns and ABR inputs for a
site, but also how we may use the model outputs to
learn about which specific type of model may capture
the dynamics of parasite transmission in a particular lo-
cality. This ability is demonstrated by the results shown
in Fig. 3b, which compares the overall mf prevalences
predicted by the ensembles of fits obtained for each type
of age curve (histogram bars) with the mf prevalence
extracted for this site (solid line =32.1%). The median
predicted prevalences of the fitted models are given by
the dashed vertical lines, and the distance between these
values and the derived mean mf prevalence can be used
to assess which of the three modeled age profiles may
best give rise to the overall mf prevalence extracted for a
site. The results show, for example, that while the pre-
dictions of the plateau and convex models are close to
the overall mf prevalence, the median of the linear
model predictions is too distant from the mean mf
prevalence value, suggesting that it is a less reasonable
contributor to overall infection prevalence in this Sene-
galese site. Figure 3d is a cluster plot showing the rela-
tive contributions of each age-infection profile to all of
the site-specific overall mf prevalence data we used to
discover LF models for the country of Senegal, and
shows that as a whole, the plateau-type age-infection
model contributed most to infection for the sampled
Senegalese sites, followed in importance by the convex
and the linear age prevalence models. This cluster ana-
lysis of the ensemble of age-stratified model fits to over-
all mf prevalences obtained for a spatially representative
sample of sites in each country was used to discover the
corresponding LF models in each African endemic coun-
try investigated in this study.

Elimination thresholds

We used the subset of 10% best-fitting parameter vec-
tors selected via the cluster analysis of model fits to each
selected spatially representative study site (Fig. 3d) in
order to make inferences regarding the expected distri-
bution of mf elimination thresholds within a country.
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Fig. 2 Modeling workflow and data inputs for the modeling analysis obtained from literature searches and publicly available databases. a The top
schematic depicts the hierarchical modeling steps employed to quantify the expected impacts of MDA-based intervention programs to predict
timelines to achieve the elimination of lymphatic filariasis (LF) from an endemic country. b The bottom diagram shows the steps, mainly involving
geostatistical mapping, on how the data inputs required to initialize the LF model were obtained from several databases, either publicly available or
created for this study from literature searches. Note that although we began examining the development of an ABR smooth map, the sparseness of
ABR data precluded their reliable construction for use in this study. We instead used model fits to mf prevalence in a site to estimate ABR input values
(see Methods)

Figure 4 portrays the values of mf breakpoints estimated  method outlined in our previous work [21, 22, 50, 53].
for a selection of study countries using these best-fitting  Two features of the results depicted in Fig. 4 are imme-
site-specific parameter vectors following the numerical diately apparent. First, the results indicate that
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Fig. 3 Learning ensembles of local LF transmission models. a An example of baseline fits to three age profiles (boxes depicting mean prevalences
predicted in each respective age class with the vertical lines showing the 95% confidence intervals of these means) derived for a site in the
country of Senegal with overall mf prevalence of 32.1%. b The corresponding predictions of overall mf prevalence are shown in a histogram
where the solid vertical line represents the known overall mf value and the dashed vertical line represents the median of the predicted distribution. ¢
The predicted distribution of baseline annual biting rates (ABRs) from the fits to each age-infection profile is shown with the median indicated by
a vertical dashed line. The inset plot zooms in on the distributions in the lower ABR region. d A cluster plot showing the relative contributions of each age-
infection profile to the pooled fits across all modeled sites in Senegal. For this country, the plateau-type age-infection model contributed most to infection

for the sampled sites, followed in importance by the convex and the linear age models

considerable variability in LF mf breakpoint values may
occur within each country, and second, that both the
distribution and mean values of these breakpoints will
vary markedly between countries. Table 3 provides the
mean and the 5th and 95th percentile values of the mf
breakpoints obtained for each study country at both the
threshold biting rate (TBR) (important as prevalence
targets for assessing the impact of supplementary VC in
breaking LF transmission [22, 50]) and at the prevailing
ABR values in a site (important for serving as mf
threshold targets for evaluating the impact of MDA
[22]). The data support the impression gained from
Fig. 4, and the conclusions made in our previous
studies [20-22], that mf breakpoints will vary signifi-
cantly between LF endemic regions, including in the
present case at the country level, will be higher at
TBR, and will invariably also be much lower (with 5%
percentile values lower by between twofold to four-
fold) than the WHO-suggested threshold of 1% mf
prevalence (Table 3).

Evaluation of elimination feasibility by year 2020 and
impact of remedial measures

The principal focus of this study was to use models in
conjunction with intervention data estimated or assem-
bled at spatially representative sites in order to evaluate
if currently applied interventions in LF endemic African
counties will meet the goal set by WHO for achieving
LF elimination on the continent by the year 2020. As de-
scribed in Methods, we used a hierarchal modeling
framework to undertake this analysis in order to take a
fuller account of the impacts of spatial heterogeneity in

transmission conditions and ultimately with respect to
interventions applied across a country. Our approach
was thus to first assess the prospects of eliminating LF
transmission at local sites and then to aggregate this in-
formation to the IU level (this is commonly the district),
and following this to the country level. In this approach,
we therefore considered an IU to have accomplished the
goal of LF elimination when all sites sampled within its
boundary were predicted to have their infection levels
reduced from baseline to below their own 95% mf preva-
lence elimination threshold (see Methods [22, 52]) as a
result of applied interventions, and a country to have
accomplished elimination at the time point when all cor-
responding IUs are estimated to have met the goal of
elimination. Meeting the year 2020 LF elimination target
was primarily assessed by inspecting if timelines pre-
dicted by local models crossed site-specific mf preva-
lence thresholds by 2020. Note that while we are able to
estimate site-specific models and infection-related data
(baseline age-stratified mf prevalences, ABRs, and mf
breakpoints) to carry out the modeling analyses, inter-
vention data (MDA start, duration and coverage, VC
type and coverage) were only available at the national or
IU levels. Thus, these data at a higher hierarchical level
were applied uniformly to all local sites when modeling
interventions in this work.

Altogether, a set of 12 intervention scenarios were
investigated (Table 2). These intervention scenarios
include variants of annual and biannual MDAs, and
annual IDA — a triple-drug regimen comprised of
standard doses of ivermectin-diethylcarbamazine-
albendazole (IVM-DEC-ALB) that were recently
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\

reported to be highly efficacious against LF infection
in non-onchocerciasis LF endemic areas [54]. The
base intervention investigated for assessing if current
MDA programs are able to bring about LF elimin-
ation by 2020 pertains to that labeled as MDAI in
Table 2, which denotes annual MDA with supple-
mental VC applied at the country-level coverages re-
ported in the WHO LF PCT databank for each IU
cohort in the case of MDA (Table 1), and at a cover-
age of 58.78% for the usage of ITNs (see Additional
file 1: Figure S3). MDA2 stands for annual MDA at
the most recent reported coverage in the WHO LF
PCT databank, with VC coverage raised to 80% —
the optimal VC coverage thought to be ideally
achievable under the WHO malaria control program;
MDA3 for annual MDA at 80% coverage with VC
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coverage at 58.78%; and finally MDA4 where annual
MDA and VC both have coverage values of 80%. All
four variants of MDA strategies were also considered
in the case of biannual and annual IDA remedial
mass treatment plans as outlined in Table 2. All
remedial plans were simulated from the year 2016.

