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Abstract

Background: Fiscal interventions are promising strategies to improve diets, reduce cardiovascular disease and
diabetes (cardiometabolic diseases; CMD), and address health disparities. The aim of this study is to estimate the
impact of specific dietary taxes and subsidies on CMD deaths and disparities in the US.

Methods: Using nationally representative data, we used a comparative risk assessment to model the potential
effects on total CMD deaths and disparities of price subsidies (10%, 30%) on fruits, vegetables, whole grains, and
nuts/seeds and taxes (10%, 30%) on processed meat, unprocessed red meats, and sugar-sweetened beverages. We
modeled two gradients of price-responsiveness by education, an indicator of socioeconomic status (SES), based on
global price elasticities (18% greater price-responsiveness in low vs. high SES) and recent national experiences with
taxes on sugar-sweetened beverages (65% greater price-responsiveness in low vs. high SES).

Results: Each price intervention would reduce CMD deaths. Overall, the largest proportional reductions were seen
in stroke, followed by diabetes and coronary heart disease. Jointly altering prices of all seven dietary factors (10%
each, with 18% greater price-responsiveness by SES) would prevent 23,174 (95% UI 22,024–24,595) CMD deaths/
year, corresponding to 3.1% (95% UI 2.9–3.4) of CMD deaths among Americans with a lower than high school
education, 3.6% (95% UI 3.3–3.8) among high school graduates/some college, and 2.9% (95% UI 2.7–3.5) among
college graduates. Applying a 30% price change and larger price-responsiveness (65%) in low SES, the corresponding
reductions were 10.9% (95% UI 9.2–10.8), 9.8% (95% UI 9.1–10.4), and 6.7% (95% UI 6.2–7.6). The latter scenario would
reduce disparities in CMD between Americans with lower than high school versus a college education by 3.5 (95% UI
2.3–4.5) percentage points.

Conclusions: Modest taxes and subsidies for key dietary factors could meaningfully reduce CMD and improve US
disparities.
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Background
Cardiovascular disease (CVD) remains the leading cause
of disability and death in the US and globally [1], with
associated economic costs projected to increase substan-
tially along with population aging [2]. Additionally, the
risk of type 2 diabetes is steadily increasing, with tre-
mendous associated health and economic consequences
[3]. Large disparities in these burdens are also evident,
with a much higher risk among those of lower socioeco-
nomic status (SES) [4, 5] and disparities growing over
time [6]. Based on health burdens, economic costs, and
corresponding inequities, the identification of effective
population interventions to reduce cardiovascular dis-
ease and diabetes (cardiometabolic diseases, CMD), as
well as disparities, is crucial.
A suboptimal diet is a major cause of CMD [7]. Among

strategies to improve dietary behaviors, fiscal interventions
to alter food prices are promising [8]. Such approaches
may not only improve population health, but also poten-
tially reduce disparities in diet quality and diet-related
health burdens [9]. Several fiscal strategies, such as
taxation of sugar-sweetened beverages (SSB) and/or un-
healthy snacks [10–12] and subsidization of fruits and
vegetables [13], have been already implemented. Yet, while
such measures significantly improve diet, neither the po-
tential impact of such interventions on CMD in the US,
nor the potential impact on disparities, has been quanti-
fied. In addition, other foods beyond fruits and vegetables
or SSBs represent appealing targets for fiscal interven-
tions, but the separate and joint benefits of such
approaches have not been assessed. To address these
knowledge gaps and inform policy-makers, we quantified
the impact of altering the intakes of seven key food groups
through economic incentives on coronary heart disease
(CHD), stroke, and type 2-diabetes mortality in the US, as
well as the impact on corresponding disparities.

Methods
Study design
We utilized nationally representative US data in a com-
parative risk assessment framework. We incorporated
national data from 2012 on the consumption of selected
food items, by age, sex, and SES; estimates of etiological
effects of these foods on CMD, by age; observed national
CMD deaths, by age, sex, and SES; and estimated impact
of pricing changes on dietary habits, by SES. Because
data on income is not routinely collected in US mortality
datasets, we used educational attainment as a measure
of SES. Using the National Health and Nutrition Exam-
ination Survey (NHANES) [14], the income-to-poverty
ratio was mapped against educational levels (lower than
high school (< HS), high school or some college (HS),
college graduate (COL)), confirming that education is a
reasonable proxy measure (Additional file 1: Figure S1).

