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Abstract

Background: Childhood pneumonia is the leading infectious cause of mortality in children younger than 5 years
old. Recent updates to World Health Organization pneumonia guidelines recommend outpatient care for a
population of children previously classified as high risk. This revision has been challenged by policymakers in Africa,
where mortality related to pneumonia is higher than in other regions and often complicated by comorbidities.
This study aimed to identify factors that best discriminate inpatient mortality risk in non-severe pneumonia and
explore whether these factors offer any added benefit over the current criteria used to identify children with
pneumonia requiring inpatient care.

Methods: We undertook a retrospective cohort study of children aged 2–59 months admitted with a clinical
diagnosis of pneumonia at 14 public hospitals in Kenya between February 2014 and February 2016. Using machine
learning techniques, we analysed whether clinical characteristics and common comorbidities increased the risk of
inpatient mortality for non-severe pneumonia. The topmost risk factors were subjected to decision curve analysis to
explore if using them as admission criteria had any net benefit above the current criteria.

Results: Out of 16,162 children admitted with pneumonia during the study period, 10,687 were eligible for
subsequent analysis. Inpatient mortality within this non-severe group was 252/10,687 (2.36%). Models demonstrated
moderately good performance; the partial least squares discriminant analysis model had higher sensitivity for
predicting mortality in comparison to logistic regression.
Elevated respiratory rate (≥70 bpm), age 2–11 months and weight-for-age Z-score (WAZ) < –3SD were highly
discriminative of mortality. These factors ranked consistently across the different models. For a risk threshold
probability of 7–14%, there is a net benefit to admitting the patient sub-populations with these features as
additional criteria alongside those currently used to classify severe pneumonia. Of the population studied, 70.54%
met at least one of these criteria. Sensitivity analyses indicated that the overall results were not significantly affected
by variations in pneumonia severity classification criteria.

Conclusions: Children with non-severe pneumonia aged 2–11 months or with respiratory rate ≥ 70 bpm or very
low WAZ experience risks of inpatient mortality comparable to severe pneumonia. Inpatient care is warranted in
these high-risk groups of children.
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Background
Pneumonia is the leading infectious cause of mortality in
children aged less than 5 years, accounting for almost
one million deaths each year worldwide. It is estimated
that more than half the burden is experienced in sub-
Saharan Africa (SSA) [1], where there are limited disease
surveillance and research and weak health systems [2].
Based on severity, 7–13% of these cases are considered
to be life-threatening and require hospitalisation [3].
The World Health Organization (WHO) has recom-

mended the use of simple algorithm-based clinical
guidelines to guide diagnosis and treatment of pneumo-
nia for more than three decades [4]. The revised WHO
pneumonia classification [5] (Additional file 1) considers
the former “non-severe” and “severe” pneumonia categor-
ies as a single group now referred to as “pneumonia” for
whom outpatient care is now recommended. There has
been reluctance to adopt this new classification,
particularly in SSA, where policymakers have raised con-
cerns that children with pneumonia manifesting with
lower chest wall indrawing represent a population with a
high risk of death [6, 7]. Observational data from various
studies identify clinical characteristics that occur com-
monly as comorbidities among children with pneumonia
in SSA such as malaria, diarrhoea/dehydration and
anaemia [8, 9]. Yet the current WHO guidelines fail to
include the presence of these risk factors for classifying
severity. The exploration of if and how risk profiles vary
among children with non-severe pneumonia under the
new guidelines has yet to be demonstrated. Previous
studies describing risk factors for pneumonia mortality
have included populations with very low coverage of the
conjugate vaccines against Streptococcus pneumoniae and
Haemophilus influenzae type B (the leading causes of
bacterial pneumonia), and the analyses reported have had
limited application for clinical decision making.
The aim of this study was to identify demographic and

clinical factors that best discriminate risk of death
among children with non-severe pneumonia as defined
by WHO clinical criteria, clinician diagnosis and penicil-
lin monotherapy treatment using robust modelling ap-
proaches. Additionally, we were interested in application
of decision-analytic approaches to model outputs. To
this end, the identified factors would then be evaluated
on whether they offer any added benefit over the current
severity criteria used to determine pneumonia patients
to admit.

Methods
Reporting
The reporting of this observational study follows the
Strengthening of reporting of observational studies in
epidemiology (STROBE) statement [10], which is a set
of recommendations for the reporting of observational

studies in epidemiology (cohort, case-control studies and
cross-sectional studies) [10].

