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Abstract

Background: Recently, a new algorithm for automatic computer certification of verbal autopsy data named
InSilicoVA was published. The authors presented their algorithm as a statistical method and assessed its
performance using a single set of model predictors and one age group.

Methods: We perform a standard procedure for analyzing the predictive accuracy of verbal autopsy classification
methods using the same data and the publicly available implementation of the algorithm released by the authors. We
extend the original analysis to include children and neonates, instead of only adults, and test accuracy using different
sets of predictors, including the set used in the original paper and a set that matches the released software.

Results: The population-level performance (i.e, predictive accuracy) of the algorithm varied from 2.1 to 37.6% when
trained on data preprocessed similarly as in the original study. When trained on data that matched the software default
format, the performance ranged from —11.5 to 17.5%. When using the default training data provided, the performance
ranged from —59.4 to —38.5%. Overall, the InSilicoVA predictive accuracy was found to be 11.6-8.2 percentage points
lower than that of an alternative algorithm. Additionally, the sensitivity for InSilicoVA was consistently lower than that
for an alternative diagnostic algorithm (Tariff 2.0), although the specificity was comparable.

Conclusions: The default format and training data provided by the software lead to results that are at best suboptimal,
with poor cause-of-death predictive performance. This method is likely to generate erroneous cause of death
predictions and, even if properly configured, is not as accurate as alternative automated diagnostic methods.
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Background

Reliable population-level cause-of-death estimates are
critically important for designing effective public health
policies [1]. Verbal autopsy (VA) is a key component of
enhancing health information systems in many countries
that do not have reliable civil registration and vital
statistics systems [2, 3]. VA consists of a structured inter-
view with family members of the deceased with the pur-
pose of gathering enough information to infer the likely
cause of death [4]. In some countries where up to 80-90%
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percent of deaths occur without medical attendance, VA
provides the only usable information for generating
population-level cause-of-death estimates with reasonable
and representative coverage [5]. Computer algorithms that
can reliably assign a cause of death greatly increase the
feasibility of integrating VA routinely into civil registration
and vital statistics (CRVS) systems. Computer certification
of verbal autopsy (CCVA) allows systems to be scalable,
consistent, and sustainable [6].

Numerous algorithms for predicting the cause of death
from VAs have been developed over the last decade [7-11].
We previously developed a framework for validating the
predictive accuracy of different diagnostic methods that al-
lows for direct comparison of methods using the same
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standard set of criteria [12]. It provides a way of determin-
ing how well an algorithm will perform in different popula-
tions when the true distribution of causes of death is not
known. This is crucial for generalizing results to new study
populations and accurately capturing unknown changes in
cause-of-death composition in the same population across
time. We have used this procedure to determine the accur-
acy of a wide range of previously developed methods [13].

Recently, a new algorithm for CCVA called InSilicoVA
was developed and published [14]. This method builds
on previous research on the InterVA algorithm, and
advances the approach by introducing an algorithm that
quantifies uncertainty in the individual-level predictions
and uses this information to better predict the cause dis-
tribution at the population level. This aligns well with
the current global interest in using VA to estimate the
distribution of causes of death for populations through
routine application in vital registration systems. The
authors use a range of metrics to determine the perform-
ance of their algorithm, including applying our assessment
framework. However, the authors only validated the
results for adult deaths and not child or neonatal deaths.
Moreover, given the potential of such methods for trans-
forming knowledge about cause-of-death patterns in
populations for which little is currently known about the
leading causes of death, we believe that an independent
validation of their results is warranted before the method
can be recommended for routine application.

In this study, we assess the diagnostic accuracy of the
InSilicoVA algorithm for all ages using the same valid-
ation environment as used in the original InSilicoVA
paper, namely the Population Health Metrics Research
Consortium (PHMRC) gold standard database. We
applied the validation procedure developed by Murray
et al. [12] and assessed performance at the individual
level, using chance-corrected concordance (CCC), and at
the population level, using chance-corrected cause-
specific mortality fraction (CCCSMF) accuracy.

Methods

Algorithm

InSilicoVA [14] is a Bayesian framework that improves
upon InterVA [10] by using information about symptoms
that are, and are not endorsed, to estimate probabilities
for each cause of death in a way that is comparable across
observations, and by estimating the individual-level and
population-level predictions simultaneously. The model is
estimated using Markov chain Monte Carlo (MCMC)
simulations. To produce usable results, the algorithm
must run a sufficient number of samples to ensure
convergence. The authors have released their algorithm as
an R package with a computationally intensive MCMC
calculation implemented in Java through the rJava
package. The algorithm utilizes a matrix of conditional
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probabilities between each cause and each symptom.
These propensities, which the authors call the probbase,
capture the user’s initial estimate of the relative likelihood
of a symptom being endorsed for a given cause of death.
These estimates can be derived from data or from expert
judgement. The R package allows the user to input his
own probbase file and also provides a default probbase
based on the InterVA project. Open-source code (licensed
under the GNU General Public License version 2) for the
R implementation of InSilicoVA is freely available online.

Data

We used the publicly available PHMRC gold standard
database [15, 16] to validate the InSilicoVA algorithm.
This dataset contains VAs matched to cause-of-death
diagnoses from medical records, with variable confi-
dence. Cases in the dataset were initially identified from
deaths in hospitals where strict,predetermined diagnostic
criteria were satisfied. This ensured that the true cause
of death was known with greater certainty than is often
the case for deaths recorded in vital registration systems,
where diagnostic misclassification is typically estimated
to range between 30 and 60% [17, 18]. After identifying
cases, blinded VAs were collected using a modified
version of the World Health Organization (WHO) VA
instrument. This resulted in a validation database of
12,530 records for which the true cause of death was
known with reasonable certainty, and for which a full
VA interview had been conducted.

VAs were collected from six sites in four different
countries: Andhra Pradesh, India; Bohol, Philippines;
Dar es Salaam, Tanzania; Mexico City, Mexico; Pemba
Island, Tanzania; and Uttar Pradesh, India between 2007
and 2010. The database includes deaths for 7841 adults,
2064 children, 1620 neonates, and 1005 stillbirths.
Following practice from previous research, we used the
most aggregated cause list with 34 adult causes, 21 child
causes, and 6 neonate causes (including stillbirth) to
assess the accuracy of cause-of-death predictions. These
cause-of-death lists are shown in Additional file 1.