Distributions of dietary targets
Current dietary intakes were obtained from NHANES
[14], combining the two cycles (2009–2010, 2011–2012;
N = 8516 individuals) to increase statistical precision
among population subgroups. We used survey-weights
to obtain representative data for non-institutionalized
US adults (age 25+) based on the average of two non-
consecutive 24-hour dietary recalls, accounting for
within-person variation and adjusting for total energy
intake using the residual method [15] to reduce meas-
urement error and account for individual variability.
Current distributions of body mass index (BMI) were
also obtained from NHANES (2009–2012). Data were
obtained as mean and SD for each dietary target and
BMI, stratified by age groups (25–34, 35–44, 45–54, 55–
64, 65–74, 75+ years), sex, and education (< HS, HS, and
COL) (Additional file 1: Table S1).

Etiologic effects of dietary changes
We defined seven foods [16] based on the evidence of
their association with cardiometabolic outcomes [4] and
policy interest [17]; these were fruits, vegetables, whole
grains, nuts/seeds, SSBs, and processed and unprocessed
red meat (Table 1). We focused on price interventions
on foods rather than isolated nutrients (e.g. sodium,
added sugars) given the evidence on the importance of
overall dietary patterns in health [4, 17], and also consider-
ing the practical challenges of taxing/subsidizing isolated
nutrients. For each food, the evidence for, and magnitude
and uncertainty of the etiologic effect was compiled from
meta-analyses of prospective cohorts or randomized trials
[18] using previously developed methods [19]. All etio-
logic effects incorporated declining proportional effects
(i.e., relative risks, RRs) by age [18, 20].

Effect of price changes on dietary intakes
We obtained the impact of pricing changes on dietary
intakes from a meta-analysis of prospective observa-
tional and interventional studies [21], allowing separate
assessment of interventions to decrease versus those to
increase prices. This meta-analysis provided estimates of
the average own-price elasticity (the percentage change
in intake in response to each 1% change in price) of –
1.42 for fruits, vegetables, nuts/seeds, and whole grains,
–0.32 for processed meats and red meats, and –0.73 for
SSBs. We further assessed the literature demonstrating
that price responsiveness varies with SES [8, 22]. We
analyzed a ‘low gradient’ scenario, based on a meta-analysis
that compared low- versus high-income households within
different countries [23], which found an overall 18.2%
higher price-responsiveness for low versus high SES
groups (in this analysis, < HS and COL, respectively), as
well as a ‘high gradient’ scenario, based on the empiric
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responsiveness to a 10% excise tax on SSBs in Mexico
[11], which found a 65.4% price-responsiveness for low
versus high SES groups. While individual cross-sectional
US studies could be considered to model the price-
responsiveness and variation by SES for different food
groups [24–28], we chose not to favor estimates from
cross-sectional or single studies, each of which could be
hampered by their own individual limitations, as summa-
rized by Lin et al. [28]. Rather, we utilized two comprehen-
sive meta-analyses [21, 23] as well as recent empiric
evidence in Mexico [11], and believe that the range of
modelled variation between lower versus higher SES
groups (from 18% to 65%) represents a reasonable range
of potential differential effects by SES.
Finally, we considered a 10% price change in taxes or

subsidies (increasing the price of unhealthy foods rela-
tive to healthy foods by approximately 20%) and, simi-
larly, a higher scenario of a 30% price change. We
modeled the direct effects of the price changes at the
consumer level, rather than the specific policies required
to attain them, in order to minimize assumptions in
translating the latter to consumer prices.

Mortality outcomes
The numbers of disease-specific deaths in 2012 by age, sex,
and educational level were obtained from the National
Center for Health Statistics Division of Vital Statistics
(http://www.cdc.gov/nchs/deaths.htm). We excluded for-
eign residents (individuals who died in the US but who
resided outside the US) and those with missing information
on age (0.017% of deaths) or educational level (2.1%). We
included deaths from coronary heart disease (ICD 10: I20–
I25), ischemic stroke (I63, I65–I67 (except I67.4), I69.3,
G45), hemorrhagic (I60–I62, I69.0–I69.2, I67.4), unidenti-
fied and other non-ischemic/hemorrhagic stroke (I64,
I69.4, I69.8), diabetes mellitus (E10–E14, except E10.2,
E11.2, E12.2, E13.2), and hypertensive heart disease (I11).
For each stratum, the corresponding size of the US popula-
tion by age, sex, and educational levle was estimated from
the 2012 American Community Survey microdata sample
including 2.15 million weighted records [29].