Ethics, consent and permissions
This study was approved by the Scientific and Ethics
Review Unit of the Kenya Medical Research Institute
(KEMRI). Additionally, it was approved by the Ministry
of Health, with the Medical Superintendents of partici-
pant hospitals giving consent for participation. Individ-
ual consent for access to de-identified patient data was
not required.

Study design and setting
This study was a retrospective cohort study at 14 public
hospitals in Kenya with each having at least 1000 annual
paediatric admissions, purposefully selected to represent
two main regional groupings based on high or low
malaria prevalence. The study was embedded within a
collaborative health information network developed to
help improve outcomes of care, accelerate knowledge
discovery and advance cross-domain development of
digital architecture in support of research in a low-
income setting. This Clinical Information Network
(CIN) is described in detail elsewhere [11].

Study participants, data sources and management
All paediatric inpatient children admitted to the selected
hospitals from 1 February 2014 to 28 February 2016,
aged 2–59 months who had non-severe pneumonia at
admission were eligible for inclusion in this study. This
was determined from clinician diagnosis and clinical
signs documented in patient records. To avoid
confusion, we have used the term pneumonia to refer to
children with a documented clinical diagnosis of pneu-
monia, and the terms non-severe and severe pneumonia
to refer to those for whom WHO, under the 2013 re-
vised definitions, recommends outpatient and inpatient
care, respectively. The ideally diagnosed and managed
population consisted of patients with a clinician-
assigned admission diagnosis of non-severe pneumonia,
who, as based on WHO guidelines, had clinical signs
supporting this diagnosis and were treated with penicil-
lin monotherapy. We excluded children born before the
introduction of the pneumococcal conjugate vaccine to
the national childhood immunisation schedule in
January 2011; thus, the study population included
children who were born after the introduction of both
the pneumococcal and Haemophilus influenzae type B
(Hib) conjugate vaccines (introduced nationally in 2001).
Comprehensive data collected for these admissions com-
prised clinical, investigation and treatment data focused
on admission and discharge events, with up to 350
variables per patient encounter collected. These variables
span different disease conditions. A detailed description
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of the methods of data collection and analysis is re-
ported elsewhere [11]. For our study, 37 variables were
used: 18 variables were used in pneumonia classification
criteria and in identifying the analysis population, and 19
variables were used for subsequent statistical analysis — 6
of which were interaction terms (variables used to test
whether the effect of one independent variable differs
depending on the level of another independent variable).
In brief, hospitals implemented two data collection tools
(a paediatric admission record and a discharge form) with
one clerical assistant posted to each hospital to collect
data from the medical records and laboratory reports.
Data collection was conducted as soon as possible after
discharge through abstracting data from inpatient paper
records into a non-propriety electronic tool, Research
Electronic Data Capture (REDCap) [12]. Data quality
reports were generated by R scripts [13] based on
validation rules and metadata pulled from REDCap’s
application programming interface. These reports were
fed back to the hospitals to improve the quality of
clinical data used in this research. We have reported in
detail elsewhere the process by which we established a
clinical information network in Kenya, the multiple
unique challenges we faced including the development
of new data collection procedures and new methods
to implement the provision of accurate reporting to
hospitals [11].

Quantitative variables
Our prognostic models focused on paediatric inpatient hos-
pital mortality, described by a binary variable (dead or alive).
Predictors were identified a priori guided by clinical expert
opinion and literature review. We selected variables posited
to be associated with mortality and which could also be
widely ascertained in low-resource clinical settings. To de-
note nutritional status, we used recorded weight and age to
retrospectively compute weight-for-age Z-scores (WAZ)
using WHO child growth standards [14], as data for these
two variables were complete for the majority of patients
studied. This resulted in the following predictors being se-
lected, covering demographics and clinical characteristics:
Age < 12 months (binary), Sex-Female (binary), Respiratory
rate ≥ 70 breaths/min (binary), Temperature≥ 39 °C
(binary), Weight-for-age Z-score (ordinal — 3 levels), Dehy-
dration status (ordinal — 3 levels), Pallor (ordinal — 3
levels), Malaria status (ordinal — 3 levels), Presence of ≥ 1
comorbidity (binary), Hospital in malaria endemic area
(binary), Acute nutrition status (binary). Table 1 provides
description of levels of the ordinal variables. Severity
of pneumonia was categorised based on documented
WHO clinical criteria (non-severe vs severe) [15].
Dummy binary variables were created for all levels in
ordinal predictors. All predictors were assessed at the
time of admission.

