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Abstract

Background: In 2015, the Zika virus spread from Brazil throughout the Americas, posing an unprecedented
challenge to the public health community. During the epidemic, international public health officials lacked
reliable predictions of the outbreak’s expected geographic scale and prevalence of cases, and were therefore
unable to plan and allocate surveillance resources in a timely and effective manner.

Methods: In this work, we present a dynamic neural network model to predict the geographic spread of
outbreaks in real time. The modeling framework is flexible in three main dimensions (i) selection of the
chosen risk indicator, i.e., case counts or incidence rate; (ii) risk classification scheme, which defines the high-
risk group based on a relative or absolute threshold; and (iii) prediction forecast window (1 up to 12 weeks).
The proposed model can be applied dynamically throughout the course of an outbreak to identify the
regions expected to be at greatest risk in the future.

Results: The model is applied to the recent Zika epidemic in the Americas at a weekly temporal resolution
and country spatial resolution, using epidemiological data, passenger air travel volumes, and vector habitat
suitability, socioeconomic, and population data for all affected countries and territories in the Americas. The
model performance is quantitatively evaluated based on the predictive accuracy of the model. We show that
the model can accurately predict the geographic expansion of Zika in the Americas with the overall average
accuracy remaining above 85% even for prediction windows of up to 12 weeks.

Conclusions: Sensitivity analysis illustrated the model performance to be robust across a range of features.
Critically, the model performed consistently well at various stages throughout the course of the outbreak,
indicating its potential value at any time during an epidemic. The predictive capability was superior for
shorter forecast windows and geographically isolated locations that are predominantly connected via air travel. The
highly flexible nature of the proposed modeling framework enables policy makers to develop and plan vector control
programs and case surveillance strategies which can be tailored to a range of objectives and resource constraints.
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Background
The Zika virus, which is primarily transmitted through
the bite of infected Aedes aegypti mosquitoes [1], was
first discovered in Uganda in 1947 [2] from where it
spread to Asia in the 1960s, where it has since caused
small outbreaks. In 2007, Zika virus (ZIKV) caused an
island-wide outbreak in Yap Island, Micronesia [3],

followed by outbreaks in French Polynesia [4] and
other Pacific islands between 2013 and 2014, where at-
tack rates were up to 70% [5–7]. It reached Latin
America between late 2013 and early 2014, but was
not detected by public health authorities until May
2015 [8]. It has since affected 48 countries and terri-
tories in the Americas [9–11]. Since there is no vaccin-
ation or treatment available for Zika infections [12,
13], the control of Ae. aegypti mosquito populations
remains the most important intervention to contain
the spread of the virus [14].
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In order to optimally allocate resources to suppress
vector populations, it is critical to accurately antici-
pate the occurrence and arrival time of arboviral in-
fections to detect local transmission [15]. Whereas for
dengue, the most common arbovirus infection, predic-
tion has attracted wide attention from researchers
employing statistical modeling and machine learning
methods to guide vector control [16–21], global scale
real-time machine learning-based models do not yet
exist for Zika virus [22–29]. Specifically for dengue,
early warning systems for Thailand, Indonesia,
Ecuador, and Pakistan have been introduced and are
currently in use [30–34]. Further, in addition to
conventional predictions based on epidemiological
and meteorological data [20, 35, 36], more recent
models have successfully incorporated search engines
[37, 38], land use [39], human mobility information
[40, 41], spatial dynamics [42–44], and various combi-
nations of the above [45] to improve predictions.
Whereas local spread may be mediated by overland
travel, continent widespread is mostly driven by air
passenger travel between climatically synchronous re-
gions [8, 46–51].
The aims of our work are to (1) present recurrent

neural networks for the time ahead predictive modeling
as a highly flexible tool for outbreak prediction and (2)
implement and evaluate the model performance for the
Zika epidemic in the Americas. The application of
neural networks for epidemic risk forecasting has previ-
ously been applied to dengue forecasting and risk clas-
sification [52–57], detection of mosquito presence [58],
temporal modeling of the oviposition of Aedes aegypti
mosquito [59], Aedes larva identification [60], and epi-
demiologic time-series modeling through fusion of
neural networks, fuzzy systems, and genetic algorithms
[61]. Recently, Jian et al. [62] performed a comparison
of different machine learning models to map the prob-
ability of Zika epidemic outbreak using publically avail-
able global Zika case data and other known covariates
of transmission risk. Their study provides valuable
insight into the potential role of machine learning
models for understanding Zika transmission; however,
it is static in nature, i.e., it does not account for time-
series data and did not account for human mobility,
both of which are incorporated in our modeling
framework.
Here, we apply a dynamic neural network model for

