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Abstract

Background: Mathematical transmission models are increasingly used to guide public health interventions for
infectious diseases, particularly in the context of emerging pathogens; however, the contribution of modeling to
the growing issue of antimicrobial resistance (AMR) remains unclear. Here, we systematically evaluate publications
on population-level transmission models of AMR over a recent period (2006-2016) to gauge the state of research
and identify gaps warranting further work.

Methods: We performed a systematic literature search of relevant databases to identify transmission studies of AMR
in viral, bacterial, and parasitic disease systems. We analyzed the temporal, geographic, and subject matter trends,
described the predominant medical and behavioral interventions studied, and identified central findings relating to
key pathogens.

Results: We identified 273 modeling studies; the majority of which (> 70%) focused on 5 infectious diseases
(human immunodeficiency virus (HIV), influenza virus, Plasmodium falciparum (malaria), Mycobacterium tuberculosis
(TB), and methicillin-resistant Staphylococcus aureus (MRSA)). AMR studies of influenza and nosocomial pathogens
were mainly set in industrialized nations, while HIV, TB, and malaria studies were heavily skewed towards
developing countries. The majority of articles focused on AMR exclusively in humans (89%), either in community
(58%) or healthcare (27%) settings. Model systems were largely compartmental (76%) and deterministic (66%). Only
43% of models were calibrated against epidemiological data, and few were validated against out-of-sample
datasets (14%). The interventions considered were primarily the impact of different drug regimens, hygiene and
infection control measures, screening, and diagnostics, while few studies addressed de novo resistance, vaccination
strategies, economic, or behavioral changes to reduce antibiotic use in humans and animals.

Conclusions: The AMR modeling literature concentrates on disease systems where resistance has been long-
established, while few studies pro-actively address recent rise in resistance in new pathogens or explore upstream
strategies to reduce overall antibiotic consumption. Notable gaps include research on emerging resistance in
Enterobacteriaceae and Neisseria gonorrhoeae; AMR transmission at the animal-human interface, particularly in
agricultural and veterinary settings; transmission between hospitals and the community; the role of environmental
factors in AMR transmission; and the potential of vaccines to combat AMR.
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Background

Antibiotics are commonly regarded as one the greatest dis-
coveries of the twentieth century; however, antibiotic or
antimicrobial resistance (AMR) is now a significant threat
to global health. According to a World Health Organization
(WHO) global report [1], healthcare-acquired infections
(HCAI) with AMR pathogens such as methicillin-resistant
Staphyloccus aureus are a serious problem in high- and
middle-income countries where surveillance is well estab-
lished. There are also indications that the prevalence of
HCAIs in low-income countries may be greater than in
higher-income regions, although epidemiological data are
scarce [1, 2]. In addition to the threat posed by HCAIs,
low-income countries need to contend with the emergence
of drug resistance to long-standing pathogens, namely
human immunodeficiency virus (HIV), tuberculosis (TB),
and Plasmodium parasites (malaria) [1].

There is an abundance and diversity of sources of drug
pressure favoring the emergence of AMR (Fig. 1) [1, 3, 4].
Antimicrobials produced by pharmaceutical manufacturers
are distributed widely across a diverse array of industries and
applications. Unnecessary or suboptimal use of antimicro-
bials in humans and animals for medical or prophylactic pur-
poses can promote AMR. Antimicrobial use in animals for
growth promotion and intensive crop farming also facilitate
evolution of AMR organisms, which can then enter the food
chain. Other nonmedical uses of antimicrobials include in-
dustrial manufacturing (anti-fouling paint, detergents, etha-
nol production, food preservations, etc.). Solid or liquid
waste contaminated with either AMR organisms or antimi-
crobials from these many sources may then enter municipal
sewer systems or waterways. Thus, antimicrobial release
from pharmaceutical manufacturers and non-pharmaceutical
industries, combined with human and agricultural use, can
lead to contamination of the soil and water [3, 4].

Once primary antimicrobial resistance arises in an or-
ganism, it can spread through numerous routes, both
within hosts (e.g., via plasmids or mobile elements that
are common in bacterial genomes) and between hosts, or
via contaminated environment (Fig. 1). There are multiple
recognized routes of transmission of AMR pathogens
from agricultural farms to humans [5, 6]. Soil and water
can also transmit AMR organisms to humans, animals,
and plants. Aerosol or airborne transmission is common
for respiratory pathogens that may carry resistance such
as influenza or tuberculosis, while vectors can facilitate
the spread of resistant malaria or bacteria, facilitating
rapid diffusion over vast geographic areas [7, 8]. While
AMR cannot be realistically eradicated, it may be possible
to slow down or reduce its occurrence through antimicro-
bial stewardship, namely, strategies designed to improve
the appropriate use of antimicrobials.

Mathematical models are increasingly used to help under-
stand and control infectious diseases, particularly to identify
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key parameters driving disease spread, assess the effect of po-
tential interventions, and forecast the trajectory of epidemics
[9]. The most impactful modeling studies typically involve
close feedback between modelers, public health experts, and
clinicians, to identify an actionable research question, design
and calibrate a model against empirical data, perform sensi-
tivity analyses, refine the model as more data become avail-
able, and eventually issue policy guidance (Fig. 1). Modeling
AMR organisms can be particularly challenging compared to
modeling sensitive pathogens for several reasons (see Box 1).
In addition to crucial data gaps, modelers have to contend
with issues of pathogen heterogeneity, fitness costs,
co-infections, and competition, which are important features
of resistance that remain poorly understood and quantified.

e A
Box 1: Challenges to mathematical modeling of AMR

Data gaps:

— Lack of sufficient data on antimicrobial use in humans and
animals, antimicrobial environmental contamination, and
resistance rates in unmonitored industries and low-income
countries.

— Lack of standardization in data definitions or collection
methods.

Complexity of model dynamics:

— Lack of understanding of disease ecological dynamics or
model too complex.