Patients with non-severe pneumonia with a diagnosis
of either (1) severe dehydration or (2) severe malaria
were recoded to severe pneumonia, since either of these
diagnoses would render the respective patients’ ineligible
for outpatient care. All cases of severe pneumonia were
excluded from the analysis. Pneumonia cases with
additional admission diagnosis of meningitis, acute
malnutrition and shock were also excluded from the
study sample; these conditions follow alternative man-
agement protocols under the clinical guidelines [16].

Statistical methods
Data manipulation and statistical analyses were performed
using R software [13] employing the caret package [17].
Categorical data were tabulated and summarised as

Table 1 Descriptive summary statistics of the included predictors
and variables of interest (N = 10,687)

Indicator Levels Number, N (%)

Age < 12 months No 5719 (53.51%)

Yes 4968 (46.49%)

Female No 5856 (54.8%)

Yes 4736 (44.32%)

Missing 95 (0.89%)

Pallor None 7613 (71.24%)

Mild/moderate 374 (3.5%)

Severe 98 (0.92%)

Missing 2602 (24.35%)

Respiratory rate ≥ 70 breaths/min No 6622 (61.96%)

Yes 4065 (38.04%)

Weight-forage Z-score (WAZ) > –2SD 8311 (77.77%)

–2 to –3SD 1202 (11.25%)

< –3SD 719 (6.73%)

Missing 455 (4.26%)

Temperature ≥ 39 °C No 6577 (61.54%)

Yes 1257 (11.76%)

Missing 2853 (26.7%)

Dehydration No dehydration 10,026 (93.81%)

Some dehydration 622 (5.82%)

Missing 39 (0.36%)

Malaria No malaria 9611 (89.93%)

Non-severe malaria 1076 (10.07%)

Hospital located in malaria
endemic area

Yes 4447 (41.61%)

No 6240 (58.39%)

Acute malnutrition None/at risk 10,572 (98.92%)

Moderate 115 (1.08%)

Presence of comorbiditya No 7330 (68.59%)

Yes 3357 (31.41%)
aAdmission diagnosis of malaria, diarrhoea, dehydration and anaemia considered
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proportions, while continuous variables were reported
with medians and interquartile ranges as appropriate. To
evaluate differences in the risk profile between the two
groups of inpatient mortality outcomes, and identify pre-
dictors that substantively account for these differences, an
adjusted multivariable logistic regression model was used.
In previous research, logistic regression modelling has

been used to look at risk factors in pneumonia
(Ambrose Agweyu, et al., Appropriateness of clinical se-
verity classification of new World Health Organization
(WHO) childhood pneumonia guidance: a multi-hospital
retrospective cohort study. The Lancet Global Health,
under review). However, due to the violation of assump-
tions of independence of predictors (e.g. age variable
would be collinear with Weight-for-age Z-score variable,
etc.) and the limited understanding of the relationship of
the predictors with mortality in non-severe pneumonia,
this approach is susceptible to incorrect inferences about
relationships between explanatory and response vari-
ables. Additionally, apart from model coefficients and sig-
nificance tests, logistic regression models offer limited
guidance on feature selection from model outputs that can
guide future intervention design. Feature selection is de-
fined and explained further in Additional file 2: Table S1
and in published reports [18, 19]. Therefore, the magnitude
of coefficients included in the traditional adjusted logistic
regression models might not be good indicators of clinical
value of features, since they do not incorporate clinical
consequences involved in targeting those features [20, 21].
To address these challenges in generating decision-

analytic solutions from logistic models, machine learning
techniques were used. These techniques were also ex-
plored to test whether, given the available data, models
using complex adaptive techniques perform better in
determining the inpatient mortality risk associated with
non-severe pneumonia given the choice of predictors.
The use of these techniques would also provide implicit
feature selection as part of the model output, in addition
to allowing us to evaluate whether there was consistency
of findings given the different model choice. The ma-
chine learning models used in analysis were partial least
squares - discriminant analysis (PLS-DA) [22], random
forests (RFs) [23], support vector machines (SVMs) [24]
and elastic nets [25]. Brief descriptions of these models
are given in Additional file 2: Table S2. Detailed descrip-
tions of the models are provided in the referenced
works. Here we offer an introduction to the techniques
used, which may be less familiar.
Model validation was checked by employing a 10-fold

