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Recurrence quantification analysis of
resting state EEG signals in autism
spectrum disorder – a systematic
methodological exploration of technical
and demographic confounders in the
search for biomarkers
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Abstract

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a worldwide prevalence of
1–2%. In low-resource environments, in particular, early identification and diagnosis is a significant challenge. Therefore,
there is a great demand for ‘language-free, culturally fair’ low-cost screening tools for ASD that do not require highly
trained professionals. Electroencephalography (EEG) has seen growing interest as an investigational tool for biomarker
development in ASD and neurodevelopmental disorders. One of the key challenges is the identification of appropriate
multivariate, next-generation analytical methodologies that can characterise the complex, nonlinear dynamics of neural
networks in the brain, mindful of technical and demographic confounders that may influence biomarker findings. The
aim of this study was to evaluate the robustness of recurrence quantification analysis (RQA) as a potential biomarker for
ASD using a systematic methodological exploration of a range of potential technical and demographic confounders.

Methods: RQA feature extraction was performed on continuous 5-second segments of resting state EEG (rsEEG) data
and linear and nonlinear classifiers were tested. Data analysis progressed from a full sample of 16 ASD and 46 typically
developing (TD) individuals (age 0–18 years, 4802 EEG segments), to a subsample of 16 ASD and 19 TD children (age
0–6 years, 1874 segments), to an age-matched sample of 7 ASD and 7 TD children (age 2–6 years, 666 segments) to
prevent sample bias and to avoid misinterpretation of the classification results attributable to technical and demographic
confounders. A clinical scenario of diagnosing an unseen subject was simulated using a leave-one-subject-out
classification approach.

Results: In the age-matched sample, leave-one-subject-out classification with a nonlinear support vector machine
classifier showed 92.9% accuracy, 100% sensitivity and 85.7% specificity in differentiating ASD from TD. Age, sex,
intellectual ability and the number of training and test segments per group were identified as possible demographic and
technical confounders. Consistent repeatability, i.e. the correct identification of all segments per subject, was found to be
a challenge.
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Conclusions: RQA of rsEEG was an accurate classifier of ASD in an age-matched sample, suggesting the potential of
this approach for global screening in ASD. However, this study also showed experimentally how a range of technical
challenges and demographic confounders can skew results, and highlights the importance of probing for these in
future studies. We recommend validation of this methodology in a large and well-matched sample of infants and
children, preferably in a low- and middle-income setting.
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Background
There has been growing interest in the development and
evaluation of biomarkers in a range of health-related con-
ditions to aid in the identification of individuals at risk, to
support diagnosis, to identify subgroups and to monitor
treatment [1, 2]. There is consensus that an ideal bio-
marker should be easily accessible, affordable, accurate,
and have high sensitivity and specificity for the particular
health condition under investigation [1–3]. In global
healthcare, a biomarker that can screen and identify those
at risk for a condition for which early intervention is avail-
able could be particularly valuable. In such a scenario, the
biomarker should be able to classify an individual as ‘at
risk’ in comparison to population-based peers.
Autism spectrum disorder (ASD) has a global preva-

lence estimate of 1–2% in children [4–8]; 90% of people
with ASD live in low- and middle-income countries [9],
where there is a significant demand for low-cost screening
tools that do not require highly trained professionals [3,
9–11]. Early identification is an essential first step to pre-
vent unnecessary delays in access to early intervention
strategies, parent education and planning for longer-term
support [12–15].
There has been positive progress regarding development,

validation and implementation of screening questionnaires,
such as the Modified Checklist for Autism in Toddlers
(M-CHAT), as early screening tools for ASD [16–18].
However, the cultural appropriateness of rating scale mea-
sures, the language and literacy demands, and the fact that
rating scales only identify difficulties when development or
behaviour already have noticeable, albeit subtle, changes,
makes global implementation of such tools problematic.
The development of ‘language free, culturally fair’ screening
tools that may use contemporary technology therefore
holds great promise for global screening in ASD [10, 19].
Given the interest in early identification, there has been

growing interest in biomarkers for ASD. In a
thought-provoking perspective piece, Walsh et al. [1]
warned against overenthusiasm in the attempts to identify
ASD biomarkers. They warned that (1) the manifestations
of ASD unfold over time, and therefore a biomarker that
is age- and developmentally sensitive would be challen-
ging to identify; (2) many proposed biomarkers have poor
sensitivity, namely they are not good at classifying those

with ASD as ASD, and also have poor specificity, wherein
the biomarker is also associated with other neurodevelop-
mental disorders; and (3) many of the current proposed
biomarkers are expensive, complicated and reliant on high
levels of technical expertise, thus limiting their potential
implementation in clinical settings.
There has been growing interest in electroencephalog-

raphy (EEG) as an investigational tool for biomarker de-
velopment in neurodevelopmental disorders. In a recent
scoping review, we highlighted two distinct but related
areas that pose challenges for EEG as potential biomarkers
for ASD and related neurodevelopmental disorders [3].
We described a range of potential demographic, clinical
and technical confounders including age, sex, intellectual
ability, socioeconomic status, comorbidity, the use of
medication, eyes-open versus eyes-closed condition, the
number and location of electrodes, and test-retest reliabil-
ity, all of which will require evaluation before EEG bio-
markers can be deemed sufficiently robust for translation
into a clinical setting for assessment of risk at an individ-
ual level. Secondly, we described key technical challenges
in the identification of appropriate multivariate,
next-generation analytical methodologies that can charac-
terise the complex, nonlinear dynamics of neural networks
in the brain [2, 20–22]. Three novel potential biomarkers
for ASD risk have been proposed by Bosl et al. [22], Duffy
and Als [13], and Pistorius et al. [23]. The review by Heu-
nis et al. [3] provides a detailed methodological compari-
son of these three novel rsEEG biomarkers.
In short, Bosl et al. [22] applied modified multiscale en-