— Pathogen heterogeneity: resistance governed by multiple
genetic and epigenetic factors, so that a diversity of strains
can exhibit the same resistance phenotype (single nucleotide
polymorphisms, acquisition or deletion of genes or plasmids,
up- or downregulation of genes).

— Dynamic fitness landscapes: resistance carries fitness costs
that are poorly understood and can decrease transmission
potential, while compensatory mutations can restore
transmission.

— Co-infection dynamics between sensitive and resistant
strains: strain coexistence, competition, conversion, or
replacement are possible depending on the disease studied.

Model assessment:

— Validation cannot take place without proper surveillance
data.

— Inability to accurately evaluate AMR interventions in the
field for ethical, practical, or political reasons.

— Inability to validate model parameters in a changing
environment (changes in transmission rates, fitness costs,
and growth potential under antibiotic treatment, as

resistance evolves).
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Fig. 1 Sources of antimicrobial contamination, transmission of AMR, and development of mathematical models. Drivers of AMR as well as
resistant pathogens themselves (antimicrobial, biocides, metals) may enter the environment through water (as effluent or through water
sanitation systems) or soil (manure application or illegal dumping) from various sources including (i) medical therapeutic and prophylactic use in
humans, (i) veterinary use in companion or food animals, (iii) non-veterinary use in animals (growth promoters), (iv) direct or indirect use in
horticulture and crop farming, (v) industrial scale prophylactic use in aquaculture, and (vi) pharmaceutical manufacturers themselves and various
industrial applications. Resistant pathogens may then be transmitted to various living organisms through various routes including foodborne,
waterborne, airborne, vectorborne, or direct contact. Zoonotic transmission is possible between humans and animals (domestic and wild).
Transmission can be further intensified by insect vectors such as mosquitoes and flies, as well as human activity, such as global travel (tourism,
migration) and food importation. The goal of mathematical modeling is to synthesize the data collected on AMR and design models to inform
public health policy: step 1, identify key questions; step 2, extract or estimate disease parameters based on available data to build a model; step
3, assess model uncertainty/sensitivity; step 4, validate model results with an independent dataset and use to inform policy; and step 5, refine and
revise model as needed with new data.

assess the influence of the research; and (4) identify gaps
in both modeling of AMR and data availability.

The contribution of mathematical modeling to the con-
trol of emerging infections is well established [9], and
mathematical modeling can also be a powerful tool to

guide policies to control AMR. Here, we undertake a sys- Methods

tematic review to assess how population-level mathemat-
ical and computational modeling has been applied in the
field of AMR over a period of 11 years (2006—2016). Previ-
ous reviews of AMR modeling were either completed
some time ago [10, 11], only applied to a specific subset of
AMR, such as HCAIs [12, 13], or focused on acquired re-
sistance [14]. Our goals in this study were to (1) identify
the predominant pathogens, populations, and interven-
tions studied; (2) highlight recent advances in the field; (3)

Search strategy and selection criteria

We undertook a systematic search and review of publi-
cations relevant to the transmission modeling of AMR.
Searches were carried out in PubMed-MEDLINE, Sco-
pus, Web of Science, and Embase. Publications were
limited by date (January 1, 2006—December 31, 2016)
and journal type (original research and review articles
only). Data extraction was initially carried out on No-
vember 15, 2016 and updated in January 2018. The
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search query included terms specific to transmission
models, resistance issues, and individual pathogens
known to acquire resistance (see Additional file 1 for de-
tails of the query). We removed duplicate publications
and continued with the selection of relevant publications
according to the inclusion/exclusion criteria listed below.
A summary of the process is outlined in the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-analyses) diagram in Fig. 2 and in Additional file 2.

Inclusion and exclusion criteria

We included any mathematical or computational models
describing AMR in an infectious disease pathogen and
considering transmission at the population level (i.e.,
publications on between-host transmission dynamics).
We excluded within pathogen/host models of resist-
ance (e.g., exclusively within-host models based on in
vitro data), pharmacokinetic-pharmacodynamic models
(i.e., pharmacological models focused on optimizing
drug dosage that did not include a transmission com-
ponent), molecular modeling studies (studies focused
on molecular structure of chemical compounds), re-
views that did not present original work, non-journal
articles or reviews (poster or conference abstracts),
and descriptive statistical models not incorporating
mechanistic principles (such as models based on
probability distributions, e.g., regression, clustering
analysis).

Selection and analysis of publications
An initial round of title and abstract screening was per-
formed by AMN. Articles identified as potentially
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relevant were then reviewed by both AMN and CV, and
the publication list for full-text analysis was agreed upon
by consensus. Full texts for 313 articles were then re-
trieved, evaluated by AMN, and relevant data was ex-
tracted for further analysis (see below). For details on
the number of articles excluded at each step, see Fig. 2.

Data extraction

The following data were retrieved from articles: disease
system (type: viral (V), bacterial (B), parasitic (P), fungal
(F) or non-specific (NS)); drug type; control measures
(pharmaceutical and non-pharmaceutical interventions,
vaccines, behavioral); location (year, country, WHO re-
gion); host population: type (human, animal, plant) and
setting (school/family, hospital, community, farm, etc.);
data: data used for parameterization (epidemiological,
clinical, behavioral, demographic, geospatial), data avail-
ability (public, on request, private); methodology: model
class (compartmental or individual-based), inference
method, and study type (explicative, predictive, interven-
tions vs. forecasting); and metadata (authors, institu-
tions, funding). Pathogen types were also later compared
with the published WHO and center for disease control
(CDC) lists of most urgent threats in AMR [1, 15].