internal cross validation on two thirds of the data. The
remaining one third of the data was used as the valid-
ation set. This is further explained in Additional file 2:
Table S1. Variable importance scores, which would guide
feature selection, were generated to identify predictor

contribution to classification, with higher scores consid-
ered more relevant in classification. Detailed explana-
tions of variable importance estimation for the models
included in the analysis are reported elsewhere [26]. The
selection of critical parameters for each of these model-
ling techniques was auto-determined by the R caret train
function by choosing the tuning parameters that
produced the highest values of receiver operating char-
acteristic (ROC) curves where a grid search cross-
validation was applied. These parameters are provided in
Additional file 2: Table S2.
To evaluate the clinical impact of implementing the

models in practice as part of screening algorithms, we
performed decision curve analysis, evaluating how differ-
ent threshold probabilities vary the false-positive and
false-negative rate expressed in terms of net benefit [27].
The unit of net benefit is true positives, and the details
of its calculation are extensively reported elsewhere [20].
When carrying out a head-to-head comparison of differ-
ent prediction models on the same population, the inter-
pretation is straightforward — at each clinically relevant
probability threshold, the model that has the highest net
benefit is preferred. Models are also compared to the
extreme choices of designating admitting all and no
patients at high risk of inpatient mortality.

Learning using imbalanced outcome data
From the description of our outcome (inpatient mortality
cases in non-severe pneumonia), we expect the cases to
be imbalanced; i.e. the number of positive cases is much
smaller than the number of negative cases. This intro-
duces a high possibility of the resulting model being
biased towards the dominant class, presenting poor accur-
acy to classify negative cases. In order to minimise this
bias, we used the Synthetic Minority Over-Sampling
Technique (SMOTE) filter [28, 29] to address the
imbalanced data. The SMOTE technique was used to
oversample the negative cases, which eliminated the possi-
bility of information loss. This was achieved by combining
the features of existing instances with the features of their
nearest neighbours to create additional synthetic in-
stances. More details on this are provided in Additional
file 2: Table S3.

Missing data
To handle missing data, multiple imputation by chained
equations (generating 10 imputed datasets) was performed
under a missing at random (MAR) assumption [30].

Performance analysis
Model performance was analysed using sensitivity (true
positive rate), specificity (true negative rate) and ROC’s
area under the curve (AUC). AUC is a combined indica-
tor of sensitivity and specificity, equal to the probability
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that a classifier will rank a randomly chosen positive in-
stance higher than a randomly chosen negative one [31].
DeLong’s significance test was used to compare the
ROC curves from each model type [32].

Sensitivity analysis
We used alternative definitions of pneumonia severity to
conduct sensitivity analyses. We performed analyses
using clinician-defined severity (non-severe vs severe)
and choice of initial treatment prescribed to the patient
at admission (benzyl penicillin monotherapy vs alterna-
tive broad spectrum treatment) against the definition
based on WHO severity criteria as the “gold-standard”.
The three definitions should ideally represent popula-
tions that overlap perfectly; however, inconsistencies
have been observed in previous work [33, 34]. Compre-
hensive comparisons of risk where pneumonia guidelines

were not adhered to (which is a common occurrence in
low-resource settings) are lacking in the literature. Here,
the key consideration was the widely reported lack of
concordance of health workers’ pneumonia severity clas-
sification practices in comparison to clinical guidelines
under routine conditions [33–35].

Results
Figure 1 depicts the study population inclusion process.
Out of 16,162 children admitted with pneumonia (severe
and non-severe) over the study period, 10,687 cases of
non-severe pneumonia were identified according to the
2013 WHO guidelines, clinician diagnosis or penicillin
monotherapy treatment. Table 1 below gives characteris-
tics of paediatric patients and information, indicating the
number of patients with missing data for the variables of
interest. It also gives the summary of pneumonia and

