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Abstract

Background: Pakistan is one of only three countries where poliovirus circulation remains endemic. For the Pakistan
Polio Eradication Program, identifying high risk districts is essential to target interventions and allocate limited

resources.

Methods: Using a hierarchical Bayesian framework we developed a spatial Poisson hurdle model to jointly
model the probability of one or more paralytic polio cases, and the number of cases that would be detected
in the event of an outbreak. Rates of underimmunization, routine immunization, and population immunity, as
well as seasonality and a history of cases were used to project future risk of cases.

Results: The expected number of cases in each district in a 6-month period was predicted using indicators
from the previous 6-months and the estimated coefficients from the model. The model achieves an average
of 90% predictive accuracy as measured by area under the receiver operating characteristic (ROC) curve, for

the past 3 years of cases.

Conclusions: The risk of poliovirus has decreased dramatically in many of the key reservoir areas in Pakistan.
The results of this model have been used to prioritize sub-national areas in Pakistan to receive additional
immunization activities, additional monitoring, or other special interventions.

Keywords: Disease mapping, Polio eradication, Risk mapping, Spatial epidemiology, Hurdle models, Pakistan,
Risk prioritization, Vaccination campaigns, Supplementary immunization activities

Background

The Global Polio Eradication Initiative (GPEI) has seen
great success since its launch in 1988. At the time of this
writing, only Pakistan, Afghanistan, and Nigeria remain
endemic for polio with only 37 cases of wild poliovirus
serotype 1 (WPV1) recorded in 2016. The 20 cases re-
ported in Pakistan in 2016 represent a historically low
case count for a calendar year and a 63% reduction in
cases compared to 2015. However, transmission is still
occurring on a considerable geographic scale, with four
of eight provinces reporting WPV1 cases in 2016.
Pakistan has approximately 25 million children under
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the age of 5 years [1], which presents challenges for allo-
cating limited resources. As the program approaches the
goal of zero cases, identifying the districts that are most
likely to be infected and prioritizing those districts for
interventions is a priority of the program and should ac-
celerate the path towards eradication.

In the Eastern Mediterranean Region of the World
Health Organization (WHO) key strategies of the of
GPEI included (1) achieving high coverage of at least
three doses of oral polio vaccine (OPV), (2) implementa-
tion of supplementary immunization activities (SIAs),
and (3) the development of sensitive epidemiological
and laboratory surveillance using standard WHO defini-
tions [2]. Eradication efforts began in Pakistan in 1994,
when the first SIA was conducted, and in 1995, when
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acute flaccid paralysis (AFP) surveillance commenced
[3]. The case burden in Pakistan has dramatically de-
creased since the 1990s, but sustained implementation
of the first two GPEI strategies has been challenging due
to poor rates of routine immunization (RI) and security
issues. As of 2012, only 53% of children in Pakistan were
receiving all basic vaccines, including Bacillus Calmette—
Guerin, measles and three doses of polio and diphtheria,
pertussis, and tetanus, with provincial rates as low as
16% and 29% in Balochistan and Sindh provinces, re-
spectively [4]. Additionally, vaccination bans and secur-
ity limitations in the Federally Administered Tribal
Areas (FATA) and Khyber Pakhtunkhwa (KP) and vio-
lence against vaccinators in FATA, Balochistan, and
Sindh provinces have periodically limited the program’s
efforts to consistently implement SIAs with high popula-
tion coverage in conflict-affected areas since 2008 [5].
These programmatic challenges have resulted in pockets
of underimmunized (fewer than three OPV doses) chil-
dren and have allowed transmission to persist.