Predictions of times to elimination by 2020 based on
current MDA and background VC

Figure 5 depicts the patterns of timelines to LF elimination
predicted both within a country (Fig. 5a) and across a se-
lection of representative African countries (Fig. 5b) (results
shown for the MDA1 scenario). Note that site-specific mf
prevalence values representing a 95% elimination probabil-
ity at the TBR [22] were used as targets for signifying elim-
ination in this exercise because of the involvement of VC
in all the MDA variants investigated (Table 2). The results
portrayed in Fig. 5a show firstly how the staggered delivery
of annual MDA may affect the timelines to eventual LF
elimination in an individual country. The simulations are
based on the expected declines modeled in four cohorts of
early to late phase IUs in Kenya (Table 1), which are as-
sumed to have been treated sequentially during the phased
roll-out of the MDA program in that country. The results
show that, depending on the start year of MDA and base
mf prevalences in these different cohorts, times to LF
elimination will vary between treated IUs in a country, with
delayed treatments (e.g., the late phase IU cohort beginning
treatment only in year 2016) lengthening the time to LF
elimination for the entire country. This result highlights
the crucial importance of considering both the start years
as well as baseline mf prevalences of IUs when modeling
the feasibility of current MDA programs for achieving LF
elimination in a country.

A problem with modeling this potential IU cohort effect
on timelines to LF elimination is that the WHO PCT data-
base currently does not provide details of the IUs in a coun-
try that underwent MDA at various start dates; only
numbers of IUs that began annual MDA at different time
periods are provided (Table 1). As identity of IUs is re-
quired to estimate their likely baseline mf prevalence and
ABRs from our maps to serve as model inputs, this lack of
information means that we currently can only attempt
to quantify the likely cohort effect in a country via
considering possible best- and worst-case scenarios that
may apply. Here, we indicate that the best case is to
consider that IUs are recruited sequentially into na-
tional programs based on their endemicity level (i.e.,
IUs with higher baseline mf prevalence are recruited
earlier than IUs with lower endemicity). This scenario
can then be contrasted with the null and worst-case
scenario in which IUs are recruited into annual MDA
programs randomly (i.e., the baseline endemicity of IUs
does not matter in determining cohort membership).
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Table 3 Aggregated country-specific mf breakpoints
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Country Mean mf breakpoint at TBR Mean mf breakpoint at ABR
(5™ and 95" percentiles) (5™ and 95" percentiles)

Angola 0.516 (0.0435, 2.08) 0.143 (0.015, 0.341)

Benin 0.446 (0.0609, 1.96) 0.148 (0.0289, 0.343

Burkina Faso
Cameroon
Central African Republic
Chad
Comoros
Congo

Cote d'lvoire
Democratic Republic of the Congo
Djibouti
Egypt
Equatorial Guinea
Ethiopia
Gabon
Ghana
Guinea
Guinea Bissau
Kenya

Liberia
Madagascar
Malawi

Mali
Mozambique
Niger

Nigeria
Senegal
Sierra Leone
South Sudan
Sudan
Tanzania

The Gambia
Togo
Uganda
Zambia

Zimbabwe

0.648 (0.0436, 2.74)
0.7 (0.0481, 3.01)
0.719 (0.045, 3.02)
0.661 (0.0435, 2.88)
0.759 (0.0306, 342)
0.958 (0.0482, 3.69)
0.327 (0.0438, 0.861)
0.648 (0.0435, 2.57)
0.632 (0.0609, 2.44)
0.345 (0.027, 1.62)
0.834 (0.044, 3.33)
0.372 (0.0432, 1.09)
0.951 (0.0453, 3.73)
0.267 (0.124, 0.482)
0.308 (0.0402, 0.806)
0.308 (0.0402, 0.806)
0.584 (0.0432, 2.33)
0.777 (0.0437, 3.31)
0.33 (0.0325, 1.29)
0.578 (0.0312, 2.84)
0.799 (0.0438, 3.34)
0.799 (0.0438, 3.34)
0.547 (0.0497, 1.97)
0.652 (0.0449, 2.2)
0.26 (0.0319, 0.642)
0.563 (0.0366, 2.87)
0.51 (0.0363, 2.64)
0.901 (0.0416, 3.49)
0.874 (0.0386, 3.51)
0.802 (0.0439, 3.35)
0.61 (0.0417, 242)
0.516 (0.0435, 2.08)
0.446 (0.0609, 1.96)
0.648 (0.0436, 2.74)

( )
0.155 (0.0163, 0.383)
0.188 (0.0182, 0.506)
0.176 (0.0172, 0.465)
0.153 (0.0165, 0.386)
0.103 (0.00416, 0.304)
0.22 (0.02, 0.659)

6 (0.0177, 0.337)
0.221 (0.0159, 0.675)
0.178 (0.0216, 0.462)

8 (0.00596, 0.308)
0.23 (0.017, 0.742)
0.145 (0.0161, 0.333)
0.238 (0.0197, 0.772)
0.158 (0.0661, 0.29)
0.225 (0.0207, 1.1)
0.225 (0.0207, 1.1)
0.167 (0.0166, 0.422)
0.189 (0.0173, 0.526)
0.0925 (0.00249, 0.233)
0.0758 (0.0027, 0.218)
0.13 (0.0145, 0.302)
0.13 (0.0145, 0.302)
0.17 (0.0142, 0.484)
0.207 (0.0214, 0.758)
0.0907 (0.0034, 0.2)
0.0929 (0.00366, 0.255)
0.0907 (0.00361, 0.245)

8 (0.0175, 0.546)
0.224 (0.016, 0.689)
0.159 (0.0172, 0.405)
0.152 (0.0163, 0.38)
0.143 (0.015, 0.341)
0.148 (0.0289, 0.343)
0.155 (0.0163, 0.383)