Validation framework

In this study, we follow the recommendations of Murray
et al. for validating VA diagnostic methods [12]. For this
procedure, the validation dataset is randomly divided
into a train fold containing 75% of the observations and
a test fold containing the remaining 25% of observations.
This is repeated 500 times, resulting in 500 test-train
sets, each with a different subset of the original observa-
tions. For each test-train set, any given record appears in
either the train set or the test set, but not both. The test
set is then resampled to an uninformative Dirichlet dis-
tribution. This ensures that the cause compositions of
the train and test sets are uncorrelated, which provides a
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more robust measure of performance (for example, it
prevents a naive prediction algorithm from guessing an
accurate population-level distribution without utilizing
information at the individual level). Additionally, be-
cause the cause composition varies substantially across
the 500 test-train splits, it ensures that the algorithm is
tested on datasets with a wide variety of cause distribu-
tions and that performance estimates are not skewed by
overfitting to the most common cause in the training
data. To assess performance at the individual level, we
use the median CCC across causes [12]. To assess
performance at the population level, we use CCCSMF
accuracy [19]. CCC for a single cause is calculated as:

TP, 1
TP, + FN; N
ccc; :/+—1/
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N

where TP; is the number of true positives for cause j,
TN; is the number of true negatives, and N is the num-
ber of causes. Values range between —1.0 and 1.0, where
1.0 indicates perfect ability to detect (ie., diagnose) a
cause, 0.0 indicates random guessing, and negative 1.0
indicates no ability to detect a cause. To create an over-
all metric of individual-level prediction accuracy, we use
the mean of the cause-specific CCCs. Cause-specific
mortality fraction (CSMF) accuracy is calculated as:
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where CSMF;”” is the true fraction for cause j and

CSMFAccuracy = 1-

CSMFI;WI is the predicted fraction for cause j. This statistic

can be corrected for chance (see Flaxman et al. [19]); we
calculate the CCCSMF accuracy as:

CSMFAccuracy—-(1-e!)

CCCSMFAccuracy = = (1=c1)

Similarly to CCC, perfect CCCSMF accuracy is
attained at value 1.0, and values near 0.0 indicate that
the diagnostic procedure being applied is essentially
equivalent to random guessing.

InSilicoVA validation

The InSilicoVA R package allows for a range of customi-
zations to the inputs used to predict the cause of death.
We validate the algorithm using three different configu-
rations of inputs to assess its usability and performance.
These configurations are obtained as follows: (1) using
the built-in default training data, (2) training the algo-
rithm with inputs that resemble the defaults, and (3)
training the algorithm with inputs that do not resemble
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the defaults. Following the practice established in
Murray et al. [12], we also conduct the analysis without
predictors derived from questions related to previous
contact with the health care system. This produces
estimates of diagnostic accuracy that could be more
appropriate for generalizing to community deaths where
the decedents had no medical contact [16]. For each of
the three configurations, we test all three age groups
both with and without health care experience questions.

With default probbase

The default configuration assumes the input data
matches the InterVA4 format with 245 symptoms. It
uses the conditional probabilities from InterVA to pre-
dict one of 60 causes. With the default configuration, no
ancillary training data is required. To validate the default
configuration, we mapped the PHMRC database to the
InterVA format, and then we used InSilicoVA to predict
the cause of death. We then mapped the predicted
causes to the PHMRC gold standard list. We compared
these mapped predictions to the known underlying
cause as listed in the PHMRC database to calculate
performance. Since the algorithm was not trained empiric-
ally with this configuration, we used the entire validation
dataset to test the predictive performance. However, it is
still essential to test the algorithm on datasets with differ-
ent cause compositions, so we repeated this process on
500 test datasets, each with a cause composition drawn
from an uninformative Dirichlet distribution and samples
drawn from the complete dataset with replacement ac-
cording to this cause composition. The predicted causes
included 36 adult causes of death, 20 child causes, and 7
neonate causes. Of the 245 symptom predictors used by
InSilicoVA, the PHMRC dataset contained data for 123
adult symptoms, 69 child symptoms, and 62 symptoms
for neonates.

With empirical probbase

Next, we assessed how InSilicoVA performed with train-
ing data that matched its expected inputs. For this
assessment, we mapped the PHMRC database to the
InterVA symptoms, and the “gold standard” causes were
mapped to the predicted causes. For each of the 500
test-train splits, we used the train split to calculate the
empirical probability of an InterVA symptom being
endorsed, conditional on the mapped cause. This condi-
tional probability matrix was used as the input probbase
for the algorithm. The test split was resampled to a
Dirichlet cause distribution, and the algorithm predicted
a cause from the default set of causes.

With empirical probbase matching Tariff 2.0
Finally, we assessed how the algorithm performed with
training data of a different format than the standard
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inputs. For this assessment, the PHMRC database was
mapped to the set of symptoms used by the Tariff 2.0 al-
gorithm [7]. The data was mapped to 171 adult symp-
toms, 86 child symptoms, and 110 neonate symptoms.
For each of the 500 test-train splits, we used the train
split to calculate the empirical probability of a Tariff 2.0
symptom being endorsed conditional on the original
PHMRC gold standard cause. We then used this empir-
ical probability matrix in the InSilicoVA algorithm to
predict causes of death. As before, we predicted for data
in the test split after it had been resampled to a Dirichlet
cause distribution. Of the three assessments, this config-
uration should be the most favorable towards InSilicoVA
since it avoids any possible discrepancies between defini-
tions of the PHMRC causes and the default causes, and
it provides more symptom predictors for the algorithm
to use.

The InSilicoVA R package provides 10 hyperpara-
meters which allow users to tune the estimation proced-
ure. Except where specifically mentioned, we used the
default value provided by the InSilicoVA packages. The
validity of the results depends on the Monte Carlo ex-
periment successfully converging to a stable result. We
repeated each experiment using three times the default
number of simulations and assessed the number of splits
that converged and any differences in the results. Con-
vergence was assessed using the Heidelberger and Welch
test included with the R package. We used the extract.
prob function provided by the InSilicoVA package in all
training exercises.