tropy (MME) analysis to rsEEG data to compare infants at
high risk for ASD (HRA; defined as having an older sibling
with ASD) and typically developing (TD) infants. Accur-
acies of 80–100% were achieved with subsamples ranging
from 12 to 28 subjects in total, aged 6–9 months. Accuracy
declined from 12 to 24 months of age, likely reflecting that
subjects in the high risk group went on to develop more
typical brain function. The findings by Bosl et al. [22] were
criticised after publication, primarily given the knowledge
that only a modest proportion of infants at HRA will go on
to develop ASD. Critics therefore argued that, until the
HRA group had been confirmed to have or not to have
ASD at, for instance, the age of 3, no firm conclusions
about the MME rsEEG biomarker should be drawn [24].
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Duffy and Als [13] proposed spectral coherence analysis
(CA) as a biomarker for ASD. The sample population inves-
tigated comprised 430 children with a confirmed diagnosis
of ASD and 554 TD children aged 2–12 years. Analysis re-
vealed an average classification success of 86% for the ASD
group and 88.5% for the TD group. Improved performance
was noted for the more restricted age subsamples, poten-
tially reflecting age-related changes in rsEEG. The CA bio-
marker method appeared to be useful in the binary
categorical classification of ASD versus typical development,
but many clinical and analytical questions regarding bio-
marker development remained unanswered in this regard.
We previously proposed recurrence quantification ana-

lysis (RQA) of rsEEG as a novel biomarker of ASD risk [3,
23]. RQA is an emerging nonlinear data analysis technique
in the field of EEG applications. The technique is based
on the fundamental property of recurrence inherent to
complex systems such as the brain [25]. RQA of EEG sig-
nals has been successfully applied to discriminate between
sleep stages and to characterise different behaviours of
sleep EEG recordings in patients with sleep apnea syn-
drome [26], to assess the depth of anaesthesia [27] and in
the automated identification of epileptic EEG signals [21].
In our proof-of-principle study for ASD [23], we investi-
gated RQA in a sample of 7 ASD and 5 TD subjects, aged
8–17 years, with analysis of 12 best segments. Results
showed 83.3% accuracy, 85.7% sensitivity and 80% specifi-
city with a linear discriminant analysis (LDA) classifier
[23]. A further study, by a different group [28], used RQA
in search of a biomarker for ASD using 12 10-s segments
of a single channel of task-related EEG from a 20-year-old
participant with ASD and a 29-year-old TD individual.
The aim of this study was to conduct a replication and

extension of the proof-of-principle study in a larger sample,
and to investigate the robustness of the potential RQA bio-
marker in the context of a systematic methodological ex-
ploration of a number of technical and demographic
variables that may act as covariates or confounders. We set
out to refine biomarker parameters, to evaluate the bio-
marker against potential confounders such as age, sex and
intellectual ability, to determine the accuracy, sensitivity
and specificity, and to explore test-retest reliability of the
RQA biomarker. A clinical scenario of diagnosing an un-
seen subject was simulated using a leave-one-subject-out
classification approach. The novelty of this work therefore
lies in the multivariate application of RQA to rsEEG for the
early detection of ASD risk, and in the systematic evalu-
ation of potential technical and demographic confounders
on accuracy, sensitivity and specificity.

Methods
Recurrence analysis
A recurrence plot (RP) enables the visualisation of higher
dimensional phase spaces in a two-dimensional plot. The

visual appearance of a RP is used to characterise the under-
lying dynamics of a system. A recurrence event is calcu-
lated, according to Eq. 1, for each sample combination i
and j of time series x and a specified threshold distance ε
(neighbourhood size), and is stored in an N x N matrix
used to construct a RP [29]. In a RP at coordinates (i, j),
black dots are plotted when recurrence events (Ri, j ≡ 1)
occur, and white dots in the case of nonevents (Ri, j ≡ 0).

Ri; j ¼ 1 : xi−x j

�
�

�
�≤ε

0 : otherwise

�

i; j ¼ 1;…;N

ð1Þ

The application of RQA to RPs provides an objective
means of quantifying system dynamics. Several geometric
features can be extracted from RPs, such as recurrence
rate (RR; the probability that any state will recur), deter-
minism (DET; indicative of the predictability of the sys-
tem), entropy (ENTR; providing a measure of complexity
of the recurrence structure) and laminarity (LAM; the
probability that a state will not change for the next time
step). Marwan et al. [29] and Schinkel et al. [25] provide
further mathematical detail for RPs and RQA features.

Subjects
De-identified rsEEG data were obtained from Boston
Children’s Hospital, Harvard Medical School, Boston,
and the Semel Institute, University of California, Los
Angeles, USA [30]. The relevant ethics approval was ob-
tained to allow secondary analysis of this data; primary
data analysis was published by Peters et al. [30]. The
dataset comprised rsEEG from 16 non-syndromal ASD
participants, aged 2–6 years, and 46 TD participants,
aged 0–18 years. Age, sex and level of intellectual ability
(categorised as none, mild, severe or unknown) was
known for each subject. ASD diagnoses were made by
board-certified paediatric neurologists using the Diag-
nostic and Statistical Manual of Mental Disorders
(DSM-IV-TR), and in most cases included an Autism
Diagnostic Observation Schedule (ADOS) performed by
clinical or research-reliable administrators [30]. All chil-
dren in their study were assessed by full developmental
and neuropsychological assessment. For study purposes,
all clinical and neuropsychological data were combined
by the lead paediatric neurologist to make a categorical
classification of Intellectual Disability. TD subjects were
selected from the general neurology clinic at Boston
Children’s Hospital. Subjects who had been referred for
a single clinical event of moderate-to-low suspicion for
epilepsy (for instance, syncope, tics, behavioural out-
bursts, headache and prominent startle), but who
showed normal neurological development for age, had a
normal physical examination, had a normal EEG during
wakefulness and sleep, and had a clinical follow-up of at

Heunis et al. BMC Medicine  (2018) 16:101 Page 3 of 17



least 1 month to confirm the trivial nature of the EEG
referral, were included as control subjects [30].
The demographic characteristics and sample compos-

ition of the populations studied are summarised in
Table 1. It was possible to match subjects on a pair-wise
basis for age, but not for sex and intellectual ability.

EEG signal processing methodology
The EEG signal processing steps implemented are dis-
cussed according to a signal processing pipeline of data
acquisition, preprocessing, feature extraction and classi-
fication (Fig. 1). The review paper by Heunis et al. [3]
provides a general description of the steps in a typical
EEG signal processing pipeline.

Data acquisition
The full dataset comprised 16 ASD (mean age 4.06 years,
3:1 male to female ratio) and 46 TD subjects (mean age
7.94 years, 1:1.4 male to female ratio). EEG records were
collected retrospectively from either routine clinical EEG
recordings or long-term EEG monitoring with video.
Data from Boston Children’s Hospital were recorded
using either a Biologic recording system (256–512 Hz
sampling rate, 0.1–100 Hz band pass range) or a Natus
Neuroworks system (200 Hz sampling rate, 0.1–100 Hz
band pass range), using 19 standard electrodes for a clin-
ical setting (Fp2, Fp1, F4, F3, Fz, C4, C3, Cz, P4, P3, Pz,
F8, F7, T8, T7, P8, P7, O2, O1). Data from University of
California, Los Angeles were collected using a 128
Hydrocel Geodesic Sensor Net System (EGI, Inc.) and
NetAmps Amplifiers and NetStation software (250 Hz
sampling rate), and digitised with a National Instru-
ments Board (12 bit). All EEG systems used the 10–20
system for electrode placement.