Fig. 1 Flow diagram of eligible study participants. The final non-severe pneumonia cases included in subsequent analysis represent the combined
number of all non-severe cases as defined by the three classification criteria illustrated in Additional file 3
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mortality measures. Of the 10,687 non-severe pneumo-
nia cases, 29.52% were missing at least one parameter of
interest. The overlap in classification criteria is detailed
in the Venn diagram provided in Additional file 3.
For the outcome of interest — inpatient mortality —

the prevalence rate was 2.36% (N = 252), with 0.82%
(N = 93) of the non-severe pneumonia cases having miss-
ing outcome data and 538 cases missing pneumonia sever-
ity classification. Only 10,687 non-severe pneumonia
cases were used in subsequent analysis, as illustrated in
Fig. 1. The variables in Table 1 were included in an ad-
justed logistic regression model, with the results reported
in Table 2.
Children less than 1 year old and those with respira-

tory rate ≥ 70 breaths/min each had three times the odds
of mortality compared to their comparators. The pres-
ence of any level of pallor was associated with the largest
odds of inpatient mortality, with children having even
mild/moderate pallor experiencing at least four times
the odds of inpatient mortality compared to children
without pallor. Of the features selected for these
analyses, only those associated with a diagnosis of
malaria and dehydration were associated with no statisti-
cally significant effect on inpatient mortality.

Results from machine learning approaches
Across the machine learning techniques used, Age <
12 months, Respiratory rate ≥ 70 breaths/min, Presence of
comorbidities, Female sex and Very low WAZ consistently

featured among the topmost five features explaining vari-
ability in inpatient mortality (see Table 3). It is noteworthy
that the sizes of the odds ratio from Table 2 do not corres-
pond with the order of feature importance in Table 3
below — a common assumption made when generating
risk scores from logistic models. The reason is that the es-
timation of the contribution of each variable to the logistic
model is determined by its corresponding t statistic abso-
lute value. Detailed explanations of variable importance
estimation for each of the models included in the analysis
are reported elsewhere [26] and demonstrated in the ana-
lysis codes provided in Additional file 4.
The performance as represented by AUC score was

consistent across the selected models (Fig. 2), ranging
from 0.725 to 0.796. These models were all found to be
moderately discriminative for inpatient mortality risk.
Using the full dataset with imputation in modelling, lo-
gistic and random forest models demonstrated much
higher prediction accuracy (>0.9) than the other models
but had low sensitivity (see Additional file 2: Table S4).
Overall, while all models had a higher AUC score than

traditional logistic regression models (Fig. 3), from
DeLong’s significance test, these differences were not
statistically significant apart from the random forest
model (see Additional file 5). However, the PLS-DA
model demonstrated the highest sensitivity for inpatient
mortality when using imputation and was least influ-
enced when only complete cases were used. PLS-DA
was therefore used for subsequent sensitivity analysis —
this is consistent with the pragmatic perspective
emphasising sensitivity over specificity across pneumo-
nia to allow for optimisation of public health benefits
[36]. For purposes of feature selection, the average fea-
ture rank across all models in Table 3 was used as a
guide. From the table, Respiratory rate ≥ 70 breaths/min,
Age < 12 months and Very low WAZ were the three fea-
tures targeted for subsequent decision analysis due to
their high average ranks.

Decision-analytic results from evaluation of features
selected
To evaluate the clinical impact of using the selected
features in decisions to admit non-severe pneumonia
patients in routine practice as part of screening algo-
rithms, we performed decision curve analysis. The results
of this analysis are presented in Fig. 3. The current deci-
sion to admit is based on whether the patient has a diag-
nosis of severe pneumonia — which is associated with a
high mortality risk. We included an overlay of a model of
severe pneumonia to help compare the net benefit of the
decision to admit using the top three clinical and patient
features identified compared to the current strategy
(admit only severe pneumonia). The models that per-
formed best are those to the extreme right of the figure.

Table 2 Predictors of inpatient mortality of non-severe pneumonia
in children under 5 years

Predictors Adjusted odds ratio
(95% confidence interval)

p value

Age < 12 months (Ref: ≥ 12 months) 2.89 (2.17–3.85) <0.001

Female (Ref: Male) 1.52 (1.17–1.96) 0.002

Respiratory rate ≥ 70 breaths/min
(Ref: < 70)

2.49 (1.91–3.25) <0.001

Temperature ≥ 39 °C (Ref: < 39 °C) 1.98 (1.38–2.84) <0.001

Pallor (Ref: No pallor)

Mild/moderate pallor 4.36 (2.88–6.58) <0.001

Severe pallor 4.37 (2.13–8.96) <0.001

Some dehydration
(Ref: No dehydration)