Since 2011, the Pakistan program has been imple-
menting and enhancing a National Emergency Action
Plan (NEAP) for polio eradication to improve manage-
ment and accountability strategies, highlight core reser-
voirs of transmission, and to ensure the program is
creating and using high quality data [5, 6]. To aid in the
prioritization of sub-national areas for programmatic
interventions, we developed a spatial model to estimate
the risk of future WPV1 cases for the 155 districts of
Pakistan. Previous studies highlight the utility of spatial
risk models for guiding programmatic interventions for
polio, such as the 86% accuracy for predicting districts
at risk for future WPV1 cases in Nigeria [7]. These
models guided the prioritization of sub-national areas
for immunization planning and allocation of technical
and administrative field personnel. The use of a spatial
risk model, which is statistically evaluated based on its
accuracy for predicting locations of cases, represents a
methodological departure from the common approach
of compiling programmatic indicators of disease risk,
assigning weights based on expert opinion, and linearly
combining into a risk score [8, 9]. Unfortunately, a spatial
risk model has not previously been applied to model the
risk of WPV1 in Pakistan. In this paper, we will describe
our efforts to model the risk of future WPV1 cases in dis-
tricts of Pakistan and describe how these efforts have been
incorporated by the National Emergency Operating
Centre (N-EOC) in Islamabad to the 2016-2017 NEAP to
prioritize the districts of Pakistan.

Methods

Description of data

Our modeling efforts rely on the Pakistan AFP surveil-
lance data, which is managed by WHO and is the source
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for information on paralytic cases of polio. AFP cases
are identified through the extensive surveillance network
in Pakistan, which relies on both passive and active
(sweeps and case search) surveillance with oversite at
the district, provincial, and national level [6]. However,
AFP can be caused by many viruses other than WPV
[10]. For each childhood AFP case, the initial investiga-
tion includes two stool samples (to be tested for polio-
virus), demographics, date of paralysis onset, history of
OPV through RI as well as SIAs, and clinical symptoms.
For the purposes of our analyses, AFP cases that are
found to be positive for WPV1 are treated as the out-
come of interest and AFP found not to be infected with
polio, non-polio AFP (NPAFP), are treated as a random
sample from the population [11-13]. A surveillance
system that achieves an annual rate of 2 or more NPAFP
per 100,000 children under age 15 is considered suffi-
cient to detect circulating WPV1 [14].

Statistical methods

Using the NPAFP dose histories we constructed estimates
of district-level vaccination rates, such as zero-dose RI
(received zero OPV doses from RI) and underimmuniza-
tion (defined as children who have received three or fewer
doses of OPV from birth until AFP investigation). How-
ever, the number of NPAFP observations in each district
within a 6-month period can be quite small, ranging from
0 to 74 in our data, resulting in differences during a 6-
month period that are implausible when considering chil-
dren under 5 years of age. To alleviate this problem, we
used a hierarchical Bayesian space—time model with a
temporally structured space—time interaction [15] to gen-
erate smoothed estimates of district-level vaccination
rates. Briefly, the space—time model borrows information
over space and time to estimate the underlying rates from
which the observed data was drawn. Additional details
about the model specifications and interaction selection
can be found in Section 1 of Additional file 1.

A dynamic immunity model, originally developed for
Northern Nigeria [16], was implemented using Pakistan-
specific vaccine efficacies [13] to estimate district-level
population immunity. The immunity model uses a
hierarchical Bayesian model to estimate district-level,
annual, age-specific SIA coverage using the ages and SIA
doses reported by NPAFP cases. A hypothetical cohort
then progresses through the true SIA calendar experien-
cing the estimated yearly age-specific SIA coverage rates
and vaccine type. The result is monthly district-level
serotype-specific estimates of under-five population im-
munity which have been averaged over each 6-month
period.