Data pre-processing
Long segments of EEG data were clipped from the raw
EEG, and epochs containing many artefacts were re-
moved. The data were then notch filtered at 60 Hz,
resampled to 200 Hz and spatially down-sampled to the
standard clinical 19 electrodes (Fp2, Fp1, F4, F3, Fz, C4,
C3, Cz, P4, P3, Pz, F8, F7, T8, T7, P8, P7, O2, O1),
where relevant. Note that channels Fp1and Fp2 were ex-
cluded from further analysis as they primarily contain
ocular artefact information; a total of 17 EEG channels

were thus used in this multivariate analysis. An average
reference was created using the BESA Research 3.5 soft-
ware package. EEGLAB [31] was used to filter the data,
using an FIR filter (1–70 Hz). A paediatric neurologist
and board certified clinical neurophysiologist (JMP)
inspected the data, manually rejected artefact-ridden
epochs, and selected awake task-free data, of a minimum
of 2 min in length [30]. Muscle-contaminated epochs
were rejected where possible. Ocular artefact correction,
to remove eye blinks and lateral eye movements, was
performed using independent component analysis and
EEGLAB [30]. The next step was to extract all available
continuous 5-s segments per subject.

Feature extraction
Multivariate embedding was used to construct a phase
space representation of the EEG dynamics using the 17
EEG channels and Taken’s time delay embedding
method [32]. A multi-channel lagged trajectory matrix
was created per segment per subject, each column was
embedded separately with the same lag and dimension
and then all columns were horizontally concatenated to
form the multi-channel lagged trajectory matrix. All
available continuous 5-s segments per subject were used.
Dimensionality reduction of each multi-channel lagged
trajectory matrix was performed using principal compo-
nent analysis (PCA) [33]. Each principal component
score vector was used to reconstruct the attractor in a
multidimensional phase space. The Cross Recurrence
Plot MATLAB toolbox, developed by Marwan et al. [29],
was used to plot RPs and to extract 10 RQA features
from each of the multiple dimensionality reduced em-
bedded segment matrices per subject. The 10 RQA fea-
tures extracted were, as described above, RR, DET, mean
diagonal line length, longest diagonal line, ENTR, LAM,
trapping time, longest vertical line, recurrence time of
the 1st Poincaré recurrence (T1) and recurrence time
of the 2nd Poincaré recurrence (T2). A description of
each feature is summarised in Table 1 of the
proof-of-principle study by Pistorius et al. [23]. Statistical
significance of features was determined using the Kolmo-
gorov–Smirnoff and Wilcoxon rank sum tests (for distri-
bution and shape) on the training data features.
An iterative approach was used to identify the optimal

parameter and feature set combination. The combination

Table 1 Demographic characteristics and sample composition of populations studied

Description Subjects Number
of
segments

Age range (years) Mean age (years) Sex ratio (male:female)

ASD TD ASD TD ASD TD ASD TD

Full sample 16 46 4802 2–6 0–18 4.06 7.94 3:1 1:1.4

Subsample 16 19 1874 2–6 0–6 4.06 1.98 3:1 1:1.4

Age matched 7 7 666 2–6 2–6 3.96 3.93 2.5:1 1:1.3

ASD Autism spectrum disorder, TD typically developing
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that yielded the best classification performance was identi-
fied as optimal. Embedding lag, embedding dimension,
percentage variance to retain (PVR) after PCA dimension-
ality reduction and RQA neighbourhood size were evalu-
ated. The data from cross-validation run 1 and the
‘significant RQA feature set’ were used to determine the
optimal parameter values; these values were used for all
cross-validation runs.
Embedding lags of 15–25 were estimated using the first

minimum of the average mutual information index, evalu-
ated per channel. The corresponding optimal embedding
dimension for each channel was computed using the false
nearest neighbour method, using the Quick-Ident
MATLAB toolbox [34], and yielded a value of 10. The
choice of embedding parameters is a crucial decision in
reconstructing an attractor in a phase space. However, with
classification problems, or applications where one attempts
to distinguish different groups, the parameter choice is less
important, as long as the data are handled consistently. In
testing the sensitivity of the PVR parameter, a range of 10–
100 PVR with varying increments was evaluated. The
neighbourhood investigated for the detection of recurrence
events was defined using the maximum norm neighbour-
hood shape, the heuristic of ‘a few percent of the maximum
phase space diameter’ [25] was used to determine the
neighbourhood size. Neighbourhood sizes ranging from 2.0
to 4.0 in intervals of 0.1 were evaluated. The initial estimate
of the neighbourhood size was 3.0, taking into account the
abovementioned heuristic, findings from the Pistorius et al.
[23] study and visual inspection of the recurrence plots.

After identification of the optimal parameter values, the
optimal feature set was determined by performing feature
shuffle analysis in order to confirm that all features were
contributing useful discriminatory information to the clas-
sifiers for class membership prediction. This entailed shuf-
fling the test labels of each feature one-by-one, and also
all features at once, classifying the full feature set includ-
ing the relevant feature(s) with shuffled labels, and then
comparing the classification performance achieved with
the shuffled feature sets to that of the unshuffled feature
set. Further, each feature was classified one-by-one and
ranked in order of feature importance. The optimal fea-
ture set was then determined by adding one feature at a
time to the set in order of decreasing importance. The fea-
tures required to achieve the best classification perform-
ance were identified as the optimal set.
For the purpose of this study, we chose to only include

the statistically significant RQA features. However, this de-
cision is questionable, as a feature may not be statistically
significant between groups, but in combination with other
features it may allow for clearer group distinction after
classification. In an attempt to address some of the clinical
challenges identified by Heunis et al. [3], we were able to
investigate age and sex as covariates, given the limitations
of the available data. The various feature sets tested were
all significant RQA features (‘RQA’), combinatorial feature
sets including the significant RQA features and demo-
graphic features (‘RQA+ age’, ‘RQA+ sex’, ‘RQA+ age +
sex’) and demographic features without RQA features
(‘age’, ‘sex’ and ‘age + sex’). With the 10-fold cross-validation

Fig. 1 EEG signal processing methodology

Heunis et al. BMC Medicine  (2018) 16:101 Page 5 of 17



analyses, two feature set options were investigated – fea-
ture set 1 comprising all statistically significant RQA
features, and feature set 2 comprising all statistically
significant RQA and demographic features (including
age and sex).