1.06 (0.67–1.67) 0.819

WAZ (Ref: Normal WAZ)

Low WAZ 2.08 (1.48–2.92) <0.001

Very low WAZ 3.66 (2.59–5.18) <0.001

Hospital in malaria endemic area 1.3 (1–1.69) 0.047

Non-severe malaria (Ref: No malaria) 0.81 (0.52–1.27) 0.36

Presence of comorbiditya 1.91 (1.4–2.6) <0.001

N = 10,687. Outcome = inpatient mortality
WAZ weight-for-age Z-score
aAdmission diagnosis of malaria, diarrhoea, dehydration and anaemia considered
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Table 3 Variable importance ranking for the models used in the analysis of WHO-defined non-severe pneumonia

Model Logistic PLS-DA Random forest Elastic net Linear SVM Mean rank (SD)

Feature importance rank Respiratory rate ≥ 70 breaths/min 3 1 1 2 3 2 (0.89)

Age < 12 months * Respiratory rate ≥ 70 2 2 8 8 2 4.4 (2.94)

Age < 12 months 1 3 7 11 1 4.6 (3.88)

Very low WAZ 7 5 3 6 7 5.6 (1.5)

Presence of comorbidity 5 4 6 10 5 6 (2.1)

Female 6 7 2 9 6 6 (2.28)

Mild/moderate pallor 8 9 4 3 8 6.4 (2.42)

Temperature > 39 °C 4 13 10 - 4 7.75 (3.9)

Severe pallor 13 8 5 1 13 8 (4.65)

Malaria endemic 12 6 9 13 12 10.4 (2.58)

Malaria endemic * Mild/moderate pallor 11 14 16 4 11 11.2 (4.07)

Comorbidity * Very low WAZ 10 12 13 - 10 11.25 (1.3)

Non-severe malaria 16 10 11 7 16 12 (3.52)

Some dehydration 9 15 18 15 9 13.2 (3.6)

Low WAZ 14 16 12 - 14 14 (1.41)

Comorbidity * Low WAZ 17 17 15 5 17 14.2 (4.66)

Malaria endemic * Non-severe malaria 18 11 14 12 18 14.6 (2.94)

Malaria endemic * Severe pallor 15 18 17 14 15 15.8 (1.47)

Variables with (*) are interaction terms, i.e. variables used to test whether the effect of one independent variable differed depending on the level of the other
independent variable
SD standard deviation

Fig. 2 Receiver operating characteristic's area under curve (AUC)
illustrating the model performance of different machine learning
models. The best AUC is the one closest to 1

Fig. 3 Decision curve analysis for the cohort of pneumonia paediatric
patients. *Models are for WHO 2013 non-severe pneumonia definition
except the one representing severe pneumonia indicator. The models
that perform best are those to the extreme right of the figure
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Those to the right of the current admission criteria
(severe pneumonia) are modelled on non-severe pneu-
monia patients based on WHO criteria. The threshold
probability associated with the highest predicted in-
patient mortality risk varied from 2 to 14%. At predicted
probability thresholds between 2 and 7%, severe pneu-
monia model’s net benefit was greater than all other
models and greater than strategies labelling all patients
at high risk (grey line) or none at high risk (black line).
For predicted probability thresholds between 7 and 14%,
the net benefit of a model for non-severe pneumonia pa-
tients less than 12 months old with respiratory rate ≥ 70
breaths/min and very low WAZ was greater than that
for all other models and greater than strategies labelling
all patients at high risk (grey line) or none at high risk
(black line). This is illustrated in Fig. 3. In summary, for
a probability threshold of inpatient mortality between 7
and 14%, there is a net benefit for admitting non-severe
cases of pneumonia involving children less than
12 months old with respiratory rate ≥ 70 breaths/min
and with very low WAZ.