Polio incidence has been rare and spatially heteroge-
neous in Pakistan since 2003, with 91% (3804 out of
4185) of 6-month district-level observations reporting
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zero WPV1 cases. To account for this large number of
zeros we implemented a spatial Poisson hurdle model
[17] using a hierarchical Bayesian framework. The
Poisson hurdle model explicitly models the excess obser-
vations of zero cases we would expect from areas with-
out circulating virus with a Bernoulli component as well
as the total number of cases given at least one case with
a truncated Poisson. The probability of at least one
WPV1 case (Bernoulli) and the total number of WPV1
cases given at least one case (truncated Poisson) in a dis-
trict during a 6-month period were jointly modeled as a
function of covariates from the previous period, namely
a set of independent and spatially structured random
effects, also known as the convolution model [18], and
an observation-level random effect to account for over-
dispersion. Notably, a bivariate prior distribution was
assigned to the independent district random effects to
allow for a correlation between the district-level Bernoulli
and truncated Poisson models. The expected number of
WPV1 cases, which is defined as the product of the prob-
ability of at least one WPV1 case and the expected num-
ber of WPV1 cases given at least one case, was used as the
measure of risk. A similar modeling approach has been
used to predict WPV1 and WPV3 in Nigeria [7]. Full
modeling details, including prior distribution specifica-
tions, can be found in Section 2 of Additional file 1.

Model selection was carried out in two stages. In the
first stage, we fit models based on the 64 combinations
of seasonality (low season is January through June),
vaccine-derived immunity for type 1 poliovirus, under-
immunized fraction, zero dose RI fraction, recent neigh-
boring cases (defined as paralytic WPV1 cases in
neighboring areas in the previous 6 months and square
root transformed), and recent cases (defined as paralytic
WPV1 cases and square root transformed) for the
Bernoulli portion, with only random effects in the trun-
cated Poisson model, and selected the model that mini-
mized the deviance information criteria (DIC) [19]. In
the second stage, we included the selected covariates for
the Bernoulli portion and considered all combinations of
covariates for the truncated Poisson portion of the
model and then again selected the covariates which min-
imized the DIC.

The predictive accuracy of our model was assessed by
comparing our predictions to held out data. The selected
model was first fit using data from 2003 until the first
6 months of 2009 and then used to predict cases in the
second half of 2009. This procedure was repeated, using
all historical data, for each subsequent 6-month period
with the final predictions for the second half of 2016
relying on data from 2003 through the first 6 months of
2016. For each set of predictions, the area under the
curve (AUC) for the receiver operator characteristic
(ROC) curve was calculated. The AUC for the ROC
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curve is a single value that summarizes the shape and
position of the ROC curve and has the useful interpret-
ation as the probability that a randomly selected district
with a case will have a higher risk score than a randomly
selected district without a case [20, 21]. AUCs between
0.7 and 0.9 suggest a moderate predictive power and
AUCs above 0.9 suggest a strong predictive power [22].

All modeling was completed in R 3.2.1 [23]. The SIA
coverage models were fitted via Markov chain Monte
Carlo using RStan [24, 25]. The space—time models used
for smoothing vaccination rates and the spatial Poisson
hurdle model were fit using the Integrated Nested Laplace
Approximation (INLA) [26, 27] as implemented in the
INLA package [28, 29], which provides a fast and accurate
alternative to Markov chain Monte Carlo methods for
these type of space—time models [15, 30-32].

Results

Estimated dose history and vaccine-derived immunity
AFP surveillance in Pakistan collected data on 43,301
NPAFP cases between January 2003 and June 2016, with
an average annual rate increasing from 4.3 to 11.4
NPAFP per 100,000 children under the age of 5 years
from 2003 to 2016. Space—time smoothing models fit to
the NPAFP vaccination dose history data indicated that
zero dose RI and underimmunized rates (fewer than
three doses) are highly heterogeneous across Pakistan
(Figs. 1 and 2). Both zero dose RI and underimmuniza-
tion rates were high in most of Punjab, Sindh, and KP
provinces, and lowest in the western provinces, Balochistan
and FATA. Zero dose RI rates were generally higher than
underimmunization rates, suggesting apparent gaps in RIL
Our dynamic immunity model indicates that immunity is
spatially and temporally variable across Pakistan (Fig. 3)
due to differences in SIA coverage and the vaccine effica-
cies for each serotype, which vary among the vaccines [13].