Classification
Two classification approaches were implemented, namely
10-fold cross-validation and a leave-one-out (or
leave-one-subject-out) approach. The cross-validation ap-
proach was used to optimise the parameter values, after
which the leave-one-out approach was used to validate
the cross-validation classification results and to simulate a
clinical scenario and evaluate the outcome of ‘diagnosing’
a new/unseen subject. For the cross-validation approach, a
total of 10 training and 10 test datasets were created. Each
training and test dataset comprised a random selection of
70% training data and 30% test data from each subject.
For the leave-one-out approach, considering the
age-matched sample with 14 subjects (Table 1), 14 train-
ing and 14 test datasets were created. Each training data-
set comprised 13 subjects, with a different test subject’s
data being assigned to the test dataset with each of the 14
leave-one-out runs. Training and test data were

standardised (mean of zero and standard deviation of one)
as required. Three classification algorithms were imple-
mented using MATLAB, namely LDA, a multilayer per-
ceptron (MLP) neural network with nine nodes in one
hidden layer, using the scaled conjugate gradient backpro-
pagation training algorithm, and a support vector machine
(SVM) with a nonlinear radial basis function kernel. Ac-
curacy, sensitivity, specificity, sample size, number of seg-
ments and sample composition (the proportion of
segments within each group) within the training and test
data are reported in order to allow meaningful interpret-
ation of the classification performance results.

Sample population analysis
A full sample, subsample and age-matched sample were
evaluated (Fig. 2). The reasons for conducting the ana-
lyses in this way are discussed in the results section.

Results
Full sample: cross-validation approach
The optimal parameter set identified was comprised of
an embedding lag of 25, embedding dimension of 10,
PVR of 22.12 (equivalent to six principal components
(PCs)) and a neighbourhood size of 3.0. Figure 3

Fig. 2 Progress loop of sample population analysis
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provides an illustration of the classification accuracy
achieved with the different feature sets for each of the
classifiers investigated. The MLP classification results
showed 96.18% accuracy with the ‘RQA’ feature set, and
99.08% accuracy with the combinatorial feature set
‘RQA + age + sex’. It seemed that age and sex were useful
covariates in combination with the RQA feature set,
contributing to increased classification accuracy. How-
ever, classification of the demographic features alone
and in combination revealed 98.3% accuracy with ‘age’,
93.92% with ‘sex’ and 98.66% with ‘age + sex’. Given that
age and sex in a random sample would not predict ASD
or TD group membership, these spurious results were
suggestive of a sample bias. To address this sample arte-
fact, a subsample of all subjects younger than age 6 years
was selected for further analysis. A further observation
made in the full sample was that 93.9% of the test data
rsEEG segments were TD and 6.1% ASD. To avoid mis-
interpretation of the classification results, in the sub-
sample, an equal number of test segments per group
were used for analysis such that there was a 50/50
chance for the classifier to guess group membership
correctly.

Subsample: cross-validation approach
The optimal parameter set identified was comprised of
an embedding lag of 25, embedding dimension of 10,
PVR of 12.60 (equivalent to three PCs) and a neighbour-
hood size of 3.0. Figure 4 illustrates the classification ac-
curacy achieved for the different feature sets and
classifiers evaluated. The SVM classifier results are re-
ported here, given that the SVM classifier achieved the
highest accuracy of 86.63% on the ‘RQA’ feature set

alone; 96.51% was achieved with the ‘RQA + age + sex’
feature set, 83.72% with ‘age’, 66.28% with ‘sex’, and
88.37% with ‘age + sex’. Given the distribution of age and
sex within the subsample, the demographic features
were still sufficient to classify ASD and TD subjects with
higher accuracy than that achieved with the ‘RQA’ fea-
ture set. Sample bias therefore remained a problem. To
address this, the next step was to analyse a matched
sample. In addition, ages were rounded down to prevent
the classifiers from predicting group membership based
on exact age values encountered in the training data, e.g.
5.25 years and 5.41 years were both rounded down to
5 years.

Age-matched sample: cross-validation approach
An embedding lag of 25, embedding dimension of 10,
PVR of 30.09 (equivalent to 10 PCs) and a neighbour-
hood size of 2.9 were identified as optimal. This neigh-
bourhood size amounted to approximately 6.7% of the
average maximum phase space size (of 43.13) achieved
for all cross-validation runs.
A summary of the mean and standard deviation values,

along with the p values of the Kolmogorov–Smirnoff and
Wilcoxon rank sum statistical tests conducted for the op-
timal feature set for cross-validation run 1 is provided in
Table 2. It is important to keep in mind that, with each
cross-validation run, a different random 70/30 split of
training and test data was made, and possibly a different
statistically significant feature set was identified. The clin-
ical implication is that, once a robust range has been iden-
tified for each group within an ASD and TD sample, new/
unseen subjects can be ‘diagnosed’ as ‘at risk for ASD’ or

Fig. 3 Classification accuracy of different feature sets for full sample cross-validation run 1
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‘TD’ depending on the range of values in which the newly
extracted RQA features fall.
Classification accuracy results are depicted in Fig. 5.

The SVM classification results for the first cross valid-
ation run showed 93.94% accuracy with the ‘RQA’ fea-
ture set, 90.91% with ‘RQA + age + sex’, 53.03% with ‘age’,
63.64% with ‘sex’ and 63.64% with ‘age + sex’. The use of
an age-matched sample with rounded down ages there-
fore significantly minimised the previously achieved
spurious results highlighted above.
Figure 6 provides an illustration of the generalisation per-

formance (accuracy, sensitivity and specificity) achieved
with each of the classifiers on feature set 1 (significant RQA
features) and feature set 2 (all significant features, RQA and
demographic). Both sensitivity and specificity measures are
important – an ideal diagnostic test would be 100% sensi-
tive and 100% specific, whereas a good screening tool may
be more sensitive than specific. The SVM showed the best

generalisation performance, with acceptable sensitivity and
specificity. Feature set 1 comprised 6 RQA features, and
feature set 2 comprised 6 RQA features plus sex. With
addition of sex, the SVM accuracy increased from 93.94%
to 95.46%, sensitivity increased from 90.91% to 93.94%, and
specificity remained constant at 96.97%.
The 10-fold cross-validation results (Fig. 7) revealed

that classification of feature set 1 (all statistically signifi-
cant RQA features) outperformed that of feature set 2
(all statistically significant RQA and demographic fea-
tures). A mean classification accuracy of 87.27% was
achieved with LDA, 86.67% with the MLP, and 85% with
the SVM, with feature set 1.
The feature shuffle analysis results (Fig. 8) show that