The mean (and 5 and 95 percentile) mf breakpoint values by country are given under annual biting rate (ABR) and threshold biting rate (TBR) conditions.
Calculations using TBR apply for interventions including supplemental VC, while those using ABR apply for interventions without VC. The relevant vector model
was used for each country as indicated in Table 1. For Kenya, Malawi, and Tanzania, the results from the culicine LF model are given, as Culex mosquitoes
represent the dominant vector in these countries. For elimination analyses, the 5™ percentile value represents the breakpoint value, the crossing of which

corresponds to a 95% probability for achieving LF elimination

Figure 5b compares the timelines to LF elimination by
IUs under these two scenarios graphically for 14 of the
36 sub-Saharan African LF countries, while Table 4 dis-
plays the actual years by which 100% of IUs are expected

to achieve LF elimination in all 36 countries under each
scenario. The results depicted in Fig. 5 and given in
Tables 4 and 5 highlight as expected that the numbers of
rounds of annual MDA required for breaking LF
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Fig. 5 Patterns of elimination timelines of lymphatic filariasis (LF) by calendar years in sub-Saharan Africa. a An example of the effects of staggered
annual MDA implementation in cohorts of implementation units (/Us) across a country on LF elimination trajectories, using data and model simulations
for Kenya. The modeled decline in the overall mean microfilariae (mf) prevalence as a result of LF intervention is shown, where each cohort had a
different MDA start year: 2001, 2003, 2011, and 2016, respectively. The elimination year for each cohort is shown by an open circle on the x-axis of the
respective subplot. b Patterns in timelines to LF elimination based on annual MDAs provided to IUs either randomly or in a phased sequential manner
starting with provision of treatments to the highest prevalence IUs first. The vertical bars show fractions of IUs in a country achieving LF elimination by
calendar years. The results for sequential coverage of IUs are shown in orange (i.e, IUs with higher baseline endemicity receiving MDA earlier than
lower endemicity 1Us), and those for random coverage of IUs are shown in blue. The results for the random selection of 1Us are more pessimistic than
those for the sequential approach. Data on the years and number of IUs implementing annual MDA and drug coverages are from the WHO LF PCT
databank. Future LF interventions were simulated for the current MDA and VC coverages for a given country
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Table 4 Comparison between random versus sequential selections of 1Us for implementing delivery of annual MDAs

Random Sequential
95% EP Th WHO 1% 95% EP Th WHO 1%
Angola 2032 2020 2032 2020
Benin 2028 2019 2023 2018
Burkina Faso 2032 2022 2031 2018
Cameroon 2033 2023 2029 2018
Central African Republic 2033 2022 2033 2022
Chad 2033 2022 2033 2022
Comoros 2023 2010 2023 2010
Congo 2033 2022 2032 2020
Cote d'lvoire 2029 2018 2028 2018
Democratic Republic of the Congo 2032 2021 2032 2021
Djibouti 2031 2021 2031 2021
Egypt 2020 2004 2019 2004
Equatorial Guinea 2033 2021 2033 2021
Ethiopia 2030 2020 2028 2017
Gabon 2033 2022 2033 2022
Ghana 2020 2017 2019 2017
Guinea 2031 2021 2032 2021
Guinea Bissau 2034 2018 2031 2018
Kenya 2028 2021 2025 2018
Liberia 2032 2021 2030 2018
Madagascar 2028 2021 2026 2019
Malawi 2033 2020 2030 2018
Mali 2032 2020 2030 2018
Mozambique 2034 2022 2032 2020
Niger 2027 2018 2024 2017
Nigeria 2034 2023 2032 2019
Senegal 2033 2020 2034 2019
Sierra Leone 2026 2015 2026 2015
South Sudan 2031 2020 2031 2020
Sudan 2035 2026 2034 2024
Tanzania 2034 2024 2031 2018
The Gambia 2033 2022 2033 2022
Togo 2016 2006 2016 2006
Uganda 2033 2023 2031 2019
Zambia 2033 2022 2033 2022
Zimbabwe 2033 2020 2033 2021

The elimination years shown represent the calendar year when 100% of IUs are predicted to have achieved elimination. For each method, the elimination years
were calculated for the model-generated site-specific 95% elimination probability thresholds (EP Th) as well as for the WHO 1% threshold. The results are for the
current MDA plus supplemental VC coverages (i.e, for the MDAT intervention scenario). The sub-Saharan countries not implementing MDA as of 2015 were assumed to

start MDA in 2016

transmission will be lower (by between 1 to 5 years) in the
case of the sequential scenario compared to the scenario in
which IUs are randomly recruited into annual MDA pro-
grams. Nonetheless, a major finding is that for both scenar-
ios the majority of African countries, except for Egypt and

Togo under randomly assigned MDAs, and Egypt, Ghana,
and Togo in the case of sequential treatments, will not
meet the goal of achieving LF elimination by 2020 when
local extinction thresholds are used in the modeling
exercise. By contrast, if the WHO threshold of 1% mf
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Table 5 Number of countries predicted to achieve elimination in each period under current (MDAT) and remedial intervention
strategies. See Table 2 for a description of each intervention strategy

MDAT  MDA2  MDA3  MDA4  B-MDA1  Bi-MDA2  Bi-MDA3  B-MDA4  IDAT  IDA2  IDA3  IDA4
By 2020 3 3 3 3 4 4 4 4 4 4 5
2021-2025 4 1 1 1 21 30 3] 32 32 32 31
2026-2030 8 8 n 11 1 2 1 - - - -
After 2030 21 24 21 21 - - - - _ _ _

prevalence is used as a target, while 12/36 of these
countries are found to be able to achieve LF elimin-
ation under the current MDA program in the random
IU treatment scenario by this time point, a corre-
sponding 24/36 or 66.6% of countries are predicted to
be able to achieve LF elimination under the same
MDA program in the sequential treatment scenario.
These results indicate that the way in which IUs are
recruited into MDA programs, their original endem-
icity levels, treatment coverage, and the threshold
value set as targets for signifying transmission break-
age will all combine to govern the expected timelines
to achieving LF elimination in any given country.

Impact of remedial measures

We evaluated next the effect that switching from annual
MDA plus VC at current coverages from year 2016 to
various remedial measures could have in accelerating the
progress to LF elimination. This exercise was carried out
under the sequential program expansion scenario, which
we believe is a more reasonable model followed in reality
compared to the random phased IU recruitment sce-
nario, and noting that Togo, Ghana, and Egypt are ex-
pected to meet the goal of LF elimination by 2020 under
the current sequential annual MDA program (Table 4).
The predicted LF elimination years as a result of switch-
ing to the various currently proposed remedial drug plus
VC strategies in comparison to the base annual MDA
plus VC at current coverages strategy (Table 2) are sum-
marized for all 36 countries in the form of boxplots in
Fig. 6. These results show that while switching from any
of the annual MDA strategies to biannual MDA and an-
nual IDA variants will decrease the expected year of
achievable LF elimination, none of the strategies will be
able to eliminate LF transmission across all endemic
countries on the continent by year 2020 (see also Add-
itional file 2: Movie S1, Additional file 3: Movie S2, and
Additional file 4: Movie S3). Figure 6 shows that increas-
ing the coverages of MDA and VC from current levels
to 80% will have only little impact within each MDA
variant. The results also show that switching to annual
IDA compared to biannual two-drug regimens will have
only a small positive effect in reducing the mean year of
LF elimination in Africa even in the case of the most

optimal subvariant strategy, viz., providing drugs and VC
at a coverage of 80%, respectively (Fig. 6).