Data analysis
We calculated the estimated CMD mortality preventable
by changes in dietary intake in response to price changes
using a comparative risk assessment framework [30]. Our
analysis of etiologic effects incorporated direct effects of
dietary changes on CMD mortality as well as BMI-
mediated effects for SSBs. All models were stratified by
age groups, sex, and education (<HS, HS, COL). In each
stratum, the proportion of disease-specific mortality pre-
vented by the intervention (potential impact fraction, PIF)
was calculated using the following formula [31]:

PIF ¼

Z m

x¼0
RR xð ÞP xð Þdx−

Z m

x¼0
RR xð ÞP0 xð Þdx

Z m

x¼0
RR xð ÞP xð Þdx

where RR(x) is the RR at dietary intake level x, P(x) is
the current stratum-specific distribution of dietary in-
take, P’(x) is the alternative stratum-specific distribution
of dietary intake following the intervention, and m is the
maximum dietary intake level.
In addition to the estimation of the effect of individual

food targets, we also considered a potential joint effect,
for example, as part of a tax-subsidy framework or simi-
lar incentive-disincentive system. Because summation of
PIFs overestimates their joint effects, the joint impact
for multiple dietary changes was estimated within each
age-, sex-, and education-specific stratum based on the
following formula:

PIFjoint ¼ 1−
YR
r¼1

1−PIFrð Þ

where PIFjoint is the joint potential attributable fraction,
r denotes each individual dietary factor, and R is the
number of dietary factors. We recognized that certain
dietary intakes may be correlated among individuals
within each stratum, which could slightly overestimate
the true joint effect. All inputs to the model were pre-
pared using Stata SE version 14, College Station TX, and
analyses were conducted using R version 3.1.0 [32]. A
detailed description of the comparative risk assessment
methodology is presented as a technical Appendix.

Results
Dietary factors, price-responsiveness, and etiologic effects
The selected dietary factors, current consumption levels,
price-responsiveness, and estimated etiologic effects are
shown in Table 1. The current intake of each dietary fac-
tor was far from the recommended intakes. Under the
assumption of a low socioeconomic gradient in price-
responsiveness, a 10% decrease in fruit prices would in-
crease estimated consumption by 15.5% (14.1 g/d)
among those with < HS education, 14.2% (14.6 g/d)
among HS graduates, and 13.1% (19.1 g/d) among COL
graduates. For SSBs, a 10% price increase would de-
crease estimated consumption by 7.3% (0.11 serv/d),
6.7% (0.08 serv/d), and 5.6% (0.03 serv/d), respectively.
The estimated effects of such changes were generally
quite modest; for example, a 14.1 g/d increase in fruit
consumption was estimated to reduce CHD by 0.8% and
a 0.11 serv/d reduction in SSBs was estimated to reduce
diabetes by 2.5%.
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Cardiometabolic deaths potentially prevented by price
changes
The estimated number of CMD deaths preventable by each
price intervention are shown in Table 2. Jointly altering the
prices of these seven dietary factors (10% each), and assum-
ing a low SES gradient, was estimated to prevent 23,174
deaths/year (95% UI 22,024–24,595), corresponding to 3.4%
(95% UI 3.2–3.6) of all CMD deaths in the US. A larger
(30%) price change in all seven dietary targets was esti-
mated to prevent approximately 63,268 deaths/year (95%
UI 60,425–66,719) or 9.2% (95% UI 8.8–9.7) of all CMD
deaths. By disease outcome, the largest proportional reduc-
tions were observed for stroke, followed by diabetes and

CHD. Findings for stroke subtypes (ischemic, hemorrhagic,
other) are shown in Additional file 1: Tables S1 and S2.
Among individual dietary factors, the greatest estimated
impact was for reducing the price of vegetables (6294 fewer
CMD deaths/year), fruits (5265), and nuts/seeds (3413),
and increasing the price of SSBs (4647). By cause, diabetes
deaths would be most influenced by price changes in SSBs
(1.5% reduction in deaths) and processed meats (0.7% re-
duction); while CHD deaths would be most influenced by
price changes in SSBs (1% reduction) and nuts/seeds (0.9%
reduction). The largest effect was observed for stroke by
subsidizing fruits and vegetables (2.4% and 2.8% reduction,
respectively).

Table 2 Annual cardiometabolic deaths potentially prevented by a 10% or 30% price change for selected foods in the USa

Dietary factors Disease outcomeb 10% price changec 30% price changec

No. of deaths/year
prevented (95% UI)

Proportion (%) of
deaths prevented
(95% UI)

No. of deaths/year
prevented (95% UI)

Proportion (%) of
deaths prevented
(95% UI)

Overall diet CHD 12,236 (11,320–13,230) 3.4 (3.1–3.6) 33,293 (30,887–35,798) 9.2 (8.5–9.9)

Hypertensive HD 45 (34–60) 0.1 (0.1–0.2) 134 (102–179) 0.4 (0.3–0.5)