LAM was the most important feature to all three classi-
fiers, as can be seen by the prominent drop in classifica-
tion accuracy when the test feature set with shuffled
labels for LAM was classified. This feature is indicative

Fig. 4 Classification accuracy of different feature sets for subsample cross-validation run 1

Table 2 Summary of feature set 1 for age-matched sample cross-validation run 1

Feature ASD (mean ± standard deviation) TD (mean ± standard deviation) Kolmogorov–Smirnoff test (p value) Wilcoxon rank sum test (p value)

RR 0.683 ± 0.0134 0.6756 ± 0.0109 < 0.0001 < 0.0001

DET 0.98 ± 0.0052 0.9858 ± 0.0043 < 0.0001 < 0.0001

ENTR 3.0956 ± 0.1553 3.1785 ± 0.1544 < 0.0001 0.0001

LAM 0.9861 ± 0.0038 0.9911 ± 0.0031 < 0.0001 < 0.0001

T1 1.4548 ± 0.0285 1.4725 ± 0.0245 < 0.0001 < 0.0001

T2 17.78 ± 2.738 19.57 ± 3.4224 < 0.0001 < 0.0001

ASD Autism spectrum disorder, DET determinism, ENTR entropy, LAM laminarity, RR recurrence rate, T1 recurrence time of the first Poincaré recurrence, T2
recurrence time of the second Poincaré recurrence, TD typically developing
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Fig. 5 Classification accuracy of different feature sets for age-matched sample cross-validation run 1

Fig. 6 Generalisation performance for age-matched sample cross-validation run 1
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of the occurrence of laminar states, i.e. the probability
that a state will not change for the next time step. Each
of the six significant RQA features was important to the
SVM classifier, evident from the drop in classification
accuracy for each case. Upon shuffling the test labels of
all six significant RQA features at once, an accuracy of
approximately 50% was achieved, confirming that all

features were contributing significant discriminatory in-
formation to the classifiers.
Classification of the individual features with the SVM

showed 78.79% with LAM, 78.79% with DET, 69.70% with
ENTR, 65.15% with T2, 62.12% with RR and 59.09% with
T1. Identification of the optimal feature subset revealed
that the highest classification accuracy was achieved when

Fig. 7 Cross-validation performance for the (a) linear discriminant analysis (LDA), (b) multilayer layer perceptron (MLP) and (c) support vector
machine (SVM) classifiers

Fig. 8 Feature shuffle analysis of feature set 1 for age-matched sample cross-validation run 1
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including all six of the statistically significant RQA fea-
tures (Fig. 9). In this figure ‘1 RQA’ represents the LAM
feature, ‘2 RQA’ represents LAM+DET, …, and ‘6 RQA’
represents LAM+DET + ENTR + T2 + RR +T1.
The optimal RQA feature subset comprised six RQA fea-

tures, representing a point (or state) in a six-dimensional
feature space. PCA was used to enable visualisation of this
multi-dimensional feature space by projecting the data to a
2D and 3D PC subspace. It is important to keep in mind
that PCA is not optimised for class separation in a
low-dimensional representation of the data, instead, it
linearly transforms the data to a new set of orthogonal axes
for which each subsequent component attempts to account
for the maximum remaining variance in the data.
Figures 10 and 11 provide 2D and 3D representations of
the data for cross-validation run 1 in the PC subspace, ac-
counting for approximately 94% and 99% of the variance in
the data, respectively. PC directions were determined based
on the training data features; test data features were then
projected to this PC subspace. In the 2D representation of
the feature space, it is difficult to visually distinguish the
ASD and TD groups, but in the 3D representation, the
separation becomes clearer. There appears to be some
overlap present in samples from both groups.
Test-retest reliability per subject was investigated. In

classification analyses, the ‘majority vote’ is often used to
identify the predicted label of a test case. This was quan-
tified with a 50% threshold. In the case where 50% or
more was achieved in repeatability accuracy for all seg-
ments correctly classified per subject, the subject was
considered to be correctly identified. The SVM classifier
identified 4 out of 7 ASD and 6 out of 7 TD subjects
with 100% accuracy. Both LDA and SVM classifiers
yielded similar overall repeatability performance with the

correct identification of all segments from 10 out of 14
subjects (Fig. 12).

Age-matched sample: leave-one-subject-out
The optimal parameter and feature set identified
using the first cross validation run was used. A neigh-
bourhood size of 2.9 was equivalent to 6.7% of the
average maximum phase space size across all 14
leave-one-subject-out runs. The MLP and SVM classi-
fiers achieved 92.86% accuracy (13/14 subjects cor-
rectly identified) with full feature set 1, with the SVM
classifier being more sensitive and the MLP classifier
more specific (Fig. 13). The SVM classifier achieved
100% sensitivity (7/7 ASD subjects correctly identi-
fied) and 85.71% specificity (6/7 TD subjects correctly
identified), whilst the MLP classifier achieved 85.71%
sensitivity (6/7 ASD subjects correctly identified) and
100% specificity (7/7 TD subjects correctly identified).
Sensitivity and specificity measures are equally im-
portant, but considering the implementation of a
screening test, provided two classifier options, the
classifier with the higher sensitivity would be chosen,
the argument being that it is safer to refer a ‘TD’ per-
son for a second step to confirm a diagnosis, rather
than to send away an ‘ASD’ person who will then fail
to receive any intervention because of being consid-
ered ‘TD’. The SVM classifier would thus be most ap-
propriate for this application. Figure 14 shows that
test-retest reliability remained a challenge. The larger
number of TD segments could have biased the classi-
fiers towards the TD class, but the results suggest
that this effect was negligible, as the misclassification
of the ASD subjects was insignificant.