N-week ahead prediction for the 2015–2016 Zika epi-
demic in the Americas. The model implemented in this
work relies on multi-dimensional time-series data at
the country (or territory) level, specifically epidemio-
logical data, passenger air travel volumes, vector habi-
tat suitability for the primary spreading vector Ae.
aegypti, and socioeconomic and population data. The

modeling framework is flexible in three main dimen-
sions: (1) the preferred risk indicator can be chosen
by the policy maker, e.g., we consider outbreak size
and incidence rate as two primary indicators of risk
for a region; (2) five risk classification schemes are
defined, where each classification scheme varies in
the (relative or absolute) threshold used to deter-
mine the set of countries deemed “high risk;” and
(3) it can be applied for a range of forecast windows
(1–12 weeks). Model performance and robustness are
evaluated for various combinations of risk indicator,
risk classification level, and forecasting windows.
Thus, our work represents the first flexible framework
of neural networks for epidemic risk forecasting that
allows policy makers to evaluate and weigh the trade-
off in prediction accuracy between forecast window
and risk classification schemes. Given the availability
of the necessary data, the modeling framework pro-
posed here can be applied in real time to future out-
breaks of Zika and other similar vector-borne
outbreaks.

Materials and methods
Data
The model relies on socioeconomic, population, epi-
demiological, travel, and mosquito vector suitability data.
All data is aggregated to the country level and provided
for all countries and territories in the Americas at a weekly
temporal resolution. Each data set and corresponding pro-
cessing is described in detail below and summarized in
Table 1. All input data is available as Additional files 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, and 11.

Epidemiological data
Weekly Zika infected cases for each country and
territory in the Americas were extracted from the Pan
American Health Organization (PAHO) [63], as
described in previous studies [48, 50] (data available:
github.com/andersen-lab/Zika-cases-PAHO). The epi-
demiological weeks 1–78 are labeled herein as EPI
weeks, corresponding to the dates 29 Jun 2015 to 19
Dec 2016, respectively. Although Zika cases in Brazil
were reported as early as May 2015, no case data is
available for all of 2015 from PAHO because the
Brazil Ministry of Health did not declare the Zika
cases and associated neurological and congenital syn-
drome as notifiable conditions until 17 Feb 2016 [63].
The missing numbers of cases from July to December
2015 for Brazil were estimated based on the positive
correlation between Ae. aegypti abundance (described
below) and reported case counts as has been done
previously [8, 50]. We used smoothing spline [71] to
estimate weekly case counts from the monthly
reported counts. The weekly country-level case counts
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(Fig. 1a) were divided by the total population/100,000,
as previously described [50], to compute weekly inci-
dence rates (Fig. 1b).

Travel data
Calibrated monthly passenger travel volumes for each
airport-to-airport route in the world were provided by
the International Air Transport Associate [64], as

previously used in [50, 72]. The data includes origin,
destination, and stopover airport paths for 84% of
global air traffic and includes over 240 airlines and
3400 airports. The airport-level travel was aggregated
to a regional level, to compute monthly movements
between all countries and territories in the Americas.
The incoming and outgoing travel volumes for each
country and territory, originally available from IATA

Table 1 Summary of input data

Description Original temporal resolution Spatial resolution Temporal disaggregation
method

Reference

Zika cases (2015) Monthly Country or territory level Smoothing spline curve
fitting

[8, 50]

Zika cases (2016) Weekly Country or territory level – [63]

Incidence rates Weekly Country or territory level [50]

Incoming and outgoing travel
volumes

Monthly Country or territory level Smoothing spline curve
fitting

[64]

Ae. aegypti vector suitability Monthly Country or territory level Smoothing spline curve
fitting

[50, 65, 66]

Gross domestic product (GDP)
per capita

Annual Country or territory level – [67, 68]

Physicians per 1000 people Annual Country or territory level – [69]

Beds per 1000 people Annual Country or territory level –

Population densities (people per sq.
km of land area)

Annual Country or territory level – [68, 70]

Fig. 1 Weekly distribution of case and connectivity-risk variables. a Zika cases, b incidence rates, c case-weighted travel risk CRtj , and d incidence-

weighted travel risk IRtj , for top 10 ranked countries and territories in the Americas for each respective variable
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at a monthly temporal resolution, were curve fitted,
again using smoothing spline method [71] to obtain
corresponding weekly volumes to match with the
temporal resolution of our model. In this study, travel
data from 2015 were also used for 2016, as was done
previously [50, 72, 73].