Figure 7 presents the predicted elimination years due to
the application of two best and worst performing variants
in each mass treatment plus VC plans — the worst (the
left panel plots showing the impacts of MDA1, bi-MDA1,
and IDA1) and the best (the right panel plots depicting ef-
fects of MDA4, bi-MDA4, and IDA 4, respectively) by
order in which individual countries in Africa may be able
to eliminate LF (with the elimination year for each country
under all remedial strategies shown in Additional file 1:
Table S3). As shown in Fig. 7b, the results highlight that
achieving LF elimination is not possible in all 36 endemic
countries of sub-Saharan Africa even by 2025 using the
best variant of a remedial strategy implementing annual
MDA. However, if MDA delivery is switched to biannual
(Fig. 7c and d), achieving LF elimination by 2025 is pos-
sible in the majority of these countries. All annual IDA-
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Fig. 6 Timelines to the elimination of lymphatic filariasis (LF)
from sub-Saharan Africa under various intervention strategies.
Distributions of calendar years when LF elimination is predicted
to be achievable in sub-Saharan Africa under the 12 considered
intervention scenarios (see Table 2). These values were calculated
by pooling together model-predicted country-specific LF elimination
years. The country-specific LF elimination years were calculated as the
year by which community-level mf prevalences in all selected spatially
representative sites from a given country are predicted to be reduced
below their respective 95% elimination probability thresholds (see
Table 3). The horizontal line indicates the year 2020 — the target year
set for global LF elimination. The error bars show the 2.5™ and 97.5"
percentile values
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Fig. 7 Variability in country-specific timelines to lymphatic filariasis (LF) elimination in sub-Saharan Africa. Distributions of the calendar years of LF
elimination are shown for 6 out of the 12 considered remedial intervention scenarios (see Table 2). Countries are depicted in the graphs ranked
by the year of elimination. Note that some countries are able to meet elimination by 2020 under their current strategy, and so would not need
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based remedial strategies (Fig. 7e and f) clearly predict
more optimistic timelines to LF elimination across the
continent (at the latest by 2023).

Discussion

Using parasite transmission models for producing
regional-scale intervention predictions presents a number
of difficulties, which chiefly arise from the heterogeneity
that underlies infection patterns across a spatial domain
[17, 18, 55-58]. At the heart of these challenges is the
problem of how best to scale transmission processes up
from the local setting to predict phenomena at coarser
hierarchical scales of space and time, particularly when in-
ference on aggregate properties of entities of interest is
based on models developed using components and pro-
cesses estimated at small fine-scale levels [55-57, 59, 60].
This is compounded further by the fact that spatial variabil-
ity in the biophysical and social contexts of transmission
will alter the association between infection pattern and
process across different endemic settings [20-22, 61, 62],
and extrapolation across scales often involves transmuta-
tion, where this relationship may change qualitatively as
scales are crossed [18, 63].

Here, we have sought to address the task of predicting
the impact of LF interventions at the country level by
employing an approach that focuses on the discovery
and use of local models to take specific account of
within-country spatial effects in parasite transmission
and control dynamics. The approach incorporates as-
pects of a number of strategies suggested previously for
dealing with spatial scale issues, viz., ensuring that
model structure is unaltered, grain is not changed,
uniqueness of location effects is preserved, and there is
no aggregation of data [13, 18, 55]. This approach differs
from recent attempts to model the regional impacts
of interventions to either eliminate or control NTDs
[1, 2, 4, 5], which largely constitute variations of the
calibration approach to upscaling model predictions
for generating aggregate results [18]. Here, a trans-
mission model is calibrated against coarse-grained
data, and models are identified that match the chosen
data using various objective functions. While such
methods can approximate the effects of spatial het-
erogeneity in system dynamics by selection of models
that match various expected in-country infection
ranges [4, 5], parameter estimates are still only valid
within the often arbitrarily chosen data ranges, with
the reliability of calibration unknown outside this
range. They also do not account for the actual distri-
bution of infection across a real landscape, the know-
ledge of which is required to appropriately weight the
contribution of local models for forming more reliable
aggregate predictions. Such aggregation exercises also
assume that fine-scale spatial variation in parameter
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values within the aggregate does not matter; and fi-
nally, they presuppose the existence of an aggregate
landscape-wide infection property that can be derived
from the finer-scale system information [55]. The
sum of these effects is that significant aggregation
error will be introduced into any attempt aiming to
represent what are in reality n-dimensional complex
systems using less than n state variables [16]. Such
errors will underestimate the impact of spatial hetero-
geneities in transmission processes across a domain of
interest and thereby significantly bias estimates of
mean timelines to parasite extinction in a spatial
region [14, 17, 18].

By contrast, our technical solution to this upscaling
problem is to design a hierarchical landscape-wide com-
putational platform that facilitates learning ensembles of
local LF transmission models from spatially observed/
derived data within countries and uses their predictions
for a representative sample of sites to support inference
making at various aggregate scales (e.g., district, country,
and continental levels (Figs. 5, 6, and 7; Tables 4 and 5)).
In other words, the method relies on a reverse engineer-
ing paradigm in which locality-specific mechanistic
models are identified and used for inference making via
data-driven discovery methods [38]. This focus on data
in the approach for local model discovery is important;
it meant, on the one hand, the establishment of a sys-
tematic process (Fig. 2) for conducting the search, ana-
lysis, and integration of the required data, and, on the
other, given gaps in these data, also consideration of
how to best estimate the needed localized data using
various methods of interpolation or prediction (see
Methods). These vagaries in the type of input data,
whether contributed by the limited availability of mea-
sured data at the scale of modeling (MDA coverages) or
through errors in the data estimated for sample sites (by
mapping (e.g, mf prevalence, VC coverage), model-
based predictions (e.g., ABR values), or derivations (mf
age prevalences)), mean that errors in model calibration
and therefore in the precision of our predictions are in-
evitable [58]. While this cautions against the uncritical
use of the present modeling results, it is also important
to realize that this limitation in data for undertaking
spatially structured modeling is partly procedural and
therefore fixable. Thus, for example, given that much of
the needed data for modeling LF control, particularly
with regard to mf prevalence and coverages of MDA and
VC, are available with the LF endemic countries under-
going MDA programs, provision of these data to mod-
elers is currently hampered by the lack of negotiated
data transfer protocols. Until this is resolved, it must be
recognized by policy makers that modeling options, by
necessity, will have to rely on resorting to simulating
scenarios in those situations where data are lacking, just
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as we have done in this study with regard to comparing
the outcomes of implementing MDA sequentially from
highest to lowest prevalence IUs to a situation where
MDAs are offered randomly to IUs. Our results will
thereby perforce be approximate, with these data errors
contributing to a portion of the uncertainty in our
model outputs.