Results

Tables 1 and 2 show the algorithmic performance of
InSilicoVA at the individual level and population level,
respectively, using the default probbase, training the
algorithm on data with the same causes and symptoms
as the default probbase, and training the algorithm on
data with different causes and symptoms. At both the in-
dividual and population levels, the configuration using
the causes published with the dataset and the Tariff 2.0
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symptoms performed best across all age groups regard-
less of whether health care experience (HCE) variables
were included. These variables are intended to reflect
the impact of the extent of contact with health services
prior to death in terms of additional information that
might improve diagnostic accuracy.

At the individual level, InSilicoVA performed best for
predicting the cause of death for child deaths. Without
HCE variables, the median CCC for child VAs was 29.
2% (UI 29.0%, 29.4%) using the default probbase, 35.8%
(uncertainty interval (UI) 35.5%, 36.3%) when training
the algorithm on the default cause list and symptoms,
and 38.8% (UI 38.4%, 39.5%) when using the causes and
symptoms which best matched the data. For adults and
neonates, InSilicoVA performed substantially worse with
the default probbase than with the Tariff 2.0 causes and
symptoms. The CCC for adults was 16.1% (UI 16.0%, 16.
2%) using the defaults and 28.5% (Ul 28.3%, 28.7%)
using Tariff 2.0 causes and symptoms. The CCC for neo-
nates was 19.2% (UI 19.1%, 19.4%) using the defaults
and 37.8% (UI 37.2%, 38.3%) using the Tariff 2.0 causes
and symptoms. For adults, training the algorithm using
the default causes and symptoms yielded diagnostic ac-
curacy very similar to that resulting from using Tariff 2.0
causes and symptoms, 28.7% (UI 28.3%, 29.2%) com-
pared to 28.5% (UI 28.3%, 28.7%). For neonates, training
using default symptoms and causes produced lower
CCC, 28.4% (UI 27.9%, 29.0%) compared to 37.8% (UI
37.2%, 38.3%) when training using the Tariff 2.0 symp-
toms. The cause-specific performance, as measured by
CCC varied significantly by cause. Tables 3, 4, and 5
summarize the cause-specific CCC. When the model
was trained using Tariff 2.0 symptoms, the adult causes
with the highest CCC were Bite of venomous animal,
Drowning, Maternal; the child causes with the highest
CCC were Bite of venomous animal, Drowning, Road
traffic; and the neonate causes with the highest CCC
were Meningitis/sepsis, Preterm delivery, Stillbirth.
Across all age groups, seven causes were predicted at or
below the level of random guessing. Additional files 2, 3,

Table 1 Median chance-corrected concordance (%) for InSilicoVA and Tariff 2.0

InSilicoVA(default probbase) InSilicoVA(InterVA training) InSilicoVA(Tariff 2.0 training) Tariff 2.0
Median 95% Ul Median 95% Ul Median 95% Ul Median  95% Ul
Adult No HCE  16.1 (160, 16.2) 28.7 283,292) 285 (283,287) 378 (376,379)
HCE 21.0 (209, 21.1) 33.0 3238,333) 341 (33.9, 34.5) 50.5 (50.2, 50.7)
Child No HCE 292 (29.0, 294) 358 35.5,36.3) 388 (384, 39.5) 44.6 (44.2,45.0)
HCE 294 (29.2,296) 36.1 35.7, 36.6) 384 (38.1,39.0) 52.5 (52.1,53.0)
Neonate No HCE 19.2 (19.1,194) 284 27.9,29.0) 378 (37.2,383) 423 (41.9, 42.6)
HCE 17.6 (173,17.8) 289 284, 30.0) 379 (37.3,384) 45.1 (44.6,454)

Table 1 shows the individual-level performance as the median value and uncertainty interval (Ul) across 500 test-train splits using different probbase matrices for
prediction, by age group, with and without health care experience (HCE) questions included. InSilicoVA was run without training using the default probbase, with
an empirical probbase derived from training data mapped to the InterVA format, and with an empirical probbase derived from training data mapped to the Tariff

2.0 format. Previously published Tariff 2.0 results are shown for comparison
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Table 2 Median chance-corrected cause-specific mortality fraction accuracy for InSilicoVA and Tariff 2.0
InSilicoVA(default probbase) InSilicoVA(InterVA training) InSilicoVA(Tariff 2.0 training) Tariff 2.0
Median 95% Ul Median 95% Ul Median 95% Ul Median 95% Ul
Adult No HCE -594 (-61.7,=57.7) 43 (26,54) 2.1 (05,39 23.1 (216, 24.3)
HCE —40.1 (=413, -387) 121 (105, 134) 139 (126, 15.5) 376 (36.5,38.9)
Child No HCE —46.2 (—484, —43.6) -104 (=135,-73) 22.3 (20.7, 23.9) 305 (284, 324)
HCE —42.7 (— 479, -374) =115 (-13.1,-82) 224 (206, 23.8) 41.1 (39.2, 42.0)
Neonate No HCE -399 (-43.8,-32.1) 109 (4.9, 15.1) 376 (33.7, 40.8) 492 (474, 52.2)
HCE —385 (—=43.9, =34.0) 17.5 (12.8,22.9) 344 (309, 37.3) 531 (50.9, 55.1)

Table 2 shows the population-level performance as the median value and uncertainty interval (Ul) across 500 test-train splits using different probbase matrices for
prediction, by age group, with and without health care experience (HCE) questions included. InSilicoVA was run without training using the default probbase, with
an empirical probbase derived from training data mapped to the InterVA format, and with an empirical probbase derived from training data mapped to the Tariff

2.0 format. Previously published Tariff 2.0 results are shown for comparison

and 4 present the full misclassification matrix for cause-
specific performance of InSilicoVA when trained using
Tariff 2.0 symptoms, and predicted without health care
experience, to show the detailed patterns of prediction
at the individual level.

At the population level, InSilicoVA performed best in
predicting the CSMF for neonates when provided with
training data. The algorithm performed substantially
worse than chance for all age groups using the default
probbase, despite predicting better than chance at the
individual level for adults and children. The median
CCCSMF was -59.4% (Ul —61.7%, —-57.7%) for adults,
-46.2% (Ul -48.4%, -43.6%) for children, and -39.9%
(UI —43.8%, —32.1%) for neonates. The median CCCSMF
was higher for child and neonate age groups when using
the Tariff 2.0 causes and symptoms. For adults, the per-
formance was the same when using the InterVA or Tariff
2.0 training. The CCCSMF was 2.1% (UI 0.5%, 3.9%) for
adults, 22.3% (UI 20.7%, 23.9%) for children, and 37.6%
(UI 33.7%, 40.8%) for neonates.