Time trend and impact analysis

A goal of our systematic review was to explore trends in
the publication output for AMR modeling studies and
their impact in the field, as AMR is emerging as a global
health threat. Our review focused on the period 2006—
2016; to explore publication trends in earlier years, we
used a prior review by Temime et al. [11] which covered
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Fig. 2 PRISMA flowchart outlining selection of studies included in the review.
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the period 1993-2006. Further, for comparison with a
related area of infectious disease modeling, we compiled
trends in publication of individual-based transmission
models (defined as a model tracking the characteristics
of an individual, including infection and transmission,
over time), based on a recent systematic review [16]. In
addition to the volume of AMR modeling publications,
we assessed the impact of these publications in the field
using the metric field-weighted citation impact (FWCI)
[17]. The FWCI is the ratio between the number cita-
tions for a specific article and the average number of ci-
tations received by similar articles in the same field,
type, and year of publication, thus making values com-
parable across these three variables. A FWCI greater
than 1.0 indicates that publications have been cited more
than would be expected; for example, a score of 1.2
means that an article has been cited 20% more than
average. It should be noted that a FWCI score can vary
over time and that data in our manuscript is based on a
snapshot of the Scopus database taken on November 21,
2018.

Intervention analysis

We used a seminal 2016 Review on Antimicrobial Re-
sistance as a framework to classify interventions [18].
The report identified 10 intervention categories, of
which only the first six were relevant to our study: (1)
education or awareness campaigns, (2) improved hygiene
and infection control, (3) reduction in use of antimicro-
bials, (4) improved surveillance of resistance, (5) im-
provement and development of rapid diagnostics, and
(6) use of antimicrobial alternatives such as vaccines and
alternatives. We also added a seventh category to con-
sider antimicrobial regimen changes, as this is an area of
high interest for public health (e.g., antimicrobial switch-
ing, cycling, introduction of new drug class).

Further, we identified whether interventions were
modeled on a “micro” (institution level) or “macro” level
(structural or policy interventions that might affect large
populations, communities, countries, or regions). We
also assessed whether the aim of the study was to pre-
vent the development/acquisition of AMR (de novo re-
sistance) or direct transmission of a resistant pathogen.

Results

Details of the screening process can be found in the
PRISMA diagram in Fig. 2. A total of 2466 articles were
identified after removing duplicates. Two rounds of title
and abstract screening removed a further 2143 records.
A total of 323 articles were earmarked for full-text re-
view. Upon reading these, we found that 50 articles did
not meet the inclusion criteria specified above, which re-
sulted in a final tally of 273 records included in our ana-
lyses. We describe the characteristics of all studies below
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and then focus on key findings for the five pathogens or
diseases most commonly modeled: methicillin-resistant
Staphylococcus aureus (MRSA), tuberculosis (TB), hu-
man immunodeficiency virus (HIV), influenza, and
malaria.

Trends in the number of published modeling studies

We found an increasing trend (Fig. 3) in the annual
number of AMR modeling studies between 2006 and
2016 (linear trend, slope = 1.5, R* = 0.43), building off the
steady increase shown by Temime et al. [11]. Since 2013,
the pace of AMR modeling publications has leveled off
at around 25 articles/year. In contrast, as described by
Willem et al. [16], publications on individual-based
models of infectious diseases have experienced a faster
increase over the same time period (linear trend, slope =
7, R* =0.66), with on average three to four times more
articles published on infectious disease related
individual-based models than on AMR (Fig. 3). A histo-
gram showing the number of AMR modeling articles
published per year since 1990 can be found in Add-
itional file 1: Fig. S1.

In addition to overall publication output, we assessed
the influence of AMR modeling publications in the field
using the FWCI score. The three publications with the
highest FWCI during this period had a FWCI greater
than 10 (two articles on TB [19, 20] and one on pan-
demic flu [21]). Excluding these three highly cited out-
liers, we found that the median FWCI for publications
ranged between 0.47 and 2.65, with an overall median of
0.96, indicating that AMR modeling publications are be-
ing cited at a rate on par with other studies in their field
(Additional file 1: Figure S2).

Distribution of modeling studies by pathogen type
Approximately 65% of the AMR studies focused on bac-
terial diseases, 25% on viral diseases, 13% on parasitic
diseases, and 2% on plant fungal pathogens. The top five
pathogens most prominently studied were MRSA (25%),
TB (16%), Plasmodium falciparum (8%), HIV (13%), and
influenza (11%). For a detailed list of pathogens studied
in each publication, see Additional file 1: Table S1. There
was no significant time trend in the modeling of specific
pathogens (Additional file 1: Figure S3).

Host and population settings used in AMR modeling

Of the 273 publications considered in our review, 89% (n
=234) concerned human hosts, 7% (n =18) focused on
animal diseases, and 2% (n=5) considered plant hosts.
Only 2% (n = 6) addressed transmission between humans
and animals in the same model. Animal transmission
studies were mainly on animals of agricultural importance,
although one explored transmission between humans and
companion animals [22]. Only one study modeled the
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interaction of AMR pathogens between their hosts and
the environment [23]. The majority of studies were either
set exclusively in the community (n =151, 55%) or in a
healthcare facility (n = 74, 27%), with few (1 =11, 4%) ex-
ploring the link between these two (Table 1). Only eight
studies (3%) modeled the transmission of AMR in
long-term care facilities such as nursing homes, which are
thought to be major reservoirs of AMR. The model popu-
lations were largely homogeneous and did not allow for
variable mixing rates. A minority of the studies (n =48,
18%) included heterogeneity in age, gender, sexual activity,
and treatment status for pathogens such as TB, HIV,
influenza, or malaria [24, 25]. Details can be found in
Additional file 3: Table S4.

A large fraction of studies (7 =121, 44%) did not focus
on a particular geographic area. Those that did were ap-
proximately evenly split between four regions: Africa (n =
35, 13%), the Americas (n=36, 13%), Europe (n=43,
16%), and Western Pacific (n = 24, 9%) (Fig. 4). Few stud-
ies modeled AMR in either the Eastern Mediterranean (n
=2, 1%) or South East Asian (n=8, 3%) regions. Most
models that did specify a geographic location focused on
only one country and did not model transmission between
countries. Five studies modeled global transmission of the
pathogen of interest [26—30]. There was an association be-
tween the pathogens modeled and country income status:
91% of studies (74/81) that specified locations and mod-
eled HCAI were restricted to high-income countries
(Table 2). On the other hand, the majority of TB and

malaria modeling studies were set in low- and
middle-income countries (LMIC) (Table 2). HIV was the
only disease modeled across all regions (Table 2).