Stroke 6942 (6456–7430) 5.5 (5.1–5.9) 18726 (17,485–19,955) 14.9 (13.9–15.8)

Diabetes 2274 (2063–2626) 3.4 (3.1–4.0) 6287 (5756–7050) 9.5 (8.7–10.6)

CMD, total 23174 (22,024–24,595) 3.4 (3.2–3.6) 63268 (60,425–66,719) 9.2 (8.8–9.7)

Fruit CHD 2213 (1852–2643) 0.6 (0.5–0.7) 6143 (5144–7316) 1.7 (1.4–2.0)

Stroke 3038 (2726–3397) 2.4 (2.2–2.7) 8308 (7478–9256) 6.6 (5.9–7.4)

CMD, total 5265 (4771–5817) 0.8 (0.7–0.8) 14475 (13125–15,974) 2.1 (1.9–2.3)

Vegetables CHD 2873 (2443–3359) 0.8 (0.7–0.9) 8223 (7011–9578) 2.3 (1.9–2.6)

Stroke 3423 (3044–3818) 2.7 (2.4–3.0) 9554 (8497–10,585) 7.6 (6.7–8.4)

CMD, total 6294 (5722–6901) 0.9 (0.8–1.0) 17749 (16,176–19,458) 2.6 (2.4–2.8)

Nuts/seeds CHD 3148 (2710–3599) 0.9 (0.7–1.0) 8214 (7116–9326) 2.3 (2.0–2.6)

Diabetes 269 (227–316) 0.4 (0.3–0.5) 701 (592–822) 1.1 (0.9–1.2)

CMD, total 3413 (2976–3863) 0.5 (0.4–0.6) 8912 (7788–10,049) 1.3 (1.1–1.5)

Whole grains CHD 587 (457–720) 0.2 (0.1–0.2) 1741 (1356–2137) 0.5 (0.4–0.6)

Stroke 514 (453–579) 0.4 (0.4–0.5) 1522 (1343–1712) 1.2 (1.1–1.4)

Diabetes 425 (372–480) 0.6 (0.6–0.7) 1252 (1099–1413) 1.9 (1.7–2.1)

CMD, total 1527 (1376–1683) 0.2 (0.2–0.2) 4518 (4072–4977) 0.7 (0.6–0.7)

Processed meats CHD 1700 (1315–2206) 0.5 (0.4–0.6) 5048 (3906–6493) 1.4 (1.1–1.8)

Diabetes 477 (385–580) 0.7 (0.6–0.9) 1408 (1141–1703) 2.1 (1.7–2.6)

CMD, total 2175 (1777–2689) 0.3 (0.3–0.4) 6447 (5286–7944) 0.9 (0.8–1.2)

Red meats, unprocessed Diabetes 140 (106–176) 0.2 (0.2–0.3) 419 (316–524) 0.6 (0.5–0.8)

Sugar sweetened beverages CHD 3544 (2921–4302) 1.0 (0.8–1.2) 10091 (8354–12,027) 2.8 (2.3–3.3)

Hypertensive HD 45 (34–60) 0.1 (0.1–0.2) 134 (102–179) 0.4 (0.3–0.5)

Stroke 67 (60–76) 0.1 (0.0–0.1) 201 (178–226) 0.2 (0.1–0.2)

Diabetes 986 (804–1349) 1.5 (1.2–2.0) 2729 (2267–3424) 4.1 (3.4–5.2)

CMD, total 4647 (3993–5680) 0.7 (0.6–0.8) 13169 (11,428–15,366) 1.9 (1.7–2.2)
aEstimated using nationally representative data from the US adult population in 2012 based on a comparative risk assessment framework
bCVD corresponds to the sum of CHD, hypertensive heart disease, and stroke; CMD corresponds to the sum of CVD and diabetes. Values may not precisely add up
due to rounding
cEstimates based on a low SES gradient (18.2% differential effect comparing those with lower than high school versus college education)
CMD cardiometabolic diseases, CHD coronary heart disease, HD heart disease, UI uncertainty interval
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Per year, 111 CMD deaths per million US adults could be
potentially prevented by a 10% price change in all seven diet-
ary targets, whereas 303 deaths/million could be potentially
prevented by a 30% price change (Fig. 1). By cause, the
largest impacts were seen for CHD (10% price change: 58
fewer CMD deaths/million; 30% price change: 159 fewer
CMD deaths/million), followed by stroke (33 and 89 deaths/
million, respectively) and diabetes (10 and 30 deaths/million,
respectively). By dietary targets, the smallest effects on CMD
mortality were estimated from altering the price of unpro-
cessed red meat, whole grains, and processed meat, although
with a 30% price change, the estimated benefits of altering
whole grain and processed meat prices were notable.