At both the individual level and the population level,
Tariff 2.0 outperformed InSilicoVA in all age groups. At
the individual level without HCE variables, the median
CCC across splits was 9.3 percentage points higher for
adults, 5.8 percentage points higher for children, and 4.5
percentage points higher for neonates using Tariff 2.0 to
diagnose the VAs, compared to InSilicoVA. At the popu-
lation level, the median CCCSMF for Tariff 2.0 was 21.0
percentage points higher for adults, 8.2 percentage
points higher for children, and 11.6 percentage points
higher for neonates. Figure 1 shows the individual-level
and population-level performance of InSilicoVA using
different configurations compared to Tariff 2.0. The
cause-specific performance of InSilicoVA tended to fol-
low a similar pattern as the Tariff 2.0 algorithm when
trained using the same symptoms as predictors, except
that the Tariff 2.0 concordance was generally higher.
Across the specific age groups, InSilicoVA had higher
concordance only for Drowning, Lung cancer, Maternal,
Stomach cancer, and Suicide in adults; AIDS, Drowning,

Malaria, Other defined causes of child deaths, Other
digestive diseases, Other infectious diseases, and Pneu-
monia in children; and Birth asphyxia, Meningitis/sepsis,
Preterm delivery, and Stillbirth in neonates.

Across all age groups, InSilicoVA had higher sensitivity
for 22 of 61 PHMRC causes for at least one of the with
HCE/without HCE scenarios. It had higher specificity
for 32 of 61 PHMRC causes. Table 6 shows the median
sensitivity and specificity across cause for InSilicoVA
and Tariff 2.0. Overall Tariff 2.0 had higher sensitivity
for all age groups with and without the health care
experience predictors. InSilicoVA had comparable speci-
ficity to Tariff 2.0 for adults and children, but slightly
lower specific for neonates. Additional file 5 shows
cause-specific comparisons of InSilicoVA and Tariff 2.0
using sensitivity and specificity.

Further, when using training data, the model did not
always converge for every test-train split. Across the
three modules and different mappings of training data,
for 81.5-4.7% of the 500 test-train splits the model did
not converge when using the default number of Monte
Carlo simulations. We increased the number of simula-
tions performed during the fitting process to three times
the default to see if the model would eventually
converge. Even with these extra samples, up to 27.8% of
splits still failed to converge for some configurations.

Discussion

As expected, InSilicoVA performed best when using
the causes and symptoms that closely matched the
data. The differences between using the causes and
symptoms from the data versus mapping to the
InterVA causes and symptoms were greatest for neo-
nates. The differences in population-level accuracy
were generally larger than at the individual level. Even
when using the ideal configuration, InSilicoVA always
had lower diagnostic accuracy than the Tariff 2.0
method. The difference was greatest for adults where,
without health care variables, the predictive accuracy
of InSilicoVA was 9.3 percentage points lower at the
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Table 3 Median adult cause-specific chance-corrected concordance (%) for InSilicoVA and Tariff 2.0
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InSilicoVA (Tariff 2.0 training) Tariff 2.0

No HCE HCE No HCE HCE
PHMRC cause ICD10 Median 95% Ul Median 95% Ul Median 95% Ul Median 95% Ul
Diarrhea/dysentery A09 180 (16.8, 19.1) 215 (20.5, 22.5) 364 (35.1, 36.7) 385 (37.8,39.3)
Tuberculosis A16 23.2 (22.5,24.7) 344 (32.8, 36.0) 422 (41.8,43.1) 435 (43.1, 44.3)
AIDS B24 132 (1 4.9) 30.2 (29.1,31.3) 44.3 (43.7,45.1) 51.0 (50.5, 51.8)
Malaria B54 30.1 (275,313) 335 (313,359 423 (423, 438) 579 (55.2,58.8)
Other infectious diseases B99 35 2.7, 44) 77 6.6, 9.0) 6.3 6.3,6.7) 159 (155, 16.6)
Esophageal cancer 15 61.5 (59.5, 63.6) 614 (588, 63.2) 69.1 (614, 69.1) 794 (794, 794)
Stomach cancer C16 272 (252,29.2) 263 (255, 284) 16.3 (163, 16.3) 29.2 (29.2,356)
Colorectal cancer c18 09 (=03, 1.9) 17 (1.0, 3.0) 59 (5.2,93) 176 (17.6,17.6)
Lung cancer C34 359 (340, 374) 417 (389, 437) 326 (326, 34.1) 287 (28.7,28.7)
Breast cancer 50 404 (394, 42.0) 485 (474, 509) 69.8 (68.5, 70.6) 74.8 (74.8, 76.4)
Cervical cancer C53 60.4 (588, 61.6) 65.7 (64.1, 67.7) 709 (70.1, 70.9) 758 (73.6, 76.2)
Prostate cancer 61 31.8 (300, 33.9) 36.3 (33.3,382) 485 (485, 48.5) 65.7 (625, 65.7)
Leukemia/lymphomas C9%6 7.2 (5.9,87) 16.6 (15.1,17.6) 287 (26.8, 28.7) 349 (34.0, 36.6)
Diabetes E14 13.0 (12.3,145) 24.7 (23.5,26.2) 46.9 (46.2, 47.7) 509 (50.2, 51.6)
Epilepsy G40 16.2 (14.1,18.0) 296 (26.5,324) 485 (485, 48.5) 57.1 (57.1,57.1)
Acute myocardial infarction 121 27.1 (25.3,287) 314 (31.2,33.0) 396 (389, 40.2) 444 (43.5,44.9)
Stroke 164 436 (41.9, 44.5) 521 (51.1,53.9) 47.1 (46.5, 47.7) 504 (49.8, 51.0)
Other cardiovascular 199 126 [ 3.6) 194 (18.1, 20.5) 30.7 (30.3,31.3) 373 (364, 38.0)
diseases
Pneumonia J22 -05 (=08, 0.1) 84 (7.3,9.5) 55 (52,58 152 (14.7,15.5)
COPD J33 256 (245, 27.3) 36.2 (34.1,38.1) 382 (37.7,396) 40.1 (387, 40.1)
Asthma J45 9.6 (7.0,11.6) 156 (14.1,18.0) 588 (57.1, 65.7) 57.1 (57.1, 65.7)
Cirrhosis K74 239 (226, 25.5) 39.1 (38.0, 40.5) 25.1 (244, 25.8) 512 (505, 51.9)
Renal failure N19 -3.0 (=3.0,-3.0) 04 (=03, 14) 9.8 (9.5,10.2) 289 (285, 29.6)
Maternal 095 74.2 (722,755) 77. (756, 78.2) 68.3 (67.5,69.1) 68.0 (67.3, 684)
Other non-communicable R100 -30 (=3.0, -3.0) -0.5 (=1.1,02) 11.7 (11.3,12.0) 146 (14.1, 15.0)
diseases
Road traffic V89 369 (34.3,38.1) 38.2 (36.3, 39.6) 773 (77.1,785) 81.5 (81.5,82.5)
Falls W19 29.5 (27.6,31.2) 341 (31.3,35.5) 572 (56.9, 58.3) 59.3 (58.8, 60.4)
Drowning W74 86.7 (853, 885) 82.7 (81.3,833) 84.1 (835, 84.1) 813 (80.2, 84.1)
Fires X09 24.0 (22.2,26.2) 269 (25.1, 28.7) 706 (69.1, 72.5) 71.7 (69.1, 72.5)
Bite of venomous animal X27 729 (70.1, 74.8) 74.2 (72.3,76.1) 87.1 (87.1,87.1) 80.7 (80.7, 80.7)
Poisonings X49 21.2 (19.0, 22.7) 210 (194, 23.3) 344 (344, 344) 579 (55.8,57.9)
Other injuries X58 553 (524, 57.1) 65.6 (62.7, 66.3) 68.3 (68.3, 68.3) 723 (69.1,72.3)
Suicide X84 136 (124, 15.2) 19.1 (17.5,20.5) 7.5 6.9, 9.8) 9.8 (7.6,10.3)
Homicide Y09 266 (252,279 312 (29.5,326) 73.0 (722,730 784 (779,799)