Mosquito suitability data
The monthly vector suitability data sets were based
on habitat suitability for the principal Zika virus spe-
cies Ae. aegypti, previously used in [50], and initially
estimated using original high-resolution maps [65]
and then enriched to account for seasonal variation
in the geographical distribution of Ae. aegypti by
using time-varying covariate such as temperature per-
sistence, relative humidity, and precipitation as well
as static covariates such as urban versus rural areas.
The monthly data was translated into weekly data
using a smoothing spline [71].

Socioeconomic and human population data
For a country, to prevent or manage an outbreak de-
pends on their ability to implement a successful sur-
veillance and vector control programs [74]. Due to a
lack of global data to quantify vector control at a
country level, we utilized alternative economic and
health-related country indicators which have previ-
ously been revealed to be critical risk factors for Zika
spread [50]. A country’s economic development can
be measured by the gross domestic product (GDP) per
capita at purchasing power parity (PPP), in inter-
national dollars. The figures from the World Bank
[67] and the US Bureau of Economic Analysis [68]
were used to collect GDP data for each country. The
number of physicians and the number of hospital
beds per 10,000 people were used to indicate the
availability of health infrastructure in each country.
These figures for the USA and other regions in the
Americas were obtained from the Centre of Disease
Control and Prevention (CDC) [69], WHO World
Health Statistics report [75], and the PAHO [76]. Fi-
nally, the human population densities (people per sq.
km of land area) for each region were collected from
the World Bank [70] and the US Bureau of Economic
Analysis [68].

Connectivity-risk variables
In addition to the raw input variables, novel
connectivity-risk variables are defined and computed
for inclusion in the model. These variables are
intended to capture the risk posed by potentially
infected travelers arriving at a given destination at a
given point in time and, in doing so, explicitly

capture the dynamics and heterogeneity of the air-
traffic network in combination with real-time
outbreak status. Two variables are chosen, hereafter
referred to as case-weighted travel risk and inci-
dence-weighted travel risk, as defined in Eqs. (1.a)
and (1.b), respectively.

CRt
j ¼

X

i

ðCt
i :V

t
i; jÞ∀t;∀ j; i≠ j ð1:aÞ

IRt
j ¼

X

i

ðIti :Vt
i; jÞ∀t; ∀ j; i≠ j ð1:bÞ

For each region j at time t, CRt
j and IRt

j are computed

as the sum of product between passenger volume travel-
ing from origin i into destination j at time t (V t

i; j) and the

state of the outbreak at origin i at time t, namely reported
cases, Ct

i ; or reported incidence rate, Iti . Each of these
two variables is computed for all 53 countries or territor-
ies for each of the 78 epidemiological weeks. The two
dynamic variables, CRt

j and IRt
j , are illustrated in Fig. 1c

and d, below the raw case counts and incidence rates,
respectively.

Neural network model
The proposed prediction problem is highly nonlinear
and complex; thus, a class of neural architectures based
upon Nonlinear AutoRegressive models with eXogenous
inputs (NARX) known as NARX neural networks [77–
79] is employed herein due to its suitability for modeling
of a range of nonlinear systems [80]. The NARX net-
works, as compared to other recurrent neural network
architectures, require limited feedback (i.e., feedback
from the output neuron rather than from hidden
states) and converge much faster with a better
generalization [80, 81]. The NARX framework was
selected over simpler linear regression frameworks due
to both the size and complexity of the set of input vari-
ables and the demand for a nonlinear function
approximation. Specifically, in addition to the epi-
demiological, environmental, and sociodemographic
variables, there are hundreds of travel-related variables
which may contribute to the risk prediction for each
region. The NARX model can be formalized as follows
[80]:

y tð Þ ¼ f x tð Þ; x t−1ð Þ;…; x t−dxð Þ; y t−1ð Þ;…; y t−dy
� �� �

ð2Þ

where x(t) and y(t) denote, respectively, the input
and output (or target that should be predicted) of
the model at discrete time t, while dx and dy (with
dx ≥ 1, dy ≥ 1, and dx ≤ dy) are input and output de-
lays called memory orders (Fig. 2). In this work, a
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NARX model is implemented to provide N-step
ahead prediction of a time series, as defined below:

ykðt þ NÞ ¼ f ð x1ðtÞ; x1ðt−1Þ;…; x1ðt−dxÞ;…; xMðtÞ; xMðt−1Þ;…;

xMðt−dxÞ; ykðtÞ; ykðt−1Þ;…; ykðt−dyÞÞ
ð3Þ

Here, yk(t +N) is the risk classification predicted for
the kth region N weeks ahead (of present time t), which
is estimated as a function of xm(t) inputs from all m = 1,
2, …, M regions for dx previous weeks, and the previous
risk classification state, yk(t) for region k for dy previous
weeks. The prediction model is applied at time t, to
predict for time t + N, and therefore relies on data avail-
able up until week t. That is, to predict outbreak risk for
epidemiological week X, N-weeks ahead, the model is
trained and tested using data available up until week (X–
N). For example, 12-week ahead prediction for Epi week
40 is performed using data available up to week 28. The
function f(∙) is an unknown nonlinear mapping function
that is approximated by a multilayer perceptron (MLP)
to form the NARX recurrent neural network [78, 79]. In
this work, series-parallel NARX neural network architec-
ture is implemented in Matlab R2018a (The Math-
Works, Inc., Natick, MA, USA) [57].

In the context of this work, the desired output, yk(t +N),
is a binary risk classifier, i.e., classifying a region k as high
or low risk at time t + N, for each region, k, N weeks ahead
(of t). The vector of input variables for region m at time t
is xm(t) and includes both static and dynamic variables.
We consider various relative (R) and absolute (A) thresh-
olds to define the set of “high-risk” countries at any point
in time. We define relative risk thresholds that range
uniformly between 10 and 50%, where the 10% scheme
classifies the 10% of countries reporting the highest
number of cases (or highest incidence rate) during a given
week as high risk, and the other 90% as low risk, similar to
[45]. The relative risk schemes are referred herein as R =
0.1, R = 0.2, R = 0.3, R = 0.4, and R = 0.5. It is worth noting,
for a given percentile, e.g., R = 0.1, the relative risk thresh-
olds are dynamic and vary week to week as a function of
the scale of the epidemic, while the size of the high-risk
group remains fixed over time, e.g., 10% of all countries.
We also consider absolute thresholds, which rely on case
incidence rates to define the high-risk group. Five absolute
thresholds are selected based on the distribution of inci-
dence values over all countries and the entire epidemic.
Specifically, the 50th, 60th, 70th, 80th, and 90th percen-
tiles were chosen and are referred herein as A = 50, A =
60, A = 70, A = 80, and A = 90. These five thresholds cor-
respond to weekly case incidence rates of 0.43, 1.47, 4.05,
9.5, and 32.35 (see Additional file 12: Figure S1),

Fig. 2 Schematic of NARX network with dx input and dy output delays: Each neuron produces a single output based on several real-valued
inputs to that neuron by forming a linear combination using its input weights and sometimes passing the output through a nonlinear activation
function: z¼φðPn

i¼1 wiuiþbÞ¼φðwTxþbÞ, where w denotes the vector of weights, u is the vector of inputs, b is the bias, and φ is a linear or
nonlinear activation function (e.g., linear, sigmoid, and hyperbolic tangent [82])
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respectively. In contrast to the relative risk scheme, under
the absolute risk scheme for a given percentile, e.g., A =
90, the threshold remains fixed but the size of the high
(and low)-risk group varies week to week based on the
scale of the epidemic. The fluctuation in group size for
each threshold is illustrated in Additional file 12: Figure
S1 for each classification scheme, A = 50 to A = 90.
Critically, our prediction approach differs from [45], in
that our model is trained to predict the risk level directly,
rather than predict the number of cases, which are post-
processed into risk categories. The performance of the
model is evaluated by comparing the estimated risk level
(high or low) to the actual risk level for all locations at a
specified time. The actual risk level is simply defined at
each time period t during the outbreak by ranking the
regions based on the number of reported case counts (or
incidence rates) and grouping them into high- and low-
risk groups according to the specified threshold and classi-
fication scheme.
The static variables used in the model include GDP