Association between covariates and cases of WPV1

The model that achieved the lowest DIC for the
Bernoulli and truncated Poisson portions of the hurdle
model are shown in Table 1. Associations are in the ex-
pected directions with high season, higher underimmu-
nization rates, recent cases, and recent neighboring
cases being positively associated with at least one case
(odds ratios above 1) and higher rates of population im-
munity being associated with a lower probability of a
case. The number of cases given at least one case is best
described by high season, underimmunization rate, zero-
dose RI rate, recent cases, and recent neighboring cases.
As expected, season, underimmunization rates, zero-
dose RI rate, and recent neighboring cases are positively
associated with cases (relative rates above 1).
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Zero Routine Immunization Doses
Jan-Jun 2016

Zero RI Doses (%)

Fig. 1 A map of smoothed estimates of zero routine immunization (Rl) doses for January through June, 2016 (left) and an example of the smoothing
models for observed zero Rl rates for Khyber district in the Federally Administered Tribal Areas (FATA) of Pakistan from 2003 to 2016 (right)
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Predictive performance

Predicted risk for WPV1

The predictive accuracy of our selected model was high  The probability of at least one WPV1 case is highest

(Fig. 4). AUC values were consistently above 0.8 and

along the regions of KP, FATA, and Balochistan, which

often above 0.9. Over the past 3 years, the AUC ranged  border Afghanistan, in northern Sindh, and near Karachi

from 0.84 to 0.97, with a mean of 0.90. Furthermore, the
sensitivity of a list made up of the districts with the
50 highest risk scores, that is the proportion of dis-
tricts with a case that are ranked in the top 50 risk
scores, ranged from 0.78 to 0.97 over the past 3 years.
Both measures show good performance overall, aside
from the second half of 2012, which had more dis-
tricts in KP with cases than our model would have
predicted.

(Fig. 5). The expected number of cases given at least one
case, which is driven primarily by population size and
population immunity, is highest in areas with low im-
munity and high population. The final risk score, defined
as the expected number of cases and described in
Section 2 of Additional file 1, indicates that the highest
risk areas are found along the border with Afghanistan
in the Quetta block (the districts of Quetta, Pishin, and
K. Abdullah), in Northern Sindh, and near Karachi.

Under Immunized Rate
Jan-Jun, 2016

Disputed territory

with smoothed estimates for Khyber district from 2003 to 2016 (right)

Under Immunized (%)

Fig. 2 A map of smoothed estimates of underimmunized fraction for January through June, 2016 (left) and observed underimmunized fraction
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Fig. 3 A map of the vaccine-derived population immunity for type 1 poliovirus estimated by the dynamic immunity model as of June 30, 2016
(left), and the dynamic immunity traces and 95% credible interval for immunity in Khyber with supplementary immunization activity (SIA) calendar
from 2003 to 2016 (right). The dashed marks along the horizontal axis show the timing of the SIAs and the color represents the vaccine used in
the SIA, where mOPV1 represents monovalent oral polio vaccine (OPV) for serotype 1, bOPV represents bivalent OPV for serotypes 1 and 3, tOPV
represents trivalent OPV (serotypes 1-3), and IPV is the inactivated poliovirus vaccine
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Programmatic impact of the risk model

The N-EOC, in coordination with Provincial EOCs, have
used the outcomes of the model to assess the overall risk
profile of the program. To operationalize the risk model-
ing results, a combination of the modeling output de-
scribed here, genetic sequencing results (including virus
isolated from environmental and healthy children stool
samples), and local knowledge of access and security sta-
tus of districts and Union Councils, as well as sociocul-
tural links within Pakistan and across the border with
Afghanistan, were used to classify the 155 districts into
four tiers (Fig. 6). Tier 1 represents the top 11 districts
considered ‘core reservoirs’ of poliovirus in Pakistan.
Through genetic sequencing data, there is strong evi-
dence of persistent circulation of local lineages of WPV
for at least 2 years in the core reservoirs [6]. Tier 2 con-
sists of the next 33 districts, considered high risk dis-
tricts, while tier 3 districts are considered vulnerable

districts. Tier 4 includes all other districts. Table 2 shows
the programmatic implications of the tier classification on
the immunization and operational strategies deployed.