Table 3 shows the cause-specific chance-corrected concordance for adult data for InSilicoVA using an empirical probbase derived from training data mapped to
the Tariff 2.0 format. Previously published Tariff 2.0 results are shown for comparison
PHMRC Population Health Metrics Research Consortium, ICD International Classification of Diseases, HCE health care experience, Ul uncertainty interval, COPD
chronic obstructive pulmonary disease

individual level and 21.0 percentage points lower at
the population level. This poorer performance, par-
ticularly for adult deaths, has significant implications
for estimating cause-of-death patterns in countries

where, in all cases, the vast majority of deaths occur
among the adult population [20].

We have reviewed InSilicoVA for two complementary
purposes. First, we assessed the performance of the
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Table 4 Median child cause-specific chance-corrected concordance (%) for InSilicovA and Tariff 2.0
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InSilicoVA (Tariff 2.0 training) Tariff 2.0

No HCE HCE No HCE HCE
PHMRC cause ICD10 Median 95% Ul Median 95% Ul Median 95% Ul Median 95% Ul
Diarrhea/dysentery A09 16.0 (14.1,18.0) 15.1 (125, 16.7) 246 (24.0, 25.5) 370 (363, 382)
Sepsis A4l —2.8 (=50, -1.5) =50 (=5.0,-2.7) 125 (11.2,13.5) 14.7 (14.1, 16.0)
Hemorrhagic fever A99 16.0 (14.5, 19.0) 16.0 (136, 19.7) 515 (51.5,523) 596 (596, 65.0)
Measles BO5 73.8 (70.2,77.2) 719 (67.8,73.8) 825 (82.5,82.5) 825 (82.5,82.5)
AIDS B24 42.7 (39.1,47.4) 421 (382, 474) 370 (37.0,37.0) 58.0 (58.0, 58.0)
Malaria B54 47.5 (47.2, 49.8) 493 (474,51.3) 41.7 (40,0, 42.1) 57.2 (56.6, 58.8)
Other infectious diseases B99 248 (22.8, 27.0) 250 (214, 27.2) 74 (74, 10.0) 265 (25.9, 27.8)
Other cancers C76 43 (-28,62) 50 (1.8, 80) 250 (25.0, 30.0) 40.0 (40.0, 40.0)
Meningitis G03 150 (125, 164) 133 (119, 15.5) 273 (250, 32.5) 30.0 (265,325)
Encephalitis G04 299 (265,322) 29.8 (24.8, 33.0) 370 (37.0,37.0) 41.7 (37.0, 47.5)
Other cardiovascular 199 77 6.1, 104) 108 (8.9, 13.9) 116 (11.6,12.5) 337 (33.7,33.7)
diseases
Pneumonia J22 16.8 (156, 183) 16.0 (144, 17.5) 77 (7.1,81) 99 (9.1, 10.8)
Other digestive diseases K92 40 (24,55) 42 (23,6.7) 38 (38,38 213 (213, 21.3)
Other defined causes of R101 130 (11.2,145) 11.2 (88, 12.3) 55 (45,6.2) 169 (16.0, 183)
child deaths
Road traffic V89 90.1 (88.8,91.2) 89.5 (88.3,91.2) 90.5 (88.9, 90.9) 90.9 (909, 92.5)
Falls W19 54.6 (51.7,57.6) 55.9 (52.9,57.9) 73.8 (73.8,73.8) 73.8 (73.8,73.8)
Drowning W74 925 (90.7, 93.6) 925 (91.2,94.1) 90.0 (89.5, 90.0) 938 (92.5, 94.8)
Fires X09 509 (475,529) 484 (474, 522) 69.1 (69.1, 69.1) 753 (73.8,753)
Bite of venomous animal X27 885 (86.8, 90.4) 87.7 (85.6, 89.5) 92.5 (92.5, 92.5) 92.5 (92.5,100.0)
Poisonings X49 371 (30.0,42.3) 40.0 (344, 45.3) 47.5 (47.5,47.5) 73.8 (73.8,73.8)
Violent death Y09 753 (73.7, 76.8) 76.6 (73.7,79.0) 838 (825, 83.8) 838 (83.8, 83.8)