Modeling structure, dynamics, and model fitting

Of the 273 studies analyzed, most used deterministic
models (n =175, 66%). Other studies adopted stochastic
models (n=57, 22%), or hybrid deterministic models
containing some elements of stochasticity (n =7, 3%). A
few studies compared the results of deterministic and
stochastic methods (n =25, 9.5%). Models were predom-
inantly compartmental (n=201, 76%) relative to
individual-based models (17 =33, 12%). Several studies
compared AMR outcomes using both model strategies
(n=7, 3%) (Table 1). A full breakdown of models by
class is available in Additional file 1: Table S2.

Most studies considered more than one pathogen strain
(n=190, 72%), but the majority of the studies did not
allow for co-infection of hosts, with a few exceptions (r =
22, 8%) (see Additional file 3: Table S4 for details). Half of
the studies considered that the resistant strain carried a
fitness cost (1 = 132, 50%); however, fitness cost was often
assumed, and few studies used primary data to infer this
parameter (n =21, 8%). With regard to the type of resist-
ance studied, many models (n =119, 45%) focused exclu-
sively on transmitted resistance (secondary resistance) and
significantly fewer models (1 = 36, 14%) explored acquired
or de novo resistance. Approximately a third of models (n
=89, n=34%) accounted for both acquired and
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Table 1 Distribution of selected studies according to study characteristics.
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TOTAL MRSA B HIV Influenza Malaria

Host type (n=273) (n=65) (n=43) (n=34) (n=30) (n=22)

Human 233 (89%) 62 (95%) 43 (100%) 34 (100%) 28 (93%) 21 (95%)

Animal 18 (7%) 2 (3%) - - 2 (7%) 1 (5%)

Human-animal 7 (2%) 1 (2%) - - - -

Plant 5 (2%) - - - - -
Population type

Community (endemic) 154 (58%) 7 (11%) 40 (93%) 34 (100%) 25 (83%) 21 (95%)

Healthcare facility 71 (27%) 49 (75%) 1 (2%) - - -

Community-healthcare facility 11 (4%) 5 (8%) 2 (5%) - 1 (3.5%) -

Agricultural-farming 20 (8%) 1 (1.5%) - - 1 (3.5%) -

Other 8 (3%) 3 (4.5%) - - 3(10%) 1 (5%)
Model parameters

Referenced data 191 (72%) 34 (52%) 38 (88%) 32 (94%) 29 (97%) 17 (77%)

Primary data 73 (28%) 31 (48%) 5 (12%) 2 (6%) 1 (3%) 5 (23%)
Model type

Deterministic 175 (66%) 30 (46%) 36 (84%) 23 (70%) 18 (60%) 18 (82%)

Stochastic 57 (22%) 30 (46%) 6 (14%) 5 (12%) 3 (10%) 2 (9%)

Both (D and 9) 25 (9%) 5 (8%) 1 (2%) 4 (12%) 8 (27%) 1 (5%)

Hybrid 7 (3%) - - 2 (6%) 1 (3%) 1 (5%)
Model class

Compartmental 201 (76%) 34 (52%) 37 (86%) 27 (79%) 26 (87%) 19 (86%)

Individual-based 33 (12%) 19 (29%) 3 (7%) 4 (12%) 1 (3%) 1 (5%)

Both 7 (3%) 1 (2%) - 2 (6%) 1 (3%) 1 (5%)

Other 23 (9%) 11 (17%) 3 (7%) 1 (3%) 2 (7%) 1 (5%)
Model features

Multi-strain model 190 (72%) 23 (35%) 42 (98%) 32 (94%) 29 (97%) 17 (77%)

Co-infection of hosts 22 (8%) 5 (8%) 9 (21%) 5 (15%) 3 (10%) 3 (14%)

Fitness cost modeled 132 (50%) 15 (23%) 32 (74%) 20 (59%) 25 (83%) 13 (59%)

Acquired and transmitted resistance 89 (34%) 1 (2%) 26 (60%) 28 (82%) 20 (67%) 5 (23%)

Within-host model 17 (6%) 1 (2%) 3 (7%) 2 (6%) 1 (3%) 4 (18%)

Population stratification 48 (18%) 4 (6%) 11 (26) 18 (53%) 3 (10%) 4 (18%)
Model rigor

Calibration 115 (43%) 33 (51%) 26 (60%) 16 (47%) 4 (13%) 3 (14%)

Validation 36 (14%) 10 (15%) 11 (26%) 5 (15%) 0 (0%) 1 (5%)

Sensitivity analyses 159 (60%) 36 (55%) 32 (74%) 25 (74%) 16 (53%) 14 (64%)
Economics

Cost/benefit analysis 23 (9%) 8 (12%) 6 (14%) 6 (18%) 1 (3%) 3 (14%)

transmitted resistance, and some (1 = 20, 8%) did not dif-
ferentiate. Interestingly, a few studies integrated within-
and between-host models (n =17, 6%), allowing for joint
exploration of emergence and transmission of AMR.
Model calibration against epidemiological or experi-
mental data is an important feature of mathematical
modeling. Some form of calibration (partial or full

parameter calibration) was reported in just under half of
the studies (7 =115, 43%). In addition to model calibra-
tion, sensitivity analysis testing the impact of varying
parameter values on model outputs is critical to explore
the robustness of conclusions. Out of 273 studies, 159
(60%) reported some level of parameter sensitivity or un-
certainty analysis.
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The accuracy of model results can also be assessed by
out-of-sample validation techniques, in which model
predictions are compared to independent observations
that have not been used for model calibration. Only 36
studies (14%) reported out-of-sample model validation.
From these, 31 used a statistical approach, while 5
simply conducted “face validity” tests by qualitative
comparisons to empirical epidemiological datasets.
There was no significant time trend in the type of
models used, nor in the proportion of studies present-
ing a calibration or validation step (Additional file 1:
Figure S4).