Sensitivity analysis
Given that the PLS-DA model had an AUC score higher
than the logistic model (Fig. 2) and a sensitivity greater
than all other models when considering its performance
in both imputed and complete case analysis (see
Additional file 2: Table S4), we used it for comparison of
variable importance across the alternative criteria for
pneumonia classification. This is guided by evidence
from published studies showing AUC to be statistically
consistent and a more discriminating measure than ac-
curacy [37]. From Fig. 4, when WHO guidelines are used
to determine the severity of pneumonia cases, the
predictors that best explain the variance of inpatient
mortality outcome among children with non-severe
pneumonia are age, respiratory rate, comorbidities and
very low WAZ.
This slightly differs from clinician admission diagnosis

results where the presence of comorbidity is ranked
higher than respiratory rate. In the non-severe pneumo-
nia sub-population defined by prescription of penicillin
monotherapy at admission criteria and also in the ideally
diagnosed and managed sub-population, WAZ and age
do not rank highly as risk factors. This might be indica-
tive that in these sub-populations, very low WAZ and
age explained very little variation in inpatient mortality.
From the results comparing whether risk factors were

strongly linked to the pneumonia classification criteria,
clinician classification criteria had the best performance
in predicting inpatient mortality outcomes (see
Additional file 2: Table S5). All pneumonia classification
criteria, apart from that of the ideal population, had
moderately acceptable performance with AUC > 0.7

(Additional file 2: Table S5). However, a comparison of
the WHO classification criteria to each of the other pneu-
monia classification criteria revealed no statistically signifi-
cant differences in AUC values (see Additional file 5). This
is suggestive that differences in pneumonia classification
criteria might not have a statistically significant impact in
determining risk factors for this population.

Discussion
Summary findings
This study investigated the clinical and patient attributes
that best discriminated the risk of inpatient mortality in
children with non-severe pneumonia aged 2–59 months
and the net clinical benefit of targeting these features
using routine hospital data from a clinical information
network running in 14 hospitals across Kenya. Several
machine learning techniques were applied for discrimin-
ating these risks to test whether, given the available data,
models using complex adaptive techniques performed
better or provided robust ways to make decisions from
model outputs, and also to see if there was consistency
of findings across the alternative model choices.
Our analysis revealed age, respiratory rate and very

low WAZ to be moderately discriminative of inpatient
mortality in non-severe pneumonia cases across all
models. Looking at the clinical consequences associated
with features identified, the decision to admit these pa-
tients based on the characteristics identified was pre-
dicted to have a substantively higher net benefit on
inpatient mortality outcomes for risk probability thresh-
olds between 7 and 14% compared to using the existing
WHO criteria for severe pneumonia only.

Relation to other studies
Other studies conducted in similar epidemiological and
geographical contexts have found comorbidities to be
significant predictors of mortality in pneumonia patients,
with odds being three times that of non-comorbid
patients [38–42]. However, the study populations have
consisted of both severe and non-severe pneumonia
cases considered as a single population [38] or have
omitted patients with any comorbidity [43].
Methodologically, our approach goes beyond the use of

effect sizes for the determination of risk factors coupled
with expert opinion [44]. In addition to traditional logistic
regression models, we also applied robust machine learn-
ing techniques posited to improve modelling results by
offering the ability to rank the importance of clinical signs
and patient characteristics as risk factors for pneumonia
mortality and also evaluate the consequence of using them
in clinical decision making. These approaches have
previously been used to predict risk of pneumonia and
mortality, although not using a similar patient cohort or
in a similar geographic context [45, 46].
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While traditional statistical modelling techniques are
simpler to implement and offer easier interpretation of re-
sults, machine learning techniques — which are adaptive
to the datasets they are applied to and tend to perform
better given their complex estimation procedures — are
growing in popularity. However, these machine learning
approaches produce results that are often regarded as

difficult to interpret and operationalise due to their
“black-box” nature [47]. It is becoming more difficult to
decide which modelling approach to use, given the grow-
ing volume and veracity of clinical and epidemiological
data. This is evident in our findings, where in predicting
inpatient mortality, all models had a higher AUC and sen-
sitivity compared to the traditional logistic regression

Fig. 4 Variable (feature) importance ranking from PLS-DA model using different pneumonia severity classification criteria. More details are given
in Additional file 2: Table S4
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model, with the exception of random forest’s sensitivity
performance. Our approach was consistent with the prag-
matic perspective adopted by WHO that emphasises sen-
sitivity over specificity across pneumonia and other case
definitions in this region in order to optimise public health
benefits [36]. This ought to be — and was — factored into
our choice of model.