PPP, population density, number of physicians, and the
number of hospital beds for each region. The dynamic
variables include mosquito vector suitability, outbreak
status (both reported case counts and reported incidence
rates), total incoming travel volume, total outgoing travel
volume, and the two connectivity-risk variables defined
as in Eqs. (1.a) and (1.b), again for each region. Before
applying to the NARX model, all data values are normal-
ized to the range [0, 1].
A major contribution of this work is the flexible nature

of the model, which allows policy makers to be more or
less risk-averse in their planning and decision making.
Firstly, the risk indicator can be chosen by the modeler;
in this work, we consider two regional risk indicators, (i)
the number of reported cases and (ii) incidence rate.
Second, we consider a range of risk classification
schemes, which define the set of high-risk countries
based on either a relative or absolute threshold that can
be chosen at the discretion of the modeler, i.e., R = 0.1,
0.2, 0.3, 0.4, 0.5, and A = 90, 80, 70, 60, 50. Third, the
forecast window, N, is defined to range from N = 1, 2, 4,
8 to 12 weeks. Subsequently, any combination of risk in-
dicator, risk classification scheme, and forecasting win-
dow can be modeled.
In initial settings of the series-parallel NARX neural

network, multiple numbers of hidden layer neurons
and numbers of tapped delay lines (Eq. [2]) were
explored for training and testing of the model. Sensi-
tivity analysis revealed a minimal difference in the
performance of the model under different settings.
Therefore, for all experiments presented in this work,
the numbers of neural network hidden layer neurons
and tapped delay lines are kept constant as two and
four, respectively.

To train and test the model, the actual risk classifi-
cation for each region at each week during the epi-
demic, yk(t), was used. For each model run, e.g., a
specified risk indicator, risk classification scheme, and
forecasting window, the input and target vectors are
randomly divided into three sets:

1. Seventy percent for training, to tune model
parameters minimizing the mean square error
between the outputs and targets

2. Fifteen percent for validation, to measure network
generalization and to prevent overfitting, by halting
training when generalization stops improving (i.e.,
mean square error of validation samples starts
increasing)

3. Fifteen percent for testing, to provide an
independent measure of network performance
during and after training

The performance of the model is measured using two
metrics: (1) prediction accuracy (ACC) and (2) receiver
operating characteristic (ROC) curves. Prediction accur-
acy is defined as ACC = (TP + TN)/(TP + FP + TN + FN),
where true positive (TP) is the number of high-risk loca-
tions correctly predicted as high risk, false negative (FN)
is the number of high-risk locations incorrectly pre-
dicted as low risk, true negative (TN) is the number of
low-risk locations correctly predicted as low risk, and
false positive (FP) is the number of low-risk locations in-
correctly predicted as high risk. The second performance
metric, ROC curve [83], explores the effects on TP and
FP as the position of an arbitrary decision threshold is
varied, which in the context of this prediction problem
distinguished low- and high-risk locations. ROC curve
can be characterized as a single number using the area
under the ROC curve (AUC), with larger areas having
an AUC that approaches one indicating a more accurate
detection method. In addition to quantifying model
performance using these two metrics, we evaluate the
robustness of the predictions by comparing the ACC
across multiple runs that vary in their selection of
testing and training sets (resulting from the randomized
sampling).

Results
The model outcome reveals the set of locations expected
to be at high risk at a specified date in the future, i.e., N
weeks ahead of when the prediction is made. We apply
the model for all epidemiological weeks throughout the
epidemic and evaluate performance under each combin-
ation of (i) risk indicator, (ii) classification scheme, and
(iii) forecast window. For each model run, both ACC
and ROC AUC are computed.
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Model performance
Figures 3 and 4 exemplify the output of the proposed
model. Figure 3 illustrates the model predictions at a
country level for a 4-week prediction window, specific-
ally for Epi week 40, i.e., using data available up until
week 36. Figure 3a illustrates the actual risk percentile
each country is assigned to in week 40, based on re-
ported case counts. The results presented in the
remaining panels of Fig. 3 reveal the risk level (high or
low) predicted for each country under the five relative
risk classification schemes, namely (b) R = 0.1, (c) R =
0.2, (d) R = 0.3, (e) R = 0.4, and (f) R = 0.5, and whether