Nevertheless, one immediate value from using a data-
driven modeling approach is highlighted by the stag-
gered nature of the actual annual MDAs applied thus far
in LF endemic countries (Table 1), indicating that sub-
stantive numbers of IUs within each country started
MDA implementation between 2009 and 2013 with
some countries beginning LF MDA nationally only at
this time. This staggered start immediately points to the
high probability that many African countries will not
achieve LF elimination by 2020 using the current annual
MDA and VC interventions. This conclusion is substan-
tiated and further clarified by the simulations carried out
in this study (summarized in Tables 4 and 5 and Figs. 6
and 7). The most significant of these results of urgent
policy relevance is our finding that partly as a result of
this staggered delivery of MDA, at best only 3/36 en-
demic countries will be able to meet the goal of LF elim-
ination by 2020 if site-specific breakpoints are used as
targets for signifying transmission interruption (with the
majority of countries (21/36) able to achieve parasite
elimination only between 2031 and 2035 (Table 5)),
while if the WHO threshold of 1% mf prevalence is used
and the sequential roll-out of annual MDA is applicable,
then this will increase to 24/36 countries able to achieve
this target. This finding indicates that aggregate timelines
to LF elimination from the application of annual MDA in
a country will be a complex outcome of the spatial distri-
bution of in-country baseline infection prevalences, imple-
mented MDA and VC coverages, duration and nature of
MDA roll-outs, and the infection breakpoint values used
for determining transmission interruption, with the choice
of which breakpoint values to use, whether the WHO-set
1% mf prevalence threshold or the much lower site-
specific breakpoint values estimated in this study (see
Fig. 4 and Table 3), playing the most critical role.

Our modeling of the impact of proposed or potential
remedial measures applied from 2016 (using site-specific
breakpoint values but following a sequential roll-out of
interventions) to accelerate the progress to LF elimin-
ation in Africa has provided several new insights into
the relative effectiveness of these interventions for
achieving this goal. The first result of import is the find-
ing that simply increasing VC coverage to 80% under
existing MDA coverages will not accelerate the meeting
of LF elimination at the country level (Table 5). This is
unsurprising, given that insecticide bed net coverages
used in the baseline simulations across the majority of

Page 19 of 23

IUs within the present countries were already at
values as high as 60% on average; as we highlighted
before [12, 64, 65], increasing VC coverages by mod-
erate amounts when MDA coverages are already at
moderately high levels will not lead to significant im-
pacts on timelines to elimination due to the inher-
ently greater impact of chemotherapy versus VC in
reducing LF infection. By contrast, but for the same
reason, switching to MDA based either on biannual
drug delivery or annual IDA regimens significantly ac-
celerated the achievement of parasite elimination in
all countries. Thus, while implementing biannual
MDA from 2016 will allow a majority of countries to
achieve LF elimination under current drug and VC
coverages by 2025 (see Table 5 and Fig. 6), increasing
VC coverage to 80% along with this regimen will
allow virtually all of them to meet the goal of elimin-
ation by this year. The best results were, however, ob-
tained by all the IDA-based regimens evaluated, with
achievement of parasite elimination facilitated in all
countries by the year 2023. Although contingent on
the pattern of MDA roll-outs, these results clearly
support increasing suggestions for countries to switch
to these more intensive drug regimens, where feasible,
to accelerate their prospects for meeting the goal of
LF elimination as rapidly as possible [66].

The estimates of durations required by the annual
MDA intervention in this study are considerably lon-
ger than those anticipated by the Global Programme
to Eliminate Lymphatic Filariasis (GPELF), which en-
visages all endemic countries to be under full geo-
graphic coverage by 2016 and post-MDA surveillance
beginning in all countries by 2020 [67]. They are also
significantly longer than estimates developed by a re-
cent modeling study which projected that, in the
worst-case scenario, LF elimination globally will be
achieved by 2028 [4]. These discrepancies in the re-
sults between studies highlight the importance of
carefully considering the methodologies and threshold
targets used by various workers in deriving interven-
tion duration estimates. Thus, while the GPELF esti-
mates are simply based on assuming that 5 years of
annual MDA will be sufficient to break transmission
in all areas, the latter results were based on predic-
tions of a deterministic model [12, 51, 68, 69] cali-
brated to a limited set of expected baseline
prevalences within countries and which assumed an
85% MDA coverage and a target threshold of 1% mf
for all areas. This use of uniform values for various
intervention parameters, a weaker constraining of
models to match only overall human infection data,
plus the limited consideration of spatial heterogeneity
in site-specific transmission dynamics clearly underlie
the finding that 6-15 rounds of annual MDA would
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be sufficient to eliminate LF transmission in that
work, compared to the significantly longer time pe-
riods we estimate here for the same 1% mf threshold
(10-24 annual rounds between countries, depending
on within-country heterogeneity in baseline mf preva-
lence and actual MDA/VC coverages and roll-out pat-
terns achieved (Table 4)). This finding highlights how
ignoring a fuller consideration of heterogeneous transmis-
sion dynamics across a spatial domain (as a result of not
constraining a model by locally varying infection data) can
lead to biased and overly optimistic aggregate predictions
of the prospects for eliminating a spatially variable
parasitic disease.

However, as with any modeling study, ours also has
limitations that need to be considered when interpreting
the results presented here. First, although our computa-
tional platform is designed to aid simulations of the ef-
fects of interventions based on discovery and use of
local LF models calibrated to site-specific data, spatial
correlation between sites was captured only approxi-
mately via a geostatistical model describing spatial varia-
tions in mf prevalence within an individual country.
Thus, we assume that model structure is spatially invari-
able but parameter values will vary according to specific
location as an explicit function of the spatial structure
governing the distribution of this infection state variable
across a region [33]. While the creation and use of ABR
maps would have strengthened the incorporation of
spatial structure in an important driving input variable
too, this option was precluded by the lack of sufficient
data on this variable for all study sites (see Methods),
although note that model-estimated ABR data were
used for calculating mf breakpoint values in each of
our study sites. For the same reason, we have also not
considered the impact of human migration patterns or
mosquito dispersal patterns in our simulations, but
we note that the spatial correlation in the mf preva-
lence data is likely to subsume some of these effects
indirectly [70].

Our data-fit approach also depends on data avail-
ability as well as quality. Although here we have ad-
dressed errors in the mf/ABR data via model
calibration to 95th percentile ranges in these data, it
is clear that without a full observational model it is
difficult to assess whether any lack of fit of our
models is due to poor mechanistic understanding of
the effects of spatial heterogeneity in transmission
processes, or to problems in the calibration data
(poor overall survey data quality, missing data). It is
known that under this circumstance, model calibra-
tion efforts may need to be flexible and might need
to examine the use of semiquantitative and qualitative
pattern matching methods [71], rather than be based
solely on quantitative data-fitting approaches [58].
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Executing large continental-scale model discovery
and simulation programs presents a further challenge
associated with the handling and processing of large
datasets. While we have created a plausible data man-
agement and scientific workflow system to tackle the
issues of discovery, assembly, and data transforma-
tions/interpolations required to provide the input data
for identifying the locally applicable LF models, we
note that there is a need to automate our current ap-
proaches to speed up these data delivery and process-
ing activities. We are currently working with
computer scientists to develop a server-side infection
data processing system based on using data ware-
house principles and methods [27, 30, 31] to address
this issue. A similar requirement for running data-
intensive models across a large heterogeneous spatial
domain is looking at advances in software and hard-
ware to speed up the computational discovery and
simulation process. This means not only optimizing
our current Matlab codes for running on batch com-
pute multicore systems and clusters, but also examin-
ing more flexible and faster code implementations
using C, C++, or even Java [11]. Speeding up data-
base and simulation scalability using hardware accel-
eration employing graphics processing units (GPUs)
or similar accelerated parallel computing platforms
[72] presents another current option we are investi-
gating to overcome the high performance and mem-
ory overheads connected with our data-driven
modeling approach. We expect that the effective reso-
lution of these challenges will allow us to accomplish
the next stage of the work reported here, viz., the
provision of intervention simulations for decision
making at the small spatial scale of the village or
community.