Table 4 shows the cause-specific chance-corrected concordance for child data for InSilicoVA using an empirical probbase derived from training data mapped to
the Tariff 2.0 format. Previously published Tariff 2.0 results are shown for comparison
PHMRC Population Health Metrics Research Consortium, ICD International Classification of Diseases, HCE health care experience, Ul uncertainty interval

InSilicoVA method as a diagnostic algorithm for verbal
autopsy. Second, InSilicoVA is a new piece of software
that potentially could be applied routinely into vital sta-
tistics systems for deaths without physician certification.
Knowing that this is a potential use for this software, it

is obviously important that the method can be easily ap-
plied, and with confidence about diagnostic accuracy, in
settings with little technical and statistical support. The
need for continuous vetting of model input parameters
and verification of model convergence is likely to be

Table 5 Median neonate cause-specific chance-corrected concordance (%) for InSilicoVA and Tariff 2.0

InSilicoVA (Tariff 2.0 training) Tariff 2.0

No HCE HCE No HCE HCE
PHMRC cause ICD10 Median 95% Ul Median 95% Ul Median 95% Ul Median 95% Ul
Pneumonia J22 56 4.0, 80) 35 (1.6,5.8) 314 (314, 37.1) 37.1 (37.1,37.1)
Preterm delivery Po7 505 (493, 52.0) 520 (50.7, 53.3) 41.5 (40.8, 42.2) 40.5 (400, 41.1)
Birth asphyxia P21 380 (36.7,39.5) 38.7 (37.1, 40.0) 220 (214, 226) 259 (25.1, 26.6)
Meningitis/sepsis P36 438 (41.6,45.5) 443 (42.9, 46.0) 379 (36.9, 38.8) 443 (43.2,45.1)
Stillbirth P95 90.9 (90.3,91.2) 91.0 (906, 91.4) 85.7 (85.1, 86.2) 856 (85.1, 86.1)
Congenital malformation Q89 -09 (-16,04) -1.0 (-19,03) 342 (329, 34.2) 348 (34.2, 36.1)

Table 5 shows the cause-specific chance-corrected concordance for neonate data for InSilicoVA using an empirical probbase derived from training data mapped
to the Tariff 2.0 format. Previously published Tariff 2.0 results are shown for comparison
PHMRC Population Health Metrics Research Consortium, ICD International Classification of Diseases, HCE health care experience, Ul uncertainty interval
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dimension are equivalent to random guessing and range up to 100% for perfect accuracy. InSilicoVA is tested using the default expert-derived
probbase, a probbase empirically trained using InterVA symptoms, and a probbase empirically trained using Tariff 2.0 symptoms. Published

accuracies of Tariff 2.0 are shown for comparison

problematic in many countries, and is likely to result in
low-quality cause-of-death statistics in countries where
there are insufficient resources to procure these services.

Compared with Tariff 2.0, we found that InSilicoVA
performs significantly worse in correctly predicting

causes of death. We were not able to identify any config-
uration of input parameters, for any age group, that out-
performed published estimates from the Tariff 2.0
algorithm. InSilicoVA shows the most promising results
for child and neonates, despite having noticeably fewer

Table 6 Median sensitivity and specificity (%) for InSilicoVA and Tariff 2.0

InSilicoVA (Tariff 2.0 training) Tariff 2.0
Median sensitivity Median specificity Median sensitivity Median specificity
Adult No HCE 304 98.1 39.8 98.2
HCE 359 98.2 52.1 98.5
Child No HCE 410 97.7 46.7 974
HCE 409 976 55.2 97.7
Neonate No HCE 484 904 539 935
HCE 485 90.2 56.3 93.8

Table 6 shows the sensitivity and specificity across causes for InSilicoVA using an empirical probbase derived from training data mapped to the Tariff 2.0 format.

Previously published Tariff 2.0 results are shown for comparison
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symptom predictors for these age groups, but even for
these age groups it still has noticeably lower diagnostic ac-
curacy than Tariff 2.0. This result is generally consistent
when comparing cause-specific performance between the
two algorithms. For a few causes, InSilicoVA had higher
CCC. However, the increased sensitivity was at the
expense of other causes, which had significantly lower
concordance and may indicate that the model overfits to
causes which may be easier to detect. This is especially
evident for the neonate, where InSilicoVA achieved higher
concordance for four causes, but predicted the other two
causes at level equal to chance, as indicated by the uncer-
tainty interval containing zero. This is in contrast to Tariff
2.0, which performed similarly across causes, with the ex-
ception of Stillbirth, which had high concordance for both
algorithms.

To predict with this algorithm, users must decide what
conditional probability matrix to use. The InSilicoVA
authors propose that, in practice, ranked conditional
probabilities be derived from expert panels that rank the
propensities of seeing a symptom given a particular
cause of death [14]. They show that the predictive accur-
acy of the method is heavily dependent on the quality of
this input. However, deriving these probabilities may not
be straightforward. The required value is the probability
of a respondent saying the decedent had a given symp-
tom. This is subtly but importantly different from the
probability of the decedent having the symptom. The
value needed for this algorithm requires that a decedent
had a symptom, the decedent communicates this symp-
tom to someone or someone notices it, the interviewer
finds this person who knew about the symptom, and the
respondent remembers the symptom months later when
the VA interview is being conducted. The respondent
may not notice or may forget key symptoms. When
medical professionals create these ranked conditional
probabilities, they may implicitly estimate the probability
of identifying a symptom themselves in their expert,
clinical evaluation. This value could mislead the algo-
rithm and result in inaccurate predictions. It is necessary
that experts who select these conditional probabilities
balance both the presentation of symptoms due to a dis-
ease and the ability of non-experts to reliably identify,
remember, and report on these symptoms.

We report here, for the first time, the predictive per-
formance of InSilicoVA using the default conditional
probabilities (from InterVA). Given resource constraints
in the settings where VA is likely to be used, and the lo-
gistical difficulties of collecting location-specific prob-
base information from medical professionals familiar
with the area, it is quite likely that the InSilicoVA de-
faults will be used in practice. We found that the default
configuration and conditional probabilities consistently
perform worse than chance at all ages at the population
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level. The authors claim that InSilicoVA is applicable in
a wider range of settings because it does not need to rely
on “gold standard” data [14]. However, we have demon-
strated that using expert-derived training as opposed to
empirically derived training data results in unacceptably
poor performance.