Fig. 9 Optimal feature subset identification for age-matched sample cross-validation run 1
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Fig. 11 Visualisation of the feature space in a 3D principal component (PC) subspace, (a) training features and (b) test features for age-matched
sample cross-validation run 1

Fig. 10 Visualisation of the feature space in a 2D principal component (PC) subspace, (a) training features and (b) test features for age-matched
sample cross-validation run 1
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Fig. 13 Generalisation performance for age-matched sample leave-one-subject-out analysis

Fig. 12 Repeatability analysis for the (a) linear discriminant analysis (LDA), (b) multilayer layer perceptron (MLP) and (c) support vector machine
(SVM) classifiers for age-matched sample cross-validation run 1
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Discussion
Early identification and diagnosis of ASD is a challenge
worldwide, but particularly so in low-resource environ-
ments. There is a great demand for screening tools to
identify infants and children at risk of ASD that do not
require highly trained professionals and that are ‘lan-
guage free and culturally fair’ [3, 9–11, 19]. Here, we
evaluated RQA of rsEEG as a potential novel biomarker
for ASD risk given its ability to perform multivariate

analysis of short, nonlinear and nonstationary segments
of rsEEG. Given the existing challenges of potential con-
founders to biomarkers for ASD and related neurodeve-
lopmental disorders, we deliberately set out to scrutinise
the biomarker against three key potential confounders of
age, sex and intellectual ability.
The analysis progressed stepwise from a full sample,

comprising 4802 5-s segments of rsEEG data from 62 sub-
jects, stepwise, to an age-matched sample, comprising 666

Fig. 14 Repeatability analysis for the (a) linear discriminant analysis (LDA), (b) multilayer layer perceptron (MLP) and (c) support vector machine
(SVM) classifiers for age-matched sample leave-one-subject-out analysis
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segments from 14 subjects, in order to examine and elim-
inate possible confounding effects such as sample bias,
mismatched number of test segments and unrounded ages.
In the final age-matched sample, the RQA biomarker
showed good accuracy, sensitivity and specificity in distin-
guishing ASD and TD subjects. The SVM classifier showed
robust performance on the significant RQA feature set,
with 92.86% accuracy, 100% sensitivity and 85.71% specifi-
city using a leave-one-subject-out approach, which simu-
lates the clinical scenario of diagnosing an unseen subject.
Age, sex and intellectual ability were confirmed as con-
founders. Consistent repeatability, i.e. the correct identifi-
cation of all segments per subject, was found to be a
challenge.
The results presented herein highlight various obsta-

cles to be considered when performing classification
analyses. In assessing classification performance, it is im-
portant to report not only accuracy, but also sensitivity,
specificity, sample size and sample composition (the
proportion of samples within each group) within the
training and test data sets. As illustrated here, in the full
sample, 93.9% of the test data belonged to TD subjects.
With classification of this sample, a classifier would have
been able to correctly predict group membership 93.9%
of the time by merely guessing that all segments
belonged to the TD group. Consideration of the accur-
acy alone would yield apparent good performance, but
sensitivity (with respect to the correction identification
of ASD subjects) would have been zero. Statistical sig-
nificance testing of the identified features, showing
mean ± standard deviation values and p values, can pro-
vide further support to confirm classification results. A
full sensitivity analysis on parameter selection will pro-
vide an additional measure of robustness.
Results showed that investigation of age as a covariate,

using exact age values (e.g. 5.25) in a small sample, led
to the finding that age was a good predictor in distin-
guishing ASD and TD subjects. In a population-based
random sample, age should not be a predictor of ASD or
TD. By rounding down the ages, this confounding effect
was eliminated. It is vital that biomarker performance is
assessed in well-matched samples where possible con-
founding factors, such as age, sex and intellectual dis-
ability, are carefully controlled for.
Keeping in mind the ultimate goal of biomarker transla-

tion into clinical practice, an important next step would
be to establish a reliable repeatability accuracy threshold
when evaluating several segments per subject to make a
prediction of ‘at risk for ASD’ or not. Furthermore, it
would be important to investigate the possible causes of
poor test-retest reliability, such as artefact contamination,
and to evaluate whether or not the use of different EEG
data acquisition systems has any significant effect on the
features extracted. It is beyond the scope of this study to

speculate how the RQA features are associated with
underlying neurophysiological phenomena.
Recently, Bosl et al. [35, 36] applied RQA and MME

methodologies in a study of ASD and absence epilepsy
and for early identification of children at risk of ASD as
an elaboration of their earlier work [22]. They proposed
that RQA methods may indeed be useful as biomarkers
for ASD, thus replicating our earlier proof-of-principle
findings [23]. However, they did not elaborate on tech-
nical and other potential confounders, such as sex or in-
tellectual ability, in their work. In this study, we
explored the utility of RQA to differentiate between
ASD and typical development when neither group had
any seizure disorders. The novelty of this current study
lies in the replication and extension of the
proof-of-principle study [23] in a larger sample, and to
investigate the robustness of the RQA biomarker in
the context of a number of clinical variables that may
act as covariates or confounders [3]. Further unique
contributions of this manuscript are (1) that a
leave-one-subject-out classification approach was
followed, simulating the clinical scenario of ‘diagnos-
ing’ an unseen subject, and (2) a test-retest reliability
analysis was performed, determining the accuracy of
correctly classifying several segments per subject. Bosl
et al. [35] did not implement a leave-one-subject-out
classification approach (they implemented 10-fold
cross validation), and they also did not investigate
test-retest reliability (they analysed only a single seg-
ment per subject). Bosl et al. [35] analysed a single
30-s segment from 91 subjects, amounting to a total
of 91 segments. We analysed a total of 666 5-s
segments from 14 subjects.
A head-to-head comparison of the three proposed bio-

marker methods, MME, CA and RQA, on a common
dataset may generate empirical evidence for a direct
comparison to be made on biomarker performance. In
order to replicate the exact methodologies reported in
the literature, it is important that clear guidelines on
technique selection, parameter choice, and method im-
plementation be published alongside the results in a
paper. It is also necessary to include details of the inclu-
sion, exclusion and matching criteria implemented, the
demographic distribution within the sample, and statis-
tical testing for possible confounding factors.