Conclusions

In summary, we present a spatially hierarchical,
continental-scale, data-driven computational platform
that allows the learning of local LF transmission models
from georeferenced data assembled for collections of
spatially representative sites in order to more reliably
simulate the impacts of interventions in disrupting the
transmission of this macroparasitic disease across large
spatially heterogeneous domains. Our approach ad-
dresses a key challenge for producing regional-scale pre-
dictions of the impacts of national-level interventions,
viz.,, how best to address and incorporate the locality-
specific spatial as well as local to global scaling effects
that are likely to influence parasite transmission pro-
cesses and responses to interventions when predicting
outcomes at coarser spatial scales. The results highlight
that incorporating these effects into simulations will
lengthen aggregate timelines to LF elimination in sub-
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Saharan African countries well beyond the year 2020 tar-
get set by WHO using current interventions, although
exact durations per country will depend in a complex
manner on the spatial distribution of in-country baseline
infection prevalences, characteristics of how interven-
tions are implemented practically, and the infection
breakpoint values used for determining interruption of
the transmission of this macroparasitic disease in local
spatial settings. Our work also highlights how advances
in the data sciences and computational discovery of
knowledge provide important new tools for effectively
modeling the transmission and control of spatially het-
erogeneous and ecologically complex parasitic diseases,
such as LF.

Additional files

Additional file 1: Supplementary material. (DOCX 820 kb)

Additional file 2: Movie showing impact of intervention scenario
MDAT. (WMV 533 kb)

Additional file 3: Movie showing impact of intervention scenario Bi-
MDAT. (WMV 400 kb)

Additional file 4: Movie showing impact of intervention scenario IDAT.
(WMV 400 kb)

Abbreviations

ABR: Annual biting rate; ALB: Albendazole; BM: Bayesian melding;

CDF: Cumulative distribution function; CDTI: Community-directed treatment
with ivermectin; DEC: Diethylcarbamazine citrate; EP: Elimination probability;
GPELF: Global Programme to Eliminate Lymphatic Filariasis; GPU: Graphics
processing unit; ICT: Immunochromatographic card test; IDA: lvermectin-
diethylcarbamazine-albendazole; IRS: Indoor residual spray; ITN: Insecticide-
treated net; IU: Implementation unit; IVM: Ilvermectin; LF: Lymphatic filariasis;
LLIN: Long-lasting insecticidal net; MDA: Mass drug administration;

mf: Microfilariae; NTD: Neglected tropical disease; OCP: Onchocerciasis
Control Program; PCT: Preventive chemotherapy and transmission control
databank; SIR: Sample importance resampling; TBR: Threshold biting rate;
VC: Vector control; WHO: World Health Organization

Acknowledgements
Not applicable.

Funding

Financial support of this work was provided by the Eck Institute for Global
Heath, Notre Dame, and the Office of the Vice President for Research (OVPR),
Notre Dame. Partial support by the NTD Modelling Consortium funded
through the Bill & Melinda Gates Foundation is also acknowledged. The
views, opinions, assumptions, or any other information set out in this article
should not be attributed to the Bill & Melinda Gates Foundation or any
person connected with them.

Availability of data and materials

The datasets generated, used, and/or analyzed during the current study in
aggregated form as well as via web links are included in the published
article and its additional files or are available from the corresponding author
on reasonable request.

Authors’ contributions

All authors conceived the study. EM and BKS designed the analysis and
methodology. BKS, BKM, MES, and EM performed the model simulations and
analysis. SH and JN provided the expert high performance computational
support required to execute fast simulations of the models. EM and BKS
drafted the manuscript. All authors reviewed and approved the final
manuscript.

Page 21 of 23

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Biological Sciences, University of Notre Dame, Galvin Life
Science Center, Notre Dame, IN 46556, USA. “Center for Research
Computing, University of Notre Dame, Notre Dame, IN 46556, USA.

Received: 6 May 2017 Accepted: 16 August 2017
Published online: 27 September 2017

References

1. Anderson RM, Truscott JE, Pullan RL, Brooker SJ, Hollingsworth TD. How
effective is school-based deworming for the community-wide control of
soil-transmitted helminths? PLoS Neglect Trop D. 2013;7(2):e2027.

2. French MD, Churcher TS, Webster JP, Fleming FM, Fenwick A, Kabatereine
NB, Sacko M, Garba A, Toure S, Nyandindi U, et al. Estimation of changes in
the force of infection for intestinal and urogenital schistosomiasis in
countries with schistosomiasis control initiative-assisted programmes. Parasit
Vectors. 2015;8:558.

3. Gurarie D, Yoon N, Li E, Ndeffo-Mbah M, Durham D, Phillips AE, Aurelio HO,
Ferro J, Galvani AP, King CH. Modelling control of Schistosoma
haematobium infection: predictions of the long-term impact of mass drug
administration in Africa. Parasit Vectors. 2015;8:529.

4. Kastner RJ, Stone CM, Steinmann P, Tanner M, Tediosi F. What is needed to
eradicate lymphatic filariasis? A model-based assessment on the impact of
scaling up mass drug administration programs. PLoS Neglect Trop D. 2015;
9(10):e0004147.

5. Kim YE, Remme JHF, Steinmann P, Stolk WA, Roungou JB, Tediosi F. Control,
elimination, and eradication of river blindness: scenarios, timelines, and
ivermectin treatment needs in Africa. PLoS Neglect Trop D. 2015,9(5):
e0003664.

6. World Health Organization. Accelerating work to overcome the global
impact of neglected tropical diseases — a roadmap for implementation.
Geneva: World Health Organization; 2012. p. 42.

7. Marathe M, Vullikanti AKS. Computational epidemiology. Commun ACM.
2013;56(7):88-96.

8. Marathe MV, Ramakrishnan N. Recent advances in computational
epidemiology. IEEE Intell Syst. 2013;28(4):96-101.

9. Moulin B, Navarro D, Marcotte D, Sedrati S, Bouden M. ZoonosisMAGS
Project (Part 2): complementarity of a rapid-prototyping tool and of a full-
scale geosimulator for population-based geosimulation of zoonoses. In:
Chen D, Moulin B, Wu J, editors. Analyzing and modelling spatial and
temporal dynamics of infectious diseases. Hoboken: Wiley; 2015. p. 341-70.

10.  O'Hare A, Lycett SJ, Doherty T, Salvador LCM, Kao RR. Broadwick: a
framework for computational epidemiology. BMC Bioinfor. 2016;17:65.

11, Parker J, Epstein JM. A distributed platform for Global-Scale Agent-Based
Models of disease transmission. ACM T Model Comput S. 2011,22(1):2.

12.  Michael E, Malecela-Lazaro MN, Simonsen PE, Pedersen EM, Barker G, Kumar
A, Kazura JW. Mathematical modelling and the control of lymphatic filariasis.
Lancet Infect Dis. 2004;4(4):223-34.