The results from this study match a previous valid-
ation of the InterVA algorithm, which found that, once
corrected for chance, population-level accuracy of
predictions using an expert-derived probbase are rela-
tively poor [21]. The InterVA probbase used by InSili-
coVA has undergone extensive field testing and review
by numerous investigators in multiple countries [22].
Given this, we believe it is extremely unlikely for expert-
derived probbases to produce estimates that rival empir-
ically derived training such as that used by Tariff 2.0.
Additionally, expert-derived training has the unfortunate
effect of often appearing plausible, since it reconfirms
the intuition of the experts training and evaluating the
method, which can be, and often is, incorrect. The net
result is a situation in which diagnostic information
being provided by InSilicoVA is likely to be worse than
acting on no information whatsoever.

In this study, we used test data with a cause distribu-
tion uncorrelated with the training data. This resulted in
scenarios in which the training data and test data were
sufficiently different that the model could not success-
fully converge. The R package displays a warning about
non-convergence and says the results may be unreliable,
but it still yields outputs. This raises two operational
considerations with the use of InSilicoVA. First, it is pos-
sible to create a conditional probability matrix in which
the model does not successfully produce reliable results.
Second, the R package produces results even in this
circumstance. It is possible that InSilicoVA users may
unintentionally overlook the warning that the MCMC
process has not converged, leading to adoption of results
which are known to be statistically inaccurate.

Installing Java and properly configuring R and Java to
work together requires considerable technical expertise
and is not standardized across different computer
systems. Although InSilicoVA is freely available, it may
require expert technical consultation to be usable.

Conclusions

Verbal autopsy as a diagnostic method is now being ac-
tively considered by countries for routine widespread
use in surveillance and vital statistics systems [23]. It is
important to keep improving the science behind estima-
tion and validation of different cause-of-death prediction
strategies so that policy makers can be provided with the
highest quality estimates based on the best possible
measurement methods. It is also important that methods
be independently investigated and evaluated for usability
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for governments in low- and middle-income countries
seeking to reduce ignorance about who dies of what.

The InSilicoVA algorithm provides some key advances
in CCVA. Unlike previous algorithms, it provides a
method for calculating the uncertainty in each predic-
tion. However, implementing the algorithm effectively
requires both an increased level of technical expertise to
utilize R and Java and conceptual expertise to tune
model hyperparameters and interpret convergence from
a hierarchical Bayesian model. Additionally, our results
indicate that the default setting for conditional probabil-
ities that come with the R package is suboptimal. This
means that users should be very cautious about applying
this new method.

Moreover, in the validation environment we have
defined using the PHMRC database, InSilicoVA was
found to be less accurate than Tariff 2.0 in predicting
both causes of death for individuals (by about 10% in
CCC) and the cause of death distribution in a population
(about 20% less accurate in CCCSMF), with the differ-
ences being more marked for adult and child deaths
than for neonates. For 20 out of 61 causes of death,
InSilicoVA was found to have higher sensitivity than
Tariff 2.0 (when both were run without health care
experience), while for 40 the sensitivity was lower. Since
the vast majority of deaths in low- and middle-income
countries now occur among children and adults, rather
than neonates, the higher CCCSMF accuracy of Tariff 2.
0 in predicting causes of death, along with its ease of
application, should make it the method of choice for
countries seeking to maximize the accuracy and cost-
effectiveness of automated verbal autopsy in their
national CRVS systems.

Additional files

Additional file 1: Gold standard causes. Causes from the PHMRC gold
standard database and mapping to causes used by InSilicoVA by age
group. (DOCX 11 kb)

Additional file 2: Misclassification matrix for adult deaths when
InSilicoVA is trained using Tariff 2.0 symptoms without health care
experience questions. (XLSX 11 kb)

Additional file 3: Misclassification matrix for child deaths when
InSilicoVA is trained using Tariff 2.0 symptoms without health care
experience questions. (XLSX 7 kb)

Additional file 4: Misclassification matrix for neonatal deaths when
InSilicoVA is trained using Tariff 2.0 symptoms without health care
experience questions. (XLSX 5 kb)

Additional file 5: Cause-specific sensitivity and specificity for InSilicoVA
and Tariff 2.0. (XLSX 13 kb)

Abbreviations

CCC: Chance-corrected concordance; CCCSMF accuracy: Chance-corrected
cause-specific mortality fraction accuracy; CCVA: Computer certification of
verbal autopsy; CRVS: Civil registration and vital statistics; CSMF: Cause-
specific mortality fraction; MCMC: Markov chain Monte Carlo;

PHMRC: Population Health Metrics Research Consortium; VA: Verbal autopsy

Page 10 of 11

Acknowledgements

This work was supported by a National Health and Medical Research Council
project grant, Improving Methods to Measure Comparable Mortality by Cause
(grant no. 631494) and grant no. GR-00885 of the National Health and Medical
Research Council, Australia. The funder had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Funding

The funders had no role in study design, data collection and analysis,
interpretation of data, decision to publish, or preparation of the manuscript.
The corresponding author had full access to all data analyzed and had final
responsibility for the decision to submit this original research paper for
publication.

Availability of data and materials

The dataset analyzed in this study is available in the Global Health Data Exchange
(GHDx) repository, http//ghdxhealthdata.org/record/population-health-metrics-
research-consortium-gold-standard-verbal-autopsy-data-2005-2011.

Authors’ contributions

ADF, CJLM, IR, and ADL designed the analysis. ADF and JJ conducted the
analysis and led writing of the first draft of the manuscript. All authors
reviewed the interpretation of results and contributed to writing the final
version of the manuscript. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable. This study uses a publicly released database.

Consent for publication
Not applicable. This study does not include any individual data.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Institute for Health Metrics and Evaluation, University of Washington, Seattle,
Washington, USA. “School of Population and Global Health, University of
Melbourne, Parkville, VIC, Australia.

Received: 23 August 2017 Accepted: 16 March 2018
Published online: 19 April 2018

References

1. Phillips DE, AbouZahr C, Lopez AD, Mikkelsen L, De Savigny D, Lozano R,
et al. Are well functioning civil registration and vital statistics systems
associated with better health outcomes? Lancet. 2015;386:1386-94.