Disparities in cardiometabolic deaths potentially
prevented by price changes
When stratified by educational attainment, a generally
larger estimated proportion of CMD deaths would be

prevented among those with < HS and HS, compared to
those with COL (Table 3). Under the scenario of a low
SES gradient in price responsiveness, a joint 10% price
change would avert approximately 3.1% of CMD deaths
among those with < HS, 3.6% among those with HS, and
2.9% among those with COL. Applying a higher SES
gradient in price-responsiveness, the corresponding esti-
mated reductions were 3.7%, 3.6%, and 2.5%, respectively.
With a 30% price change, the corresponding estimated
reductions were 10%, 9.8%, and 6.7%. Findings stratified
by age and sex are presented in Additional file 1: Table S3.
Comparing those with <HS versus COL education and

adjusting for population size (deaths per million adults),
disparities in CMD deaths were evident (Additional file 1:
Table S4). The relative reductions in CMD mortality
disparities according to different pricing interventions are
shown in Fig. 2. Under the scenario of a higher SES gradi-
ent in price-responsiveness, both 10% and 30% price

Annual deaths prevented / million US adults

0 50 100 150 200 250 300 350

CMD

Diabetes

Stroke

Hypertensive HD

CHD

10% price change

a

30% price change 

0 50 100 150 200 250 300 350

Overall

Vegetables

Fruits

SSBs

Nuts & seeds

Processed meats

Whole grains

Red meats

10% price change

b

30% price change 

Fig. 1 Annual US cardiometabolic deaths potentially prevented by a 10% or 30% price change in seven dietary targets. a Effects of price changes
in all seven dietary targets, by cause. b Effects of price changes on total cardiometabolic deaths, by dietary target
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changes in these seven dietary targets would reduce
disparities in all outcomes. Under the scenario of a low
SES gradient in price-responsiveness, these pricing inter-
ventions tended to reduce disparities for CHD, and total
CMD, but not stroke, although none of these differences
were statistically significant. In comparison, current
disparities in diabetes mortality would be significantly
reduced by any of the pricing scenarios.

Discussion
By combining nationally representative datasets, we
report, to our knowledge for the first time, the potential
impact of strategies to alter food prices on CMD deaths in
the US. A joint 10% price change was estimated to prevent
3.4% of all CMD deaths, while a larger price change (30%)
was estimated to prevent 9.2% of all CMD deaths. None
of the pricing scenarios significantly increased disparities;
all would reduce disparities in diabetes deaths and, given a
higher SES price-responsiveness, each would also reduce
disparities in CHD, and stroke mortality. The largest
impact was observed for decreasing prices of fruits and

vegetables, and increasing the price of SSBs. By cause of
death, reductions in stroke mortality were most effectively
achieved by subsidies for vegetables and fruits, and in dia-
betes mortality by taxes on SSBs. These results are in line
with previous modeling studies in South Africa and India,
where a 20% SSB tax was estimated to reduce diabetes
prevalence by 4% over 20 years [33, 34].
Many governments have already implemented fiscal

measures to increase the price of unhealthy foods. One
of the earliest was a 2011 Danish tax on saturated fat,
later rescinded in 2013 due to controversy but estimated
to have reduced national saturated fat intake by 4% [35].
Taxes exist in Hungary (on fat, sugar and energy drinks),
Finland (sugar, expanding to soft drinks), Portugal (high
salt products), and Mexico, France, and Latvia (SSBs)
[36]. In Mexico, after the implementation of an 8%
excise tax on non-essential foods (energy density >
275 kcal/100 g) and SSBs, the demand of these products
decreased by approximately 5% from the predicted
trend. Moreover, whereas no change was observed
among high SES households, a 10% decrease was