13.  Beven K Towards integrated environmental models of everywhere:
uncertainty, data and modelling as a learning process. Hydrol Earth Syst Sc.
2007;11(1):460-7.

14. Beven KJ. Uniqueness of place and process representations in hydrological
modelling. Hydrol Earth Syst Sc. 2000;4(2):203-13.

15. Van Oijen M, Thomson A, Ewert F. Spatial upscaling of process-based
vegetation models: an overview of common methods and a case-study for
the UK. StatGIS2009. Milos, Greece; 2009: 6 pp.


dx.doi.org/10.1186/s12916-017-0933-2
http://dx.doi.org/10.1186/s12916-017-0933-2
http://dx.doi.org/10.1186/s12916-017-0933-2
http://dx.doi.org/10.1186/s12916-017-0933-2

Michael et al. BMC Medicine (2017) 15:176

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Constanza R, Voinov A. Introduction: spatially explicit landscape simulation
models. In: Constanza R, Voinov A, editors. Landscape simulation modeling: a
spatially explicit, dynamic approach. New York: Springer-Verlag; 2004. p. 3-20.
Cushman SA. Space and time in ecology: noise or fundamental driver? In:
Cushman SA, Huettmann F, editors. Spatial complexity, informatics, and
wildlife conservation. New York: Springer; 2010. p. 19-41.

Cushman SA, Littell J, McGarigal K. The problem of ecological scaling in
spatially complex, nonequilibrium ecological systems. In: Cushman SA,
Huettmann F, editors. Spatial complexity, informatics, and wildlife
conservation. New York: Springer; 2010. p. 43-63.

Bevan K. Environmental modelling: an uncertain future? Abingdon:
Routledge; 2009.

Gambhir M, Bockarie M, Tisch D, Kazura J, Remais J, Spear R, Michael E.
Geographic and ecologic heterogeneity in elimination thresholds for the
major vector-borne helminthic disease, lymphatic filariasis. BMC Biol. 2010,8:22.
Michael E, Singh BK. Heterogeneous dynamics, robustness/fragility trade-
offs, and the eradication of the macroparasitic disease, lymphatic filariasis.
BMC Med. 2016;14(1):1.

Singh BK, Michael E. Bayesian calibration of simulation models for
supporting management of the elimination of the macroparasitic disease,
lymphatic filariasis. Parasit Vectors. 2015;8(1):1-26.

Eckhoff PA, Tatem AJ. Digital methods in epidemiology can transform
disease control. Intl HIth. 2015;7(2):77-8.

Hay SI, George DB, Moyes CL, Brownstein JS. Big data opportunities for
global infectious disease surveillance. PLoS Med. 2013;10(4):e1001413.
Kalluri S, Gilruth P, Rogers D, Szczur M. Surveillance of arthropod vector-
borne infectious diseases using remote sensing techniques: a review. PLoS
Pathog. 2007;3(10):1361-71.

Tatem AJ, Adamo S, Bharti N, Burgert CR, Castro M, Dorelien A, Fink G,
Linard C, John M, Montana L, et al. Mapping populations at risk: improving
spatial demographic data for infectious disease modeling and metric
derivation. Popul Hith Metrics. 2012;10(1):8.

Ames DP, Horsburgh JS, Cao Y, Kadlec J, Whiteaker T, Valentine D.
HydroDesktop: Web services-based software for hydrologic data
discovery, download, visualization, and analysis. Environ Model Softw.
2012;37:146-56.

Beven KJ, Alcock RE. Modelling everything everywhere: a new approach to
decision-making for water management under uncertainty. Freshwater Biol.
2012;57:124-32.

Billah MM, Goodall JL, Narayan U, Essawy BT, Lakshmi V, Rajasekar A, Moore
RW. Using a data grid to automate data preparation pipelines required for
regional-scale hydrologic modeling. Environ Model Softw. 2016;78:31-9.
Essawy BT, Goodall JL, Xu H, Rajasekar A, Myers JD, Kugler TA, Billah MM,
Whitton MC, Moore RW. Server-side workflow execution using data grid
technology for reproducible analyses of data-intensive hydrologic systems.
Earth Space Sci. 2016;3(4):163-75.

Liu Y, Hu JM, Snell-Feikema I, VanBemmel MS, Lamsal A, Wimberly MC.
Software to facilitate remote sensing data access for disease early warning
systems. Environ Model Softw. 2015;74:247-57.

Dowd M. Bayesian statistical data assimilation for ecosystem models using
Markov Chain Monte Carlo. J Mar Syst. 2007,68(3-4):439-56.

Finley AO, Banerjee S, Basso B. Improving crop model inference through

Bayesian melding with spatially varying parameters. J Agr Biol Envir St. 2011;

16(4):453-74.

LaDeau SL, Glass GE, Hobbs NT, Latimer A, Ostfeld RS. Data-model fusion to
better understand emerging pathogens and improve infectious disease
forecasting. Ecol Appl. 2011;21(5):1443-60.

Luo YQ, Ogle K, Tucker C, Fei SF, Gao C, LaDeau S, Clark JS, Schimel DS.
Ecological forecasting and data assimilation in a data-rich era. Ecol Appl.
2011;21(5):1429-42.

Niu SL, Luo YQ, Dietze MC, Keenan TF, Shi Z, Li JW, Chapin FS. The role of
data assimilation in predictive ecology. Ecosphere. 2014;5(5):1-16. doi:10.
1890/E513-00273.1.

Todorovski L, Dzeroski S. Integrating knowledge-driven and data-driven
approaches to modeling. Ecol Model. 2006;194(1-3):3-13.

Villaverde AF, Banga JR. Reverse engineering and identification in systems
biology: strategies, perspectives and challenges. J R Soc Interface. 2014;
11(91):20130505.

Bates SC, Cullen A, Raftery AE. Bayesian uncertainty assessment in
multicompartment deterministic simulation models for environmental risk
assessment. Environmetrics. 2003;14(4):355-71.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.
61.

62.

63.

64.

Page 22 of 23

Poole D, Raftery AE. Inference for deterministic simulation models: the
Bayesian melding approach. J Am Stat Assoc. 2000;,95(452):1244-55.

Spear RC, Hubbard A, Liang S, Seto E. Disease transmission models for
public health decision making: toward an approach for designing
intervention strategies for Schistosomiasis japonica. Environ Health Persp.
2002;110(9):907-15.

Simidjievski N, Todorovski L, Dzeroski S. Learning ensembles of population
dynamics models and their application to modelling aquatic ecosystems.
Ecol Model. 2015;306:305-17.

Simidjievski N, Todorovski L, Dzeroski S. Modeling dynamic systems with
efficient ensembles of process-based models. PLoS One. 2016;11(4):e0153507.
Slater H, Michael E. Mapping, Bayesian geostatistical analysis and spatial
prediction of lymphatic filariasis prevalence in Africa. PLoS One. 2013;8(8):
e/1574.