2. Sankoh O, Byass P. Time for civil registration with verbal autopsy. Lancet
Glob Health. 2014;2:e693-4.

3. Boerma T. Moving towards better cause of death registration in Africa and
Asia. Glob Health Action. 2014;7 https://doi.org/10.3402/gha.v7.25931.

4. Soleman N, Chandramohan D, Shibuya K. Verbal autopsy: current practices
and challenges. Bull World Health Organ. 2006;84:239-45.

5. AbouZahr C, De Savigny D, Mikkelsen L, Setel PW, Lozano R, Nichols E, et al.
Civil registration and vital statistics: progress in the data revolution for
counting and accountability. Lancet. 2015;386:1373-85.

6. de Savigny D, Riley I, Chandramohan D, Odhiambo F, Nichols E, Notzon S,
et al. Integrating community-based verbal autopsy into civil registration and
vital statistics (CRVS): system-level considerations. Glob Health Action.
2017;10:1272882.

7. Serina P, Riley |, Stewart A, James SL, Flaxman AD, Lozano R, et al.
Improving performance of the Tariff method for assigning causes of death
to verbal autopsies. BMC Med. 2015;13:291.

8. Flaxman AD, Vahdatpour A, James SL, Birnbaum JK, Murray CJ. Direct
estimation of cause-specific mortality fractions from verbal autopsies:
multisite validation study using clinical diagnostic gold standards. Popul
Health Metrics. 2011;9:35.


https://doi.org/10.1186/s12916-018-1039-1
https://doi.org/10.1186/s12916-018-1039-1
https://doi.org/10.1186/s12916-018-1039-1
https://doi.org/10.1186/s12916-018-1039-1
https://doi.org/10.1186/s12916-018-1039-1
http://ghdx.healthdata.org/record/population-health-metrics-research-consortium-gold-standard-verbal-autopsy-data-2005-2011
http://ghdx.healthdata.org/record/population-health-metrics-research-consortium-gold-standard-verbal-autopsy-data-2005-2011
https://doi.org/10.3402/gha.v7.25931

Flaxman et al. BMC Medicine (2018) 16:56

20.

21,

22.

23.

Murray CJ, Lopez AD, Feehan DM, Peter ST, Yang G. Validation of the
symptom pattern method for analyzing verbal autopsy data. PLoS Med.
2007;4:327.

Byass P, Huong DL, Van Minh H. A probabilistic approach to interpreting
verbal autopsies: methodology and preliminary validation in Vietnam. Scand
J Public Health. 2003;31:32-7.

Flaxman AD, Vahdatpour A, Green S, James SL, Murray CJ. Random forests
for verbal autopsy analysis: multisite validation study using clinical
diagnostic gold standards. Popul Health Metrics. 2011;9:29.

Murray CJ, Lozano R, Flaxman AD, Vahdatpour A, Lopez AD. Robust metrics
for assessing the performance of different verbal autopsy cause assignment
methods in validation studies. Popul Health Metrics. 2011,9:28.

Murray CJ, Lozano R, Flaxman AD, Serina P, Phillips D, Stewart A, et al. Using
verbal autopsy to measure causes of death: the comparative performance
of existing methods. BMC Med. 2014;12:5.

McCormick TH, Li ZR, Calvert C, Crampin AC, Kahn K, Clark SJ. Probabilistic
cause-of-death assignment using verbal autopsies. J Am Stat Assoc. 2016;
111:1036-49.

Murray CJ, Lopez AD, Black R, Ahuja R, Ali SM, Baqui A, et al. Population
Health Metrics Research Consortium gold standard verbal autopsy
validation study: design, implementation, and development of analysis
datasets. Popul Health Metrics. 2011;9:27.

Population Health Metrics Research Consortium gold standard verbal
autopsy data 2005-2011. http://ghdx.healthdata.org/record/population-
health-metrics-research-consortium-gold-standard-verbal-autopsy-data-2005-
2011. Population Health Metrics Research Consortium (PHMRC); 2013.
Rampatige R, Mikkelsen L, Hernandez B, Riley I, Lopez AD. Systematic review
of statistics on causes of deaths in hospitals: strengthening the evidence for
policy-makers. Bull World Health Organ. 2014;92:807-16.

Khosravi A, Rao C, Naghavi M, Taylor R, Jafari N, Lopez AD. Impact of
misclassification on measures of cardiovascular disease mortality in the
Islamic Republic of Iran: a cross-sectional study. Bull World Health Organ.
2008;86:688-96.

Flaxman AD, Serina PT, Hernandez B, Murray CJ, Riley |, Lopez AD. Measuring
causes of death in populations: a new metric that corrects cause-specific
mortality fractions for chance. Popul Health Metrics. 2015;13:28.

Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, et al. Global,
regional, and national life expectancy, all-cause mortality, and cause-specific
mortality for 249 causes of death, 1980-2015: a systematic analysis for the
global burden of disease study 2015. Lancet. 2016;388:1459.

Lozano R, Freeman MK, James SL, Campbell B, Lopez AD, Flaxman AD, et al.
Performance of InterVA for assigning causes of death to verbal autopsies:
multisite validation study using clinical diagnostic gold standards. Popul
Health Metrics. 2011;9:50.

Byass P, Chandramohan D, Clark SJ, D’Ambruoso L, Fottrell E, Graham WJ,
et al. Strengthening standardised interpretation of verbal autopsy data: the
new InterVA-4 tool. Glob Health Action. 2012;5:19281.

Lopez AD, Setel PW. Better health intelligence: a new era for civil
registration and vital statistics? BMC Med. 2015;13:73.

Page 11 of 11

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



http://ghdx.healthdata.org/record/population-health-metrics-research-consortium-gold-standard-verbal-autopsy-data-2005-2011
http://ghdx.healthdata.org/record/population-health-metrics-research-consortium-gold-standard-verbal-autopsy-data-2005-2011
http://ghdx.healthdata.org/record/population-health-metrics-research-consortium-gold-standard-verbal-autopsy-data-2005-2011

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Algorithm
	Data
	Validation framework
	InSilicoVA validation
	With default probbase
	With empirical probbase
	With empirical probbase matching Tariff 2.0


	Results
	Discussion
	Conclusions
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