Discussion
Our results indicate that seasonality, immunity, under-
immunization rate, recent cases, and recent cases in a
neighboring district are most predictive of at least one
WPV1 case. The number of cases given at least one case
is similarly predicted by seasonality, underimmunization
rate, zero RI dose rate, recent cases, and recent neigh-
boring cases. The point estimates of all associations were
in the expected direction of lower immunity and dose
history as well as recent cases being associated with in-
creased risk of cases and larger outbreaks.

Our modeling efforts suggest that the large outbreaks
in 2014 and the recent improvements over the past
2 years can be described by population immunity driven

Table 1 Posterior medians and 95% credible intervals of covariates selected for final risk model

Bernoulli Truncated Poisson

Indicator Odds ratio 95% Cl Relative rate 95% Cl
Season (reference Jan—June) 313 (244-4.03) 252 (1.69-3.82)
Type 1 immunity (10% difference) 0.89 (0.81-0.99)

Under immunization (10% difference) 112 (1.01-1.24) 1.28 (1.09-1.50)
Zero Rl doses (10% difference) 124 (1.11-1.38)
Sqrt. recent cases 1.78 (1.44-2.19) 1.08 (0.90-1.30)
Sqrt. recent neighbor cases 1.18 (1.05-1.32) 131 (1.15-1.50)

Odds ratios are reported for the Bernoulli portion of the model and relative rates for the truncated Poisson
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Fig. 4 Area under the curve, the probability that a randomly selected district with a case will have a higher risk score than a randomly selected
district without a case, for prediction of WPV1 cases by district as predicted based on model data from 2003 until 6 months prior to observed
data (left) and sensitivity, or true positive rate, of a list containing the top 50 high risk districts for each time point (right)
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primarily by SIAs in FATA and KP provinces. For ex-
ample, the dramatic decrease in serotypes 1 and 2 im-
munities in KP beginning in 2010 were partially the
result of declining SIA coverage rates (despite the high
frequency of campaigns). Furthermore, type 2 immunity
declined due to infrequent trivalent OPV campaigns,
whereas type 1 immunity declined because SIAs were
primarily using bivalent and trivalent OPV, which has a
lower efficacy for type 1 than monovalent OPV type 1
vaccine. Finally, improvements beginning in 2015 were
due to improved vaccinator access driven by military
intervention in FATA [33].

Based on the recommendations in the 2016-2017
NEAP, finalized in May of 2016, Tier 1-3 districts partic-
ipated in four bOPV SIAs in addition to the five national
bOPV SIAs that covered all districts. Additionally, Tier 1
districts scaled up the community-based vaccination
strategy, which employs local individuals, primarily
women who are thought to have better access to chil-
dren within homes, as permanent vaccinators within

their communities. In the 6-month period between July
and December, 2016, only two of the 44 Tier 1 and 2
districts experienced cases (one each), which reflects
well on the efforts focused on those districts. Two of the
three other districts, which reported cases during this
time frame, were classified as Tier 4 districts (four of five
cases in Tier 4), although they were ranked in the top 30
per the risk model; the remaining Tier 4 district, in
northern KP province, would be considered relatively
surprising from a modeling and programmatic perspec-
tive. We emphasize that even Tier 4 districts received
considerable programmatic attention, with five planned
SIAs across 2016.

Our approach does have several limitations. We have
developed a model on a 6-month time scale, which is
programmatically relevant but does not align with the
approximately 1 month infectious period estimated for
poliovirus [34]. Additionally, we have modeled observed
WPV1 paralytic cases that only represent approximately
0.5% of WPV1 infections [35]. This absence of cases
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Risk Tier Classification for 2016-17 NEAP

% 2

Fig. 6 The final risk tier classification to be included in the National Emergency Action Plan for polio eradication in Pakistan for 2016-2017 with
Karachi in the inset. This final list incorporates modeling output, genetic sequencing results, and local knowledge of access and security
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could be misleading if circulation is silent due to surveil-
lance failure, waned mucosal immunity among older
children or adults [36, 37] or, as observed in Israel, high
rates of humoral immunity due to exclusive inactivated
polio vaccine use leading to low mucosal immunity [38].
Finally, areas that are not explained well by the covari-
ates will have large residual risk captured by the random
effects and, as these are invariant in time, we will likely
overestimate risk in areas with a long history of WPV1
cases, despite improvements in indicators.