Finally, integration of economic frameworks in
mathematical models to project economic costs can
help to inform public health decision makers, by
translating model results into more tangible
cost-benefit analyses. Only 23 studies (n=23, 9%)

included financial components and proposed

cost-benefit or savings analyses.

Intervention analysis

Mathematical models can be particularly useful to assess
the effectiveness of intervention strategies (Table 3).
Studies modeling interventions were approximately
evenly split between interventions targeting non-
resistant pathogens (1 =99) and those aimed specifically
at suppressing resistance (n =100). Several articles (n =
17) explored interventions that could be classified as be-
ing aimed at the suppression of both susceptible and re-
sistant pathogens. Of those aimed at reducing resistance
(n=117), few (n=20) focused on reducing the emer-
gence or acquisition of resistance, while the majority (n
= 82) focused on the transmission of resistant pathogens,
and some (7 =15) considered both (Table 3). Perhaps
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Table 2 Pathogens modeled by World Bank income level.
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Infectious disease system Total High

Upper-middle Low-middle Low ND

MRSA 65 38
B 43 3
HIV 34 4

wul

Influenza 30
Plasmodium falciparum 21
General bacteria 17
Streptococcus pneumoniae 12
Enterococci (VRE) 10

Escherichia coli

w o N O b

Neisseria gonorrhoeae

Acinetobacter baumannii
Zymoseptoria tritici
Enterobacteriaceae (ESBL-E)
Klebsiella pneumoniae

Teladorsagia circumcincta
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A representation of pathogens modeled by the World Bank income level classification: high, upper-middle, low-middle, low, or not described (ND).

unsurprisingly, the majority of models (n = 85) focused
on micro-level interventions affecting institutions (such
as hospital-level interventions), with fewer (n=32) fo-
cusing on macro-level interventions such as national
policy changes or vaccines (Table 3).

We analyzed interventions based on the categories
identified in a seminal report on AMR [18] (Table 3).The
interventions studied were primarily improved hygiene
or infection control measures (7 =59, 50%) such as hand
hygiene, isolation, and decolonization. The impact of dif-
ferent drug regimens was often explored (1 =46, 39%)
and included techniques such as mixing, switching, and
cycling of drugs as well as changes to drug dosage and
frequency. Surveillance of resistance (n = 32, 27%), rapid
diagnostic techniques (n =10, 9%), and a reduction in
exposure to antimicrobials (7 =16, 14%) were also

modeled. Relatively few studies included alternative
treatment strategies or vaccines (n =11, 9%). Only three
studies modeled behavioral interventions (n=3, 3%).
Generally, many interventions modeled were organism
specific, and further details can be found in Add-
itional file 1: Table S3 and Additional file 3: Table S4.

The five most common resistant pathogens modeled
We provide a short summary of the main findings of AMR
modeling efforts for each of the top five diseases included
in our review: MRSA, TB, HIV, influenza, and malaria.

Methicillin-resistant Staphylococcus aureus (MRSA)

Almost all of the 58 MRSA transmission studies focused
exclusively on humans, except for three that explored
MRSA in animals or the associations between animals
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Table 3 Characteristics of AMR-specific interventions reviewed

Resistance target

Acquired 20 (17%)
Transmitted 82 (70%)
Both 15 (13%)
Intervention scale
Micro 85 (73%)
Macro 32 (27%)
Both 0
Recommended strategies to combat AMR
1. Education or awareness campaigns 3 (3%)
2. Improved hygiene and Infection Control 59 (50%)
3. Reduction in use of antimicrobials 16 (14%)
4. Improved surveillance of resistance 32 (27%)
5. Improved and rapid diagnostics 10 (9%)
6. Vaccines and alternatives 11 (9%)
7. Changes to drug regimens 46 (39%)

We categorized the interventions from 117 studies that were specifically
aimed at blocking AMR based on whether the interventions targeted acquired
or transmitted resistance, the scale of interventions, and the type of
intervention strategy modeled, motivated by the categories identified in a
seminal report [18]. It should be noted that several models investigated the
effects of more than one intervention; therefore, the sum of total strategies
evaluated (n = 177) exceeds the total number of studies evaluated (n=117).

and humans [22, 31, 32] (Table 1). The studies were
mainly set in healthcare facilities (n =49, 75%), with a
few modeling transmission between hospitals and other
settings (n=5, 8%). Only one model was set in
low-middle-income country. Key findings of these stud-
ies include: (1) reaffirming the importance of hand hy-
giene compliance; (2) the prediction of coexistence of
community-acquired and hospital-acquired MRSA [33—
35], rather than the dominance of one over the other (al-
though Webb et al. predict that community-acquired
MRSA will dominate [36]); (3) the importance of effect-
ively implementing appropriate screening, followed by
isolation and/or decolonization; (4) the importance
of hygiene and infectious disease control measures;
and finally (5) two studies that proposed the intri-
guing concept of vaccines as a new weapon against
MRSA [37, 38].

Tuberculosis

We identified a total of 43 models studying the dynam-
ics of TB resistance in humans, mainly in community
settings (n=40, 93%). The studies modeled general
transmission dynamics of multidrug-resistant (MDR) or
extensively drug-resistant (XDR) TB and considered
multiple interventions, most commonly intermittent
preventative therapy (IPT); directly observed treatment,
short-course (DOTS); and surveillance and drug suscep-
tibility testing (Additional file 1: Table S3). Major
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conclusions include the following: (1) the vast majority
of MDR-TB incidence is due to transmitted resistance
rather than de novo treatment-related acquisition [30,
39, 40]; (2) to combat resistance, drug susceptibility test-
ing and TB surveillance should be emphasized [41-44];
(3) treatment and drug susceptibility testing should be
expanded in community settings in Africa and the pri-
vate sector in India [42, 43, 45-47]; (4) controlling HIV
would help decrease the transmission rates of resistant
-TB [48, 49]; (5) isolation or quarantine strategies would
help prevent transmission and decrease the number of
patients lost to follow-up [50, 51]; and (6) while
community-wide intermittent preventative therapy may
increase the incidence of drug resistance, the benefits in
reducing primary TB infections outweigh the risks.
However, such therapy should be coupled with appropri-
ate diagnostic and treatment policies [48, 52—54].