Disease outcome SES 
gradientb

% price
change

% reduction in disparities

CHD Low 10%

30%

High 10%

30%

Hypertensive HD Low 10%

30%

High 10%

30%

Stroke Low 10%

30%

High 10%

30%

Diabetes Low 10%

30%

High 10%

30%

CMD Low 10%

30%

High 10%

30%

-4 -2 0 2 4 6 8

Fig. 2 Reductions in disparities in US cardiometabolic mortality by 10% or 30% price change in seven dietary targets according to low and
high price-responsiveness
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reported for those households of low SES [37]. South Af-
rica and the UK also announced taxes on SSBs, effective
in 2017 and 2018, respectively [38]. These efforts dem-
onstrate the legal, practical, and political feasibility of
food taxes. In the US, the cities of Berkeley and Philadel-
phia have passed excise taxes on SSBs [39], and state
and national efforts have been deemed legally feasible
[40]. Our findings suggest that the benefits of taxes for
both health and disparities would be strongly comple-
mented by accompanying strategies to reduce the price
of fruits, vegetables, nuts, and whole grains. Subsidies
are an essential component of a balanced pricing strat-
egy to effectively improve diets, as well as to minimize
the regressive nature of taxation alone [41]. Evidence
from natural experiments and national interventions
support this approach. In Finland, a combined strategy
of agricultural, subsidy, and taxation policies resulted in
an increased consumption of berries and a decreased
consumption of animal fats versus increased consump-
tion of vegetable oils, and a significant reduction of
CVD risk factors and incidence [41, 42].
Given the growing inequities in diet and CMD in the

US [16], our findings for disparities are particularly rele-
vant. Since those with a lower SES have a lower intake
of healthy foods, an intervention with a uniform propor-
tional impact by SES would increase disparities; while
higher intakes of healthy foods among those with a
lower SES could lead to reduced disparities by uniformly
effective interventions. Many types of interventions,
such as education campaigns or food labeling, often have
smaller effects among those with lower SES, potentially
further exacerbating existing disparities [43]. In fact,
most national efforts in the US focused on dietary edu-
cation and guidelines/labeling improved overall dietary
habits in all population subgroups, but much less among
those with lower SES [16], finally resulting in increased
dietary disparities over time.
Both nutrient- and food-specific taxes could be imple-

mented by policy-makers. A recent report estimated that
a sugar (nutrient) tax would have a larger impact on nu-
trition than a product-specific (SSB) tax, based on the
broader base of products influenced by the former [44].
We focused this investigation on food-specific pricing
changes based on the growing nutritional science, as
highlighted by the 2015–2020 Dietary Guidelines for
Americans [17], on the relevance of foods and overall
diet patterns for health. Future studies should consider
other pricing strategies, such as taxes on additives in-
cluding added sugar and sodium.
We modeled final retail price changes of foods, which

could be achieved by a range of potential strategies.
Lower prices could be achieved by subsidies for agricul-
tural practices, research and development or tax incen-
tives for food manufacturers, retailers, and restaurants,

or direct subsidies to wholesalers, retailers, or con-
sumers [40]. In parallel, higher prices on certain foods
could be achieved by changes in agricultural policies, tax
disincentives or, most simply, by excise taxes [40].
Certain national US feeding programs, such as the
Special Supplemental Nutrition Program for Women,
Infants, and Children, already utilize such an approach
by providing federal grants to states aiming to subsidize
(by reducing the price through direct funding) nutritious
foods for low-income, nutritionally at-risk populations
[45]. At a broader scale, incentives for purchasing fruits
and vegetables through rebates in the Supplemental
Nutrition Assistance Program (SNAP) has proven suc-
cessful to increase fruit and vegetable consumption and
overall dietary quality in this population [46, 47]. Our
findings suggest that a combination of financial incen-
tives for fruits, vegetables, nuts, and whole grains (e.g.,
direct rebates, or increased relative purchasing power
via the Electronic benefit transfer card), together with fi-
nancial disincentives for SSBs and processed meats (e.g.,
via relative reductions in the purchasing power of the
Electronic benefit transfer card for these food groups)
would meaningfully reduce CMD and reduce disparities
among SNAP participants. Given the large and growing
inequities in dietary quality and CMD risk in the US
[16], our findings for disparities are particularly relevant.
Our study has a number of strengths. We used nation-

ally representative datasets on demographics, education,
dietary habits, CVD risk factors (blood pressure and
BMI), and cause-specific deaths, making our results
generalizable to the US adult population. We limited our
estimates of etiologic effects to a small number of spe-
cific dietary factors with the greatest evidence from
meta-analyses, supported by consistency, dose-response,
and plausible biology. Our model incorporates stratum-
specific heterogeneity in underlying characteristics and
intervention effects by age, sex, and education, increas-
ing the validity of our results. We quantified uncertainty
using Monte Carlo simulations, increasing interpretabil-
ity and identifying the range of plausible effects.
Potential limitations should be considered. Dietary