Conclusions
RQA may be an accurate, sensitive and specific bio-
marker to identify children at risk of ASD. In particular,
the leave-one-subject-out method that mirrors a clinical
decision (classification) supports this. A key aspect for a
biomarker is that it should be able to classify individual
cases, not groups of cases, which is the case for so many
biomarkers currently proposed for ASD. However, given
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the heterogeneous nature of ASD, it will be important
for future studies to show not only differentiation be-
tween ASD and TD, but also differentiation of ASD
from other neurodevelopmental disorders, and poten-
tially syndromal from non-syndromal ASD.
It is clear that biomarker development is complex

since various methodological, demographic, clinical and
technical factors need to be taken into consideration.
The results from this study highlight the importance of
considering age, sex and intellectual ability as possible
confounders or covariates in biomarker studies. The
RQA biomarker may be a robust and reliable ‘language
free, culturally fair’ technology-based solution for global
screening in ASD; however, a number of challenges re-
main to be explored. It will be important to validate this
biomarker in a well-matched larger sample population
of infants and children, preferably from a low-resource
setting. It will also be important that the biomarker can
be computed rapidly, rather than through a computa-
tionally intensive approach.
Even if we were to identify a rsEEG screening tool for

ASD, many further challenges will be faced with the im-
plementation of such a tool in low-resource settings.
Low cost, battery-powered and wireless EEG recording
devices and equipment with offline analysis and storage
capacity, as well as easily available ‘read-outs’ will be re-
quired. Just as important, even if the above implementa-
tion challenges are resolved, infants/children identified
to be at-risk will then need to be directed to appropriate
clinical diagnostic and intervention services, which could
be difficult to access in low- and middle-income coun-
tries and other low-resource environments.

Abbreviations
ADOS: Autism diagnostic observation schedule; ASD: Autism spectrum
disorder; CA: Coherence analysis; DET: Determinism; DSM-IV-TR: Diagnostic
and statistical manual of mental disorders; EEG: Electroencephalography;
ENTR: Entropy; HRA: High risk for autism; LAM: Laminarity; LDA: Linear
discriminant analysis; M-CHAT: Modified checklist for autism in toddlers;
MLP: Multilayer layer perceptron; MME: Modified multiscale entropy;
PC: Principal component; PCA: Principal component analysis; PVR: Percentage
variance to retain; RP: Recurrence plot; RQA: Recurrence quantification
analysis; RR: Recurrence rate; rsEEG: Resting state electroencephalography;
SVM: Support vector machine; T1: Recurrence time of the first Poincaré
recurrence; T2: Recurrence time of the second Poincaré recurrence;
TD: Typically developing

Acknowledgements
We acknowledge the financial assistance of the National Research
Foundation (NRF) to TH towards this research. The opinions expressed and
conclusions arrived at are those of the authors and are not to be necessarily
attributed to the NRF. Financial assistance of the Oppenheimer Memorial
Trust and the Harry Crossley Foundation to TH are also hereby acknowledged.
Additional funding was provided by the University of Cape Town, National
Research Foundation and Struengmann Fund to PJdV.

Funding
TH was supported by the National Research Foundation (NRF), Oppenheimer
Memorial Trust and the Harry Crossley Foundation. PJdV was supported by
the NRF and the Struengmann Fund.

Availability of data and materials
Data are available from SSJ, JMP and MS on request.

Authors’ contributions
TH and CA generated the idea of RQA as biomarker for ASD. TH performed
the proof-of-concept work. TH, CA, CS and PJdV designed the replication
study. TH performed the data analysis supported by CA and generated the
first draft of the manuscript. JMP, SSJ and MS provided data for the study
and contributed to the interpretation of the data. All authors contributed to
writing and reviewing the manuscript and approved the final manuscript.

Ethics approval and consent to participate
De-identified rsEEG data were obtained from Boston Children’s Hospital,
Harvard Medical School, Boston, USA. These data were a clinical collection of
EEG’s for a protocol entitled, “Risk factors for poor outcome in tuberous
sclerosis”. IRB/ethics approval at the host institute included a ‘waiver of
consent’ to allow sharing of data with collaborators without seeking further
consent from participants. Participants therefore consented to ‘de-identified’
data being used. Data collection and analysis for this study had already been
completed, and results were published by Peters et al. [30]. Ethics approval
for the secondary analysis of this data was obtained from both Tygerberg
Health Research Ethics Committee (reference # S14/06/128) and the
University of Cape Town Human Research Ethics Committee (reference #
865/2014).

Competing interests
CA, JMP, SSJ, MS and PJdV report no conflicts of interest in relation to the
work presented here. TH was the developer of the RQA biomarker method
[23]. However, she does not have any financial conflicts of interest in relation
to the method, which was published in an open-access, peer-reviewed
publication [23].

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Mechanical and Mechatronic Engineering, Stellenbosch
University, Stellenbosch, South Africa. 2Division of Child and Adolescent
Psychiatry, University of Cape Town, 46 Sawkins Road, Rondebosch 7700,
South Africa. 3Department of Mining Engineering and Metallurgical
Engineering, Western Australian School of Mines, Curtin University, Perth,
Australia. 4Department of Process Engineering, Stellenbosch University,
Stellenbosch, South Africa. 5Division of Epilepsy and Clinical
Neurophysiology, Department of Neurology, Boston Children’s Hospital,
Boston, USA. 6Semel Institute of Neuroscience and Human Behavior, David
Geffen School of Medicine, University of California Los Angeles, California,
USA. 7Translational Neuroscience Center, Department of Neurology, Boston
Children’s Hospital and Harvard Medical School, Boston, USA.

Received: 31 July 2017 Accepted: 23 May 2018

References
1. Walsh P, Elsabbagh M, Bolton P, Singh I. In search of biomarkers for autism:

scientific, social and ethical challenges. Nat Rev Neurosci. 2011;12:603–12.
2. Jeste SS, Frohlich J, Loo SK. Electrophysiological biomarkers of diagnosis and

outcome in neurodevelopmental disorders. Curr Opin Neurol. 2015;28:110–6.
3. Heunis T, Aldrich C, de Vries PJ. Recent advances in resting-state

electroencephalography biomarkers for autism Spectrum disorder-a review
of methodological and clinical challenges. Pediatr Neurol. 2016;61:28–37.

4. Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D, Charman T.
Prevalence of disorders of the autism spectrum in a population cohort of
children in South Thames: the special needs and autism project (SNAP).
Lancet. 2006;368:210–5.

5. Kim YS, Leventhal BL, Koh Y, Fembonne E, Laska E, Lim E, Cheon K, Kim S,
Kim Y, Lee H, et al. Prevalence of autism spectrum disorders in a total
population sample. Am J Psychiatr. 2011;168:904–12.

6. Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcín C, Montiel-Nava C,
Patel V, Paula CS, Wang C, et al. Global prevalence of autism and other
pervasive developmental disorders. Autism Res. 2012;5:160–79.

Heunis et al. BMC Medicine  (2018) 16:101 Page 16 of 17



7. American Psychiatric Association. DSM-5 Task Force. Diagnostic and
Statistical Manual of Mental Disorders: DSM-5. 5th ed. Washington, D.C.:
American Psychiatric Publishing; 2013.