Human immunodeficiency virus

HIV studies represented 13% of our data (n = 34). Topics
modeled included the dynamics of HIV resistance in the
context of the introduction of new pharmaceutical inter-
ventions (e.g., antiretroviral therapy, pre-exposure
prophylaxis, vaginal microbicides, or structural interven-
tions such as changes in diagnostics or treatment policy
(Additional file 1: Table S3)). Seven additional papers
modeled HIV-TB co-infection. Several manuscripts
reached similar conclusions, most notably the following:
(1) while oral pre-exposure prophylaxis is expected to
reduce new HIV infections, a rise in de novo resistance is
projected if prophylaxis is administered to those un-
knowingly infected with HIV [55-62]; (2) similar find-
ings apply to vaginal microbicides [63-65]; and (3)
modeling stresses the likelihood of accumulation of re-
sistance over time as a response to various therapies and
the importance of regular viral load testing and early
diagnosis [66—69]. Various changes in HIV treatment
policy or diagnostics were also modeled [66, 68—75].

Influenza

Influenza resistance modeling studies (# = 30) mostly fo-
cused on humans, with few exceptions (one transmission
model in chickens and one between ferrets) [76, 77]. In-
terventions modeled included use of antivirals (matrix
ion channel or neuraminidase inhibitors), vaccines, anti-
biotics for treatment of secondary infections, and
non-pharmaceutical interventions (isolation and social
distancing) (Additional file 1: Table S3). Three repeating
themes emerged: (1) there is support for the use of
prophylactic drugs despite the risk of developing resist-
ance during pandemic situations, but conditions varied
[21, 78-85]; (2) timing, dosage, and coverage levels of
drugs are important when it comes to determining treat-
ment effectiveness [82—91]; and (3) there is a need for
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monitoring the transmissibility and/or fitness of the re-
sistant virus [28, 77, 78, 92-94].

Malaria

A total of 22 studies described mathematical models for
transmission of Plasmodium species in the context of
AMR. All studies modeled Plasmodium falciparum in
humans with the exception of one study of Plasmodium
chabaudi in mice [95]. Geographically defined studies
were restricted to Sub-Saharan Africa and the
Thai-Cambodian region. Pharmaceutical interventions
included the following drugs: artemisinin or artemisinin
combination therapy (ACT), chloroquine, sulphadoxine,
and pyrimethamine. Various non-pharmaceutical inter-
ventions were also modeled (Additional file 1: Table S3).
Major conclusions include (1) the importance of using
artemisinin as part of combination therapy regime (ra-
ther than monotherapy) [25, 96-99] and (2) intermittent
preventive therapy should be used carefully in areas
where resistance is not already established [24, 100].

Discussion

Our systematic review of transmission modeling of
AMR over a decade highlights a continuous increase in
publications during 1996-2012, a peak in 2013 (n = 38),
and a plateau in the following 3 years (average annual
publications = 25). Modeling of AMR overall experiences
a slower progression than a related field such as
individual-based infectious disease models. Five infec-
tious diseases have dominated mathematical models of
AMR during 2006-2016: MRSA, TB, HIV, influenza,
and malaria. The majority of AMR articles focused ex-
clusively on humans, either in community or healthcare
settings, rather than modeled interactions between
hosts or multiple settings. Over the study period, a ma-
jority of models remained data-free and few were vali-
dated against independent datasets. Many models
assumed a fitness cost for resistant organisms; however,
this was often not derived from primary experimental or
epidemiological data. Few models integrated within-host
dynamics or economic factors into their transmission
framework. Most of the interventions aimed at combat-
ing AMR were primarily focused on transmitted rather
than acquired resistance and were implemented on a
micro-level scale. The interventions considered the im-
pact of different drug regimens, hygiene and infection
control measures, or screening and diagnostics, while
less than 5% addressed alternative therapeutic strategies
or behavioral changes.

The predominance of five pathogens in AMR trans-
mission modeling is likely driven by a long history of
disease modeling for at least four of these pathogens
(TB, HIV, influenza, and malaria) and an early recogni-
tion of MRSA as an important drug-resistant pathogen,
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combined with availability of epidemiological and sur-
veillance data. Historically, these diseases have taken a
large toll on global morbidity and mortality rates; how-
ever, it has been predicted that the consequences of
AMR in other pathogens may rapidly outpace them by
2050 [18]. More research should be undertaken before
resistance in other disease systems becomes a major
crisis.

The observed skew towards these 5 diseases was in
stark contrast in comparison to the WHO’s priority list
of 12 antibiotic resistant bacteria [1] and the CDC’s list
of 18 drug-resistant threats in the USA [15]. Only a
handful of studies modeled the diseases categorized as
the most urgent by the WHO and CDC: Neisseria gonor-
rhoeae (n=6), Acinetobacter baumannii (n=4),
ESBL-producing enterobactriaceae (1 =3), Pseudomonas
aeruginosa (n=2), carbapenem-resistant enterobactria-
ceae (n=1), and Clostridium difficile (n=0) (Table 4).
The lack of Clostridium difficile resistance studies is
puzzling as several mathematical models exist for sensi-
tive strains of this pathogen (e.g., [101]). In contrast, the
top two bacteria represented in our AMR review, MRSA
and TB, were the focus of 65 and 43 studies respectively.
And while modeling of an intermediate-level threat like
vancomycin-resistant enterococci is gaining momentum
(n = 10), much remains to be done to understand trans-
mission in the community and environmental settings.

Other serious threats based on WHO or CDC criteria
that are rarely modeled include Campylobacter (n=2),
Salmonellae spp. (n =2), Neisseria gonorrhoeae, and Shi-
gella spp. (n=1). Importantly, we were unable to find
any published AMR models for the following serious
threats: Helicobacter pylori, Haemophilus influenzae,
fluconazole-resistant  Candida, clindamycin-resistant
group B strep, and erythromycin-resistant group A strep.
While mathematical transmission models do exist for
wild-type H. pylori [102], H. influenzae [103], and Can-
dida parapsilosis [104], we are not aware of any models
for resistant strains, which may have different transmis-
sion parameters than susceptible strains.