estimates were based on self-report, which could intro-
duce errors into our estimates. We minimized this by
using the average of two 24-h recalls per person and
adjusting for both energy intake and within-person vari-
ation. The etiologic effect of each dietary factor on CMD
was obtained from meta-analysis of mostly prospective
observational data, which may be impacted by residual
confounding (causing overestimation of effects) and by
measurement error and regression dilution bias (causing
underestimation of effects). However, these effects are
supported by mechanistic evidence as well as a large
randomized clinical trial that demonstrated reductions
in CVD and diabetes highly comparable to the predicted
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effects from observational studies [4, 48]. While consid-
erable evidence demonstrates the existence of differen-
tial price-responsiveness by SES, the precise magnitude
of this gradient and how it might vary by underlying
population characteristics are not perfectly character-
ized. We accounted for this by modeling both low and
high gradients, providing findings for a range of plaus-
ible scenarios, and recognize that our results might
modestly vary selecting alternative scenarios. In choosing
our inputs for these scenarios, we favored estimates
from meta-analyses and empirical national evidence over
individual cross-sectional studies in the US, which show
great variation in their estimates, to avoid favoring one
particular study. We recognize that the efficacy of taxes
on harmful foods will largely depend on what products
consumers choose as an alternative. We did not incorp-
orate specific substitution or complement effects (cross-
price elasticity), which could potentially alter our results.
This is especially relevant for price subsidies that have
been found to be potentially counterproductive as they
increase overall income to purchase food, including un-
healthy products, when not applied in combination with
unhealthy food taxes [49]; this supports our approach of
combining subsidies and taxes. Additionally, we used
meta-analysis of observed effects, incorporating average
substitute and complement effects, as inputs to our
model and the results most likely represent an average
effect, which could be further augmented beyond our
estimates by specifically encouraging or advocating for
more healthful substitutes and complements. Further-
more, while approximately 80% of studies in our meta-
analysis of interventional and prospective food pricing
studies were from the US, the price elasticity estimates
in the remaining countries were (non-statistically signifi-
cantly) smaller. Thus, our findings may modestly under-
estimate the true health benefits of these food pricing
strategies, compared to results based on US studies
alone. Finally, given that effects of price changes on in-
take and of dietary changes on CMD are evident within
1 year [11, 48], we did not model lag-effects nor decay
or acceleration of effects over time. Further research is
needed to address how competing risks affect our mortality
estimations and to incorporate the calculation of life years
gained and reduction in disparities in life expectancy.

Conclusion
Strategies introducing modest price changes on key diet-
ary factors could reduce cardiovascular disease and
diabetes burdens and disparities in the US. Policy-based
strategies targeting disparities will require considering
both baseline dietary habits as well as price responsive-
ness in specific population subgroups. The findings of
our study have broad implications for policy-makers
targeting fiscal measures to reduce CMD burden.

Appendix
PIF
While the formula presented in the paper is the standard
description of the PIF used to communicate that com-
parative risk assessment is used to calculate attributable
mortality, it gives only a vague insight as to how the PIF
is calculated and what assumptions are being made. To
clarify these assumptions, and to aid in reproducibility,
we herein provide further details.
The PIF formula used is as follows:

Z m

x¼0
RR xð ÞP xð Þdx−

Z m

x¼0
RR0 xð ÞP0 xð Þdx

Z m

x¼0
RR xð ÞP xð Þdx

Where xð Þ is the distribution of current dietary
consumption, ( P′ xð Þ ) is the distribution of post-
intervention dietary consumption, RR xð Þ is the relative
risk of mortality at exposure level x pre-intervention, RR
′ xð Þ is the relative risk of mortality at exposure level x
post-intervention (price change), and m is the maximum
exposure level.

P xð Þ and P′ xð Þ
Current dietary intake follows a gamma distribution for all
food and nutrient groups of interest. Previous research
using comparative risk assessment in the field of nutrition
has assumed intake follows a normal distribution or some
variation thereof. However, NHANES data show that
intake is right skewed for the food and nutrient groups of
interest (in some cases, as with nuts, extremely so); there-
fore, we choose to assume intake follows a gamma distri-
bution. Based on a visual inspection of histograms, we
concluded that, overall, the gamma distribution fit the
NHANES data better than an alternative right-skewed
distribution (the log-normal), particularly for food groups
where the intake is highly skewed, such as nuts/seeds.
Simulations done to compare attributable mortality esti-
mates assuming gamma, normal, and log-normal distribu-
tions to mortality estimates based on a non-parametric
approach showed that estimates assuming the gamma
distribution gave closer estimates to the non-parametric
approach than the others.
Because the mean and variance of the gamma distribu-

tion is a function of the parameters of the gamma distri-
bution ( E X½ � ¼ α

β , Var X½ � ¼ α
β2

where X is a gamma

random variable, α is the shape parameter and β is the
scale paraemter), estimates for the gamma parameter
can be obtained from mean and variance estimates that
account for survey design characteristics.
We assume post-intervention dietary consumption

also follows a gamma distribution with mean and stand-
ard deviation of the current distribution multiplied by
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the intervention effect. Note that assuming each individ-
ual in the population experiences the same intervention
effect would result in this post-intervention distribution.