Michael E, Bundy DAP, Grenfell BT. Re-assessing the global prevalence and
distribution of lymphatic filariasis. Parasitology. 1996;112(04):409-28.

Boatin BA, Richards Jr FO. Control of onchocerciasis. Adv Parasitol. 2006,61:
349-94.

Remme JHF. Research for control: the onchocerciasis experience. Trop Med
Inter Health. 2004:9(2):243-54.

Koroma JB, Sesay S, Sonnie M, Hodges MH, Sahr F, Zhang Y, Bockarie MJ.
Impact of three rounds of mass drug administration on lymphatic filariasis
in areas previously treated for onchocerciasis in Sierra Leone. PLoS Neg|
Trop D. 2013;7(6):e2273.

World Health O. Lymphatic filariasis: a handbook of practical entomology
for national lymphatic filariasis elimination programmes. WHO/HTM/NTD/
PCT/2013.10; 2013:1-107.

Singh BK, Bockarie MJ, Gambhir M, Siba PM, Tisch DJ, Kazura J, et al.
Sequential modelling of the effects of mass drug treatments on
anopheline-mediated lymphatic filariasis infection in Papua New Guinea.
PL0S One. 2013;8(6):e67004.

Smith ME, Singh BK; Irvine MA, Stolk WA, Subramanian S, Hollingsworth TD,
Michael E. Predicting lymphatic filariasis transmission and elimination dynamics
using a multi-model ensemble framework. Epidemics. 2017;18:16-28.

Reimer LJ, Thomsen EK, Tisch DJ, Henry-Halldin CN, Zimmerman PA, Baea
ME, Dagoro H, Susapu M, Hetzel MW, Bockarie MJ, et al. Insecticidal bed
nets and filariasis transmission in Papua New Guinea. New Engl J Med.
2013;369(8):745-53.

Gambhir M, Michael E. Complex ecological dynamics and eradicability of
the vector borne macroparasitic disease, lymphatic filariasis. PLoS One. 2008;
3(8):€2874.

Thomsen EK, Sanuku N, Baea M, Satofan S, Maki E, Lombore B, Schmidt MS,
Siba PM, Weil GJ, Kazura JW, et al. Efficacy, safety, and pharmacokinetics of
coadministered diethylcarbamazine, albendazole, and ivermectin for
treatment of Bancroftian filariasis. Clin Infect Dis. 2016;62(3):334-41.

King AW. Translating models across scales in the landscape. In: Turner MG,
Gardner RH, editors. Quantitative methods in landscape ecology, ecological
studies, vol. 82. New York: Springer; 1991. p. 479-517.

Rastetter EB, King AW, Cosby BJ, Hornberger GM, Oneill RV, Hobbie JE.
Aggregating fine-scale ecological knowledge to model coarser-scale
attributes of ecosystems. Ecol Appl. 1992;2(1):55-70.

Schneider DC. Quantitative ecology: spatial and temporal scaling. San
Diego: Academic; 1994.

Villa F, Voinov A, Fitz C, Costanza R. Calibration of large spatial models: a
multistage, multiobjective optimization technique. In: Costanza R, Vionov A,
editors. Landscape simulation modeling: a spatially explicit, dynamic
approach. New York: Springer; 2004. p. 77-116.

Levin SA. The problem of pattern and scale in ecology. Ecology. 1992;73(6):
1943-67.

Wiens JA. Spatial scaling in ecology. Funct Ecol. 1989;3(4):385-97.

Michael E, Simonsen PE, Malecela M, Jaoko WG, Pedersen EM, Mukoko D,
Rwegoshora RT, Meyrowitsch DW. Transmission intensity and the
immunoepidemiology of bancroftian filariasis in East Africa. Parasit
Immunol. 2001;23(7):373-88.

Spear RC. Internal versus external determinants of Schistosoma japonicum
transmission in irrigated agricultural villages. J R Soc Interface. 2012;,9(67):
272-82.

Chesson PL. Models for spatially distributed populations — the effect of
within-patch variability. Theor Popul Biol. 1981;19(3):288-325.

Michael E, Gambhir M. Transmission models and management of lymphatic
filariasis elimination. Adv Exper Med Biol. 2010,673:157-71.


http://dx.doi.org/10.1890/ES13-00273.1
http://dx.doi.org/10.1890/ES13-00273.1

Michael et al. BMC Medicine (2017) 15:176

65.

66.

67.

68.

69.

70.

71.

72.

Michael E, Malecela-Lazaro MN, Kabali C, Snow LC, Kazura JW. Mathematical
models and lymphatic filariasis control: endpoints and optimal
interventions. Trends Parasitol. 2006;22(5):226-33.

Irvine MA, Stolk WA, Smith ME, Subramanian S, Singh BK, Weil GJ, Michael E,
Hollingsworth TD. Effectiveness of a triple-drug regimen for global
elimination of lymphatic filariasis: a modelling study. Lancet Infect Dis. 2017,
17(4):451-8.

Ichimori K, King JD, Engels D, Yajima A, Mikhailov A, Lammie P, Ottesen EA.
Global programme to eliminate lymphatic filariasis: the processes
underlying programme success. PLoS Negl Trop Dis. 2014;8(12):e3328.

Chan MS, Srividya A, Norman RA, Pani SP, Ramaiah KD, Vanamail P, Michael
E, Das PK, Bundy DA. Epifil: a dynamic model of infection and disease in
lymphatic filariasis. Am J Trop Med Hyg. 1998,59(4).606-14.

Norman RA, Chan MS, Srividya A, Pani SP, Ramaiah KD, Vanamail P, Michael
E, Das PK, Bundy DA. EPIFIL: the development of an age-structured model
for describing the transmission dynamics and control of lymphatic filariasis.
Epidemiol Infect. 2000;124(3):529-41.

Srividya A, Michael E, Palaniyandi M, Pani SP, Das PK. A geostatistical analysis
of the geographic distribution of lymphatic filariasis prevalence in southern
India. Am J Trop Med Hyg. 2002;67(5):480-9.

Grimm V, Frank K, Jeltsch F, Brandl R, Uchmanski J, Wissel C. Pattern-oriented
modelling in population ecology. Sci Total Environ. 1996;183(1-2):151-66.
Corchado E, Lozano JA, Quintian H, Yin H, editors. Intelligent Data
Engineering and Automated Learning — IDEAL 2014 Proceedings.
Salamanca: Springer; 2014.

Page 23 of 23

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Methods and Results
	Conclusions

	Background
	Methods
	Overview of modeling framework
	LF data assembly
	Baseline microfilaremia (mf) age prevalence
	Vector mosquito species and annual biting rates (ABRs)
	Intervention data on mass drug administration (MDA)
	Information on vector control (VC) methods and coverages
	Data-driven LF models
	A spatially hierarchical algorithm for modeling LF interventions
	Scientific workflow for implementing the modeling framework

	Results
	Learning ensembles of local LF transmission models
	Elimination thresholds
	Evaluation of elimination feasibility by year 2020 and impact of remedial measures
	Predictions of times to elimination by 2020 based on current MDA and background VC
	Impact of remedial measures

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