Most models did not consider pathogen heterogeneity,
such as multiple viral or bacterial strains, parasite spe-
cies, or multiple resistance mechanisms (e.g., membrane
permeability, enzymatic degradation, mutation of anti-
microbial targets), which might affect transmission po-
tential. As a case in point, most malaria modeling has
dealt with the Plasmodium falciparum species in Africa
or East Asia. This is presumably based on the long-held
assumption that the majority of malaria burden is caused
by P. falciparum rather than other plasmodium species.
However, there is growing evidence that Plasmodium
vivax, which is endemic in South and South-East Asia as
well as Central and South America, is associated with a
significant burden of morbidity and associated mortality
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Table 4 The number of modeling studies compared to the WHO and CDC lists of important AMR threats.

Pathogen WHO category  CDC category ~ AMR models  References
Enterobacteriaceae, carbapenem-resistant @ @ 1 [156]

Enterobacteriaceae, ESBL-producing @ (@ 3 [141,157,158]
Acinetobacter baumannii, carbapenem- or multidrug-resistant il 2 4 [158-161]

Pseudomonas aeruginosa, carbapenem-or multidrug-resistant @ (@) 2 [139, 158]

Neisseria gonorrhoeae, cephalosporin- or fluoroquinolone-resistant ~ C2 @ 6 [162-167]

Staphylococcus aureus, methicillin-resistant (@ (@ 65 [22,31-38, 151, 158, 168-221]
Enterococcus faecium, vancomycin-resistant 2 2 10 [158, 202, 222-229]
Campylobacter spp., fluoroquinolone-resistant (] Q 2 [229, 230]

Salmonellae, (Typhi and non-typhoidal), fluoroquinolone-resistant (@ (@ 2 [231, 232]

Staphylococcus aureus, vancomycin-intermediate and resistant 2 a3 - -

Helicobacter pylori Q2 - - -

Haemophilus influenzae, ampicillin-resistant 3 - - -

Streptococcus pneumoniae, penicillin-non-susceptible a Q2 12 [37, 233-240]

Shigella spp., fluoroquinolone-resistant a3 2 1 [241]

Clostridium difficile - (@ - -

Mycobacterium tuberculosis, MDR, XDR - (@) 43 [19, 20, 30, 39-54, 242-265]
Fluconazole-resistant Candida - (] - -

Streptococcus agalactiae, clindamycin-resistant group B MDR, XDR - a - -

Streptococcus pyogenes, erythromycin-resistant group A MDR, XDR - a - -

The pathogens that pose the greatest threat to human health according to the WHO and the top drug-resistant threats in the USA according to the CDC.
Category 1 (C1) threats are described as “Critical” (WHO) or “Urgent” (CDC); category 2 (C2) as “High” (WHO) or “Serious” (CDC); and category 3 (C3) as “Medium”

(WHO) or “Concerning” (CDC).

[105, 106]. P. vivax is already largely resistant to chloro-
quine [107], though resistance to artemisinin has not yet
been reported. A similar issue exists in regard to math-
ematical modeling studies of HIV, where no distinction
was made between HIV-1 and HIV-2, which are known
to have markedly different resistance profiles to the vari-
ous antiretroviral drugs used [108, 109]. This is likely be-
cause HIV-2 has historically infected a much smaller,
but significant, proportion of the population. It was esti-
mated in 2006 that one to two million people [110] in
several West African countries were infected with
HIV-2, though we could not find more recent estimates.

While there has been increasing effort to design
models with explicit interactions between community
and hospital populations, few include long-term care fa-
cilities, which often lack effective antimicrobial steward-
ship programs [111-113]. Most worrisome perhaps,
almost all models were set in humans and there were
few attempts to tackle the hypothesized connection be-
tween veterinary/agricultural use of antibiotics and
AMR. No studies modeled AMR transmission in aqua-
culture, despite the growing body of evidence that AMR
resistance could enter the food chain through these
means [114, 115]. Similarly, there were few ecological
studies on the transmission of AMR from the environ-
ment (water, soil, etc.) to potential hosts, despite the

increasing evidence for a link between antimicrobial
contamination of the environment, and the development
and transfer of resistance to human pathogens [116—
118]. This is particularly concerning given the large
quantity of antibiotics used in agricultural facilities, the
lack of regulation on their waste disposal and the inabil-
ity of many sanitation systems to filter out antimicrobials
and AMR elements. Another environmental factor that
was not modeled was the effect of climate change on the
rates of AMR. Recent research has shown that increas-
ing temperatures are associated with increased levels of
resistance [119, 120], but there is no projection of AMR
patterns under climate change scenarios.

We found that the vast majority of HCAI and influ-
enza models were set in high-income countries, al-
though this is an increasingly recognized threat in LMIC
[1]. The lack of studies in developing countries is par-
ticularly concerning because of unregulated or poorly
regulated antimicrobial manufacturing and usage [121,
122]. This is likely due to lack of appropriate diagnostics
and surveillance in low-resource settings [1, 122].

A major reason for the lack of modeling studies on
particular pathogens or certain settings is likely to be a
deficiency in available data needed for model calibration
and design. There is a need for more precise data on
antibiotic consumption rates in both humans and
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animals [18], which is often not made publicly available
[123-125]. In addition, improved surveillance of AMR
incidence is required in humans, animals, and the envir-
onment (soil and water) [126]. There have been several
examples of zoonotic transmission of AMR in both do-
mestic [127, 128] and wild animals [129, 130] as well as
evidence of transmission of genetic determinants of
AMR into the environment [3, 116], which in turn may
facilitate further dissemination of resistance.