8. Developmental Disabilities Monitoring Network Surveillance Year 2010
Principal Investigators, Centers for Disease Control and Prevention. Prevalence
of autism spectrum disorder among children aged 8 years - autism and
developmental disabilities monitoring networks, 11 sites, United States, 2010.
MMWR Surveill Summ. 2014;63:1–21.

9. Tomlinson M, Swartz L. Imbalances in the knowledge about infancy: the divide
between rich and poor countries. Infant Mental Health J. 2003;24:547–56.

10. de Vries PJ. Thinking globally to meet local needs: autism spectrum
disorders in Africa and other low-resource environments. Curr Opin Neurol.
2016;29:130–6.

11. Franz L, Chambers N, von Isenburg M, de Vries PJ. Autism spectrum
disorder in sub-Saharan Africa: a comprehensive scoping review. Autism
Res. 2017;10:723–49.

12. Crane JL, Winsler A. Early autism detection: implications for pediatric
practice and public policy. J Disability Policy Studies. 2008;18:245–53.

13. Duffy FH, Als H. A stable pattern of EEG spectral coherence distinguishes
children with autism from neuro-typical controls - a large case control
study. BMC Med. 2012;10:64.

14. van Tongerloo MA, Bor HH, Lagro-Janssen AL. Detecting autism spectrum
disorders in the general practitioner's practice. J Autism Dev Disord. 2012;
42:1531–8.

15. Voos AC, Pelphrey KA, Tirrell J, Bolling DZ, Vander Wyk B, Kaiser MD,
McPartland JC, Volkmar FR, Ventola P. Neural mechanisms of improvements
in social motivation after pivotal response treatment: two case studies.
J Autism Dev Disord. 2013;43:1–10.

16. Robins DL, Fein D, Barton ML, Green JA. The modified checklist for autism in
toddlers: an initial study investigating the early detection of autism and
pervasive developmental disorders. J Autism Dev Disord. 2001;31:131–44.

17. Johnson CP, Myers SM, American Academy of Pediatrics Council on
Children with Disabilities. Identification and evaluation of children with
autism spectrum disorders. Pediatrics. 2007;120:1183–215.

18. Kleinman JM, Robins DL, Ventola PE, Pandey J, Boorstein HC, Esser EL,
Wilson LB, Rosenthal MA, Sutera S, Verbalis AD, et al. The modified checklist
for autism in toddlers: a follow-up study investigating the early detection of
autism spectrum disorders. J Autism Dev Disord. 2008;38:827–39.

19. Durkin MS, Elsabbagh M, Barbaro J, Gladstone M, Happe F, Hoekstra RA, Lee
LC, Rattazzi A, Stapel-Wax J, Stone WL, et al. Autism screening and diagnosis
in low resource settings: challenges and opportunities to enhance research
and services worldwide. Autism Res. 2015;8:473–6.

20. Natarajan A, Acharya UR, Alias F, Tiboleng T, Puthusserpady SK. Nonlinear
analysis of EEG signals at different mental states. J Biomed Eng Online.
2004;3:7.

21. Acharya UR, Sree SV, Chattopadhyay S, Yu W, ANG PCA. Application of
recurrence quantification analysis for the automated identification of
epileptic EEG signals. Int J Neural Syst. 2011;21:199–211.

22. Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a
biomarker for autism spectrum disorder risk. BMC Med. 2011;9:18.

23. Pistorius T, Aldrich C, Auret L, Pineda J. Early detection of risk of autism
spectrum disorder based on recurrence quantification analysis of
electroencephalographic signals. In: IEEE, 6th International IEEE/EMBS
Conference on Neural Engineering (NER). San Diego: IEEE; 2013. p. 198–201.
https://ieeexplore.ieee.org/document/6695906/. Accessed 30 Nov 2015.

24. Griffin R, Westbury C. Infant EEG activity as a biomarker for autism: a
promising approach or a false promise? BMC Med. 2011;9:61.

25. Schinkel S, Dimigen O, Marwan N. Selection of recurrence threshold for
signal detection. Eur Phys J Special Topics. 2008;164:45–53.

26. Song IH, Lee DS, Kim SI. Recurrence quantification analysis of sleep
electoencephalogram in sleep apnea syndrome in humans. Neurosci Lett.
2004;366:148–53.

27. Becker K, Schneider G, Eder M, Ranft A, Kochs EF, Zieglgänsberger W, Dodt
HU. Anaesthesia monitoring by recurrence quantification analysis of EEG
data. PLoS One. 2010;5:e8876.

28. Bhat S, Acharya UR, Adeli H, Bairy GM, Adeli A. Automated diagnosis of
autism: in search of a mathematical marker. Rev Neurosci. 2014;25:851–61.

29. Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis
of complex systems. Phys Rep. 2007;438:237–329.

30. Peters JM, Taquet M, Vega C, Jeste SS, Fernández IS, Tan J, Nelson CA, Sahin
M, Warfield SK. Brain functional networks in syndromic and non-syndromic
autism: a graph theoretical study of EEG connectivity. BMC Med. 2013;11:54.

31. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis.
J Neurosci Methods. 2004;134:9–21.

32. Takens F. Detecting strange attractors in turbulence. Lecture Notes in
Mathematics. 1981;898:366–81.

33. Aldrich C. Exploratory analysis of metallurgical process data with neural
networks and related methods. The Netherlands: Elsevier; 2002.

34. Barnard J, Aldrich C. Quick-Ident Toolbox. Stellenbosch: Centre of Process
Monitoring; 2002.

35. Bosl WL, Loddenkemper T, Nelson CA. Nonlinear EEG biomarker profiles for
autism and absence epilepsy. Neuropsychiatric Electrophysiology. 2017;3:1.

36. Bosl WL, Tager-Flusberg H, Nelson CA. EEG analytics for early detection of
autism spectrum disorder: a data-driven approach. Sci Rep. 2018;8:6828.

Heunis et al. BMC Medicine  (2018) 16:101 Page 17 of 17

https://ieeexplore.ieee.org/document/6695906/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Recurrence analysis
	Subjects
	EEG signal processing methodology
	Data acquisition
	Data pre-processing
	Feature extraction
	Classification
	Sample population analysis

	Results
	Full sample: cross-validation approach
	Subsample: cross-validation approach
	Age-matched sample: cross-validation approach
	Age-matched sample: leave-one-subject-out

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	Author details
	References