RR(x)
RR xð Þ is defined to be

exp β x−y xð Þð Þð Þ : x−y xð Þ≥0
1 : x−y xð Þ < 0

�

where β is the the change in log relative risk per unit of
exposure, x is the current exposure level, and y xð Þ is the
theoretical minimum risk exposure level. y xð Þ is defined
to be FTMRED F�1

X xð Þ� �
, where FTMRED is the cumulative

distribution function of the theoretical minimum-risk
exposure distribution (TMRED) and F�1

X is the inverse
cumulative distribution function of the current exposure
distribution. Similarly, RR′ xð Þ is defined to be

exp β x−y xð Þð Þð Þ : x−y0 xð Þ≥0
1 : x−y0 xð Þ < 0

�

where y xð Þ is defined to be FTMRED FX′�1 xð Þð Þ and FX′�1

is the inverse cumulative distribution function of the
counterfactual exposure.
Implicit in how we characterize the RR function are

some of the fundamental assumptions we make about
RR. Namely, that RR increases exponentially as distance
from TMRED level (y) increases, that there is no risk at-
tributable to exposure beyond the TMRED, and that
both x and TMRED level for an individual at exposure
level x are the q -th quantile of their respective distribu-
tions (the observed exposure distribution/counterfactual
exposure distribution and the TMRED, respectively).
Note that the change in RR per unit of exposure is as-
sumed to be the same pre- and post-intervention. RR xð Þ
and RR′ xð Þ only differ because the TMRED level for an
individual at exposure level x differs.

m
In our analyses, m is defined to be ∞. Since the density
of a gamma distribution approaches 0 as exposure, x ,
approaches infinity, and because implausibly high values
of exposure should exceed the corresponding theoretical
maximum exposure level, implausibly high values of
exposure will make no contributions to the PIF.

Computation
In practice, we use simple numerical integration (using
Riemann sums) to compute the integrals in the PIF
formula. Thus, we use a categorical equivalent of the PIF
formula

PIF ¼
Xn

i¼1
PiRRi−

Xn

i0¼1
P0

i0RR0 0iXn

i0¼1
PiRRi

where the n categories are determined by dividing up
the exposure range (chosen here to be 0; F�1

X Φ 6ð Þð Þ� �
for current exposure and 0; F�1

X′ Φ 6ð Þð Þ� �
for counterfac-

tual exposure) into 121 intervals, each of length 0.1
when converted to the standard normal scale (except for
the first one). More precisely, the range of exposure
group i can be described as follows:

0; F−1
X Φ −6ð Þð Þ� �

: i ¼ 1
F−1
X Φ −6þ 0:1 i′−2ð Þð Þð Þ; F−1

X Φ −6þ 0:1 i−1ð Þð Þð Þ� �
: i > 1

and for exposure group i′:

0; F−1
X′ Φ −6ð Þð Þ� �

: i′ ¼ 1

F−1
X′ Φ −6þ 0:1 i′−2

� �� �� �
; F−1

X′ Φ −6þ 0:1 i′−1
� �� �� �� �

: i′ > 1

Monte Carlo simulations
Monte Carlo simulations were used to quantify uncer-
tainty in the PIFs, incorporating uncertainty of estimates
of exposure means, etiologic RRs, and intervention
effects. Specifically, for each diet disease pair and
stratum, we randomly drew 1000 times from the normal
distribution of the estimate of disease-specific change in
the log(RR) corresponding to a one unit increase in
intake, the normal distribution of the estimate of the
exposure mean, and the normal distribution of the esti-
mate of the intervention effect. Draws of mean intake
that were zero or less were changed to 0.00001. Each set
of random draws was used to calculate the PIFs and
attributable mortality.

PIF via mediated effects
We used available log(RR) per unit increase in metabolic
factors believed to mediate the effect of food intake on
risk of death from cardiometabolic disease. Specifically,
BMI is believed to mediate the effect of sugar-sweetened
beverages on risk of death from various cardiometabolic
diseases. We estimated log(RR) per unit associated in-
crease in exposure for SSBs by taking the log(RR) per
unit associated increase in exposure for BMI and multi-
plying it by an estimate of the associated increase in
BMI per one unit associated increase in SSBs; our esti-
mate of the associated increase in BMI per unit increase
in SSBs for a given subgroup is a weighted average of
the effect on BMI for overweight (BMI ≥ 25) individuals
and non-overweight (BMI < 25) individuals, with the
weights determined by the prevalence of overweight for
that subgroup. Additionally, direct relationships with
CHD and diabetes (after adjustment for BMI) were also
included.
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