In terms of AMR-specific model dynamics, half of the
reviewed studies factored in a fitness cost for the resist-
ant strain; however, this was often assumed and rarely
estimated from primary data. Additionally, many models
did not distinguish between acquired (de novo) or trans-
mitted resistance. This is important for accurately defin-
ing model parameters such as reversion [131] or
transmission rates [78, 132], which ultimately affect
model outcomes. Most studies modeled homogeneous
infections with a single pathogen strain and therefore
did not investigate host co-infection and strain competi-
tion. Host populations were also largely assumed to be
mixing homogeneously with no stratification by age, sus-
ceptibility, or contact patterns. Integration of within-
and between-host models was also rare; multi-scale
modeling is an important frontier for AMR and more
broadly for the field of infectious disease modeling [133].

Previous reviews predicted that technological advances
in computational tools could allow for more complex
models and calibration to larger datasets [9, 13]. Consist-
ent with this prediction, a sharp increase was reported in
the field of individual-based models of infectious diseases,
but this increase has not percolated to the field of AMR
[16]. The majority of AMR transmission models reviewed
here remain theoretical, with little attempt to compare
model predictions to epidemiological data, and calibration
with independent data is scarce. It should also be noted
that improvements could also be made in terms of docu-
menting modeling methods. Only 47% of the studies
assessed cited the modeling software or computational
tools used and few described modeling techniques in a way
that might be able to be reproduced by researchers who are
not already experienced modelers. Even fewer manuscripts
provided the computational code used: two manuscripts
provided a link (both were expired at the time of this writ-
ing), and three were willing to share the code upon request.
Some attempts have been made to standardize the termin-
ology, methodology, and reporting structure for infectious
disease transmission models [134—136], but better docu-
mentation of modeling methods is needed for reproducibil-
ity. Furthermore, it would also be useful to make the
underlying AMR epidemiological datasets publicly available
to aid reproducibility.

With regard to interventions aimed at combating
AMR, many models incorporated elements of improved
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hygiene or infection control in order to combat the
spread of AMR. No model focused on “macro” scale in-
terventions such as improved access to water and sanita-
tion facilities that can curb the transmission and
development of resistance. Improved water, sanitation,
and hygiene can lead to a decrease in respiratory and
diarrheal disease, both of which are often unnecessarily
treated with antibiotics although the causative agents
may be viral [137, 138]. Numerous interventions exam-
ined improved surveillance or diagnostic methods, par-
ticularly for HIV and TB, but were lacking for many
bacterial diseases outside of healthcare settings. Many
diagnostic methods for antimicrobial resistance are cul-
ture based, and confirmation of resistance, let alone spe-
cific genotyping, may take several days. There is an
urgent need for rapid molecular diagnostics in order to
improve antimicrobial stewardship; more modeling work
in this area could highlight the transmission and
cost-effectiveness benefits of such technologies.

Surprisingly, few studies modeled reduction in the use
of antimicrobials as an intervention, particularly when
supplied to food animals either as a growth supplement
or prophylaxis. Several models studied the effects of re-
ducing antimicrobial exposure levels in healthcare set-
tings [139-142], but there were fewer for animals [143—
145]. No models for AMR or AMR-related interventions
in aquaculture settings exist.

Many infectious disease models increasingly incorpor-
ate features of human behavior [123-125, 146]; however,
this is not common in the field of AMR modeling out-
side of healthcare facilities. In addition, most models did
not consider how social, cultural, or behavioral differ-
ences might affect resistance development or transmis-
sion. Those that did were mainly focused on sexually
transmitted infections such as HIV or N. gonorrhoeae.
Similarly, few models included vaccination despite in-
creasing appreciation for the role they could play in re-
ducing antimicrobial consumption [147, 148]. Vaccines
can also have indirect effects on antimicrobial consump-
tion [147, 148] by reducing the number of pharmaceuti-
cals erroneously prescribed for viral infections. Several
vaccine candidates are under development for C. diffi-
cile, S. aureus, group B Streptococcus, E. coli, and re-
spiratory syncytial virus [149]; mathematical models
could be used to evaluate their potential effects at a
population level and inform cost-effectiveness analyses.

The increasing availability of multiple epidemiological
and pathogen genetic data streams offers exciting new
possibilities to improve and expand modeling capabil-
ities. Enhanced access to, and integration of, digital dis-
ease surveillance data [150] into epidemiological
analyses could help further strengthen model validation.
Pathogen genomic sequences (together with relevant
metadata such as date, location) can also inform many
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aspects of transmission dynamics. And although some
have started integrating genomic data [151] into model-
ing studies, this is the exception rather than the norm in
the field of AMR. An integrative approach will be re-
quired to synthesize large amounts of data together,
which will ideally help to develop more realistic AMR
models tailored to specific populations. It is noteworthy
that few publications addressed the spatial diffusion of
AMR; a lack of spatially resolved AMR datasets may ex-
plain this gap.

This review has some limitations. We have only
searched four databases most relevant to biomedical sci-
ences. Furthermore, in an effort to keep the amount of
search results to a manageable number, we use certain
keywords specific to population dynamic studies of
AMR organisms. Therefore, we may have inadvertently
excluded some publications (without these keywords)
relevant to this review. However, we are confident that
this review provides an accurate overview of overall
trends in the field.

Conclusions

The field of AMR modeling is growing but is limited
by both the quantity and quality of available data.
Success stories include accurate predictions of the
emergence of resistance in malaria [152], MDR-TB
[153], and influenza [154], and modeling is also fre-
quently used to inform AMR stewardship programs
in healthcare facilities [155]. Our review suggests a
need for more applied, data-driven models, better
tuned to and diversified to reflect the public health
concerns highlighted by the WHO and the CDC. Al-
though the overall increase in AMR transmission
modeling in the last decade is encouraging, the recent
plateau in published work and scarcity of studies on
high-concern pathogens should be addressed. Most
importantly perhaps, more forward-thinking models
should be developed to predict the emergence of re-
sistance in pathogens where the issue is not yet ram-
pant and evaluate how policy and behavioral changes
can curb drug pressure and mitigate AMR. Research
programs in support of AMR modeling, increased
data collection efforts, and stronger links between
modelers and public health experts are warranted to
stimulate this field.
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