or not it was correct. For panels (b)–(e), green indicates
a correctly predicted low-risk country (TN), light gray
indicates an incorrectly predicted high-risk country (FP),
dark gray indicates an incorrectly predicted low-risk
country (FN), and the remaining color indicates a
correctly predicted high-risk country (TP). The inset
highlights the results for the Caribbean islands. The
figure also presents the average ACC over all regions
and ACC for just the Caribbean region (grouped similar
to [10]) for each classification scheme.
Figure 4 illustrates the model predictions at a coun-

try level for varying prediction windows, and a fixed

Fig. 3 Country prediction accuracy by relative risk level. Panel a illustrates the actual relative risk level assigned to each country at Epi week 40 for
a fixed forecast window, N = 4. Panels b–e each correspond to a different classification scheme, specifically b R = 0.1, c R = 0.2, d R = 0.3, e R = 0.4,
and f R = 0.5. The inset shown by the small rectangle highlights the actual and predicted risk in the Caribbean islands. For panels b–e, green
indicates a correctly predicted low-risk country, light gray indicates an incorrectly predicted high-risk country, and dark gray indicates an
incorrectly predicted low-risk country. The risk indicator used is case counts
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classification scheme of R = 0.2, again for Epi week
40. Figure 4a illustrates the actual risk classification
(high or low) each country is assigned to in Epi week
40, based on reported case counts. The results pre-
sented in the remaining panels of Fig. 4 reveal the
risk level (high or low) predicted for each country
under the five forecasting windows, specifically (b)
N = 1, (c) N = 2, (d) N = 4, (e) N = 8, and (f) N = 12,
and whether or not it was correct. For panels (b)–(e),
red indicates a correctly predicted high-risk country
(TP), green indicates a correctly predicted low-risk

country (TN), light gray indicates an incorrectly pre-
dicted high-risk country (FP), and dark gray indicates
an incorrectly predicted low-risk country (FN). The
inset highlights the results for the Caribbean islands.
Similar to Fig. 3, for each forecast window, the re-
ported ACC is averaged both over all regions and for
just the Caribbean.
The model’s performance and sensitivity to the

complete range of input parameters are summarized in
Additional file 13: Table S2. ACC is presented for each
combination of risk indicator (case count and incidence

Fig. 4 Country prediction accuracy by forecast window. Panel a illustrates the actual relative risk level assigned to each country at Epi week 40
for a fixed classification scheme, R = 0.2. Panels b–e each correspond to different forecast windows, specifically b N = 1, c N = 2, d N = 4, e N = 8,
and f N = 12. The inset shown by the small rectangle highlights the actual and predicted risk in the Caribbean islands. For panels b–e, the red
indicates a correctly predicted high-risk country and green indicates a correctly predicted low-risk country. Light gray indicates an incorrectly
predicted high-risk country, and dark gray indicates an incorrectly predicted low-risk country. The risk indicator used is case counts
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rate), classification scheme (i.e., R = 0.1, 0.2, 0.3, 0.4, 0.5
and A = 90, 80, 70, 60, 50) and forecast window (i.e., N =
1, 2, 4, 8, and 12), for selected Epi weeks throughout the
epidemic. ROC AUC (averaged over all locations and
all EPI weeks) is computed for all combinations of
risk indicator (case count and incidence rate), classifi-
cation scheme (i.e., R = 0.1, 0.2, 0.3, 0.4, 0.5 and A =
90, 80, 70, 60, 50), and forecast window (i.e., N = 1, 2,
4, 8, and 12).
Figures 5 and 6 illustrate trends in the model perform-

ance as a function of classification scheme and forecast
window, aggregated over space and time. Specifically,
Fig. 5 reveals the model performance (ACC, averaged
over all locations and all EPI weeks) for each

combination of risk classification scheme (i.e., R = 0.1,
0.2, 0.3, 0.4, and 0.5) and forecast window (i.e., N = 1, 2,
4, 8, and 12). The aggregated ROC curves (averaged over
all locations and all epidemiological weeks) for R = 0.4
are presented in Fig. 6 and reveal the (expected) in-
creased accuracy of the model as the forecast window is
reduced. The ROC AUC