In 2009, the Pakistan program initiated environmental
surveillance (ES) to compliment AFP surveillance. Since
2009, the program has grown from 47 samples across 6
sites to 648 samples across 62 sites covering 33 districts
in 2016 [14, 39]. Due to the selective and expanding de-
ployment of ES over time and the unique interpretation of
ES positives, which signify at least one infection, ES data it
is not easily included as a predictor in our currently

modeling framework. Similarly, as sampling locations have
been selected based on a history of persistent infection
[39], we would expect positive samples to primarily
reinforce the high-risk status of areas with a history of
cases if included as an outcome. It is a limitation of our
case-based statistical model that there is not a straightfor-
ward way to incorporate the ES data as either a predictor
or an outcome. Alternative approaches, such as a transmis-
sion model that includes genetic information or a statistical
model that incorporates the relative sensitivity of ES and
AFP, may be better suited to incorporate the ES data. How-
ever, although it is not explicitly included in the risk model
for WPV1 cases, ES is used extensively within the program
to identify infected areas when transmission is low and is
essential for assessing progress towards eradication.
Despite the limitations, our modeling approach pro-
vides a principled framework for ranking districts for
risk classification that performs well as measured by

Table 2 Programmatic implications of risk classifications of districts for July 2016 to June 2017

Tier ~ Number of districts ~ Target population (%)  Goal

Strategy

1 11 4,042,214 (11%)

Interrupt endemic and/or persistent
local transmission using multiple strategies

NID + SNID + CBV in selected UCs + Priority 1
for combined bOPV/IPV SIA + Rl service delivery
support and other auxiliary support

2 33 5,746,129 (16%) Interrupt transmission if transmission is NID + SNID + CBV in selected UCs + Priority 2 for
ongoing, decrease vulnerability bOPV/IPV SIA + Rl service delivery support + other
auxiliary support
3 24 7,246,474 (20%) Decrease vulnerability NID + SNID
4 87 19,638,741 (54%) Maintain high population immunity NID only

Tier classifications dictate inclusion in National Immunization Days (NIDs), Sub-National Immunization Days (SNIDs) and employment of community-based
vaccination (CBV) strategies in selected Union Councils (UCs). Reproduction of Panel 1 in the National Emergency Action Plan ([6], p. 19)
IPV inactivated polio vaccine, OPV oral polio vaccine, SIA supplementary immunization activity, Rl routine immunization
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AUC and sensitivity. In practice, the risk analysis gener-
ally identifies the same Tier 1 districts as the aggregation
of programmatic knowledge and scientific intuition of
the N-EOC members and the greatest impact of the
modeling approach is the promotion of districts that ap-
pear susceptible based on immunity profile, but have not
yet had WPV1 cases, to a lower (higher risk) tier. These
promotions impacted the allocation of resources by
deploying the community-based vaccination strategy in
additional districts and broadening the geographic scope
of the four sub-national SIAs. Additionally, the method
provides a metric for quantifying the absolute risk and
changes in risk over time, which is not always captured
well by cases or intuition exclusively.

Conclusion

This study serves as the first use of a spatial model for
risk prediction and sub-national prioritization to aid in
polio eradication in Pakistan. This risk modeling ap-
proach has been applied to the WPV1 case history and
NPAFP dose histories to generate risk predictions and a
ranked list of districts within Pakistan, which were sub-
sequently used by the N-EOC to help assign districts to
risk tiers as part of their NEAP for polio eradication.
This approach will help maximize the impact of the re-
sources available for polio eradication efforts in Pakistan.
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