Implications of findings
The WHO guidelines recommend oxygen therapy for
children with respiratory rates ≥ 70 breaths/min [48].
While this guidance implicitly suggests the need for ad-
mission care, this clinical sign is not listed among the
classification criteria for severe pneumonia. In this study,
respiratory rate ≥ 70 breaths/min was independently as-
sociated with increased inpatient mortality, and there
was a net benefit of clinicians’ decision to admit non-
severe pneumonia cases with tachypnoea at this thresh-
old. The introduction of point-of-care diagnostic tools to
objectively assess respiratory rates in routine care
settings may mitigate the challenges of reliable measure-
ment and the potential for misclassification of pneumo-
nia severity on the basis of this sign [49].
The presence of pallor is associated with high risk of

inpatient mortality in children with severe pneumonia
[50] and, from our findings, in non-severe pneumonia
also. This might be attributed to similarities in clinical
presentation for malaria and severe pneumonia in chil-
dren [51, 52], presenting challenges in discrimination of
the two where confirmatory microbiological tools are
unavailable. The findings of this study demonstrating in-
creased risk of inpatient mortality in children presenting
with any comorbidities are particularly relevant in SSA
where comorbidities in non-severe pneumonia are high
[53]. The adoption of treatment guidelines from con-
trolled studies that fail to factor in common local co-
morbidities in children may be inappropriate in high
mortality settings [54, 55].
Among demographic characteristics, female sex and

age younger than 12 months were independently associ-
ated with increased odds of inpatient mortality. These
risk factors were also highlighted in a recent review of
77 studies conducted in low- and middle-income coun-
tries [56]. While the risk associated with young age may
be attributed to the limited capacity of the developing im-
mune system to withstand severe infections [57], higher
mortality among girls is less clear. Gender inequities in
care seeking have been posited to play a role [58, 59];
however, the evidence to support this theory remains
weak, warranting further study.
Despite having excluded children with documented

admission diagnoses of severe acute malnutrition from the
study population, analyses based on WAZ computed
using available data on weight and age revealed increased

mortality among children with low (–2 to –3SD) and very
low (< –3SD) WAZ. These findings, consistent with the
results of a large systematic review, challenge a recent
technical update to the WHO guidelines for the
management of severe acute malnutrition, which now
recommends the use of weight-for-height Z-score and
mid-upper arm circumference in place of WAZ for the
diagnosis of severe malnutrition [60].

Strengths, limitations and generalisability of the findings
The large sample size drawn from the hospitals across
the country resulted in precise estimates that are
representative of the population of children hospitalised
with pneumonia in a majority of hospitals in Kenya. The
2-year data collection period further strengthened
representativeness by eliminating seasonal bias — an
important consideration in studies on acute respiratory
infections in children [61].
Our data were limited by the clinical information net-

work’s reliance on documented diagnoses in the absence
of diagnostic tests. However, the approach adopted for
data collection remains the only realistic data source
that reflects how routine paediatric care is delivered at
scale in Kenya. To mitigate this limitation, considerable
efforts to improve data quality have been made, includ-
ing follow-up in the laboratory to confirm whether there
was evidence that investigations were performed and
their results. Additionally, the data used reflect the rou-
tine practice of many clinicians in the Kenyan setting,
thereby increasing the generalisability of our findings.
We restricted our analysis to children who were born

during the period after the introduction of the pneumo-
coccal vaccine to provide an understanding of the risk
factors for pneumonia mortality in the current era. A
consequence of this was the exclusion of older children
who had not received the vaccine in the early period of
the study and a relatively larger proportion of younger
children with a higher risk of death.
Finally, the study sites were part of an ongoing imple-

mentation science project designed to improve quality of
documentation practices and utilisation of data to im-
prove care of children in district-level hospitals in Kenya.
The population studied may therefore not be representa-
tive of children presenting to lower level health facilities
or in the community where the influence of limited staff
and resources and care-seeking behaviour may all influ-
ence clinical presentation and prognosis of pneumonia.

Conclusions
Children aged 2–11 months with non-severe pneumo-
nia, very low WAZ and respiratory rate ≥ 70 breaths/min
have a risk of inpatient mortality higher than those with
severe pneumonia for a risk threshold probability be-
tween 7 and 14%. These findings were obtained through
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use of cross-validated prediction modelling of clinical
data from hospitals representing most regions of Kenya.
The models had modest discriminative and calibration
performance but performed much better than the trad-
itional logistic regression. Our findings support the need
for re-evaluation of the updated WHO guidelines for
non-severe pneumonia, specifically among infants and in
populations where comorbidities are common. This
study also underlines the need for (re)calibration of
pneumonia risk score models in their contexts of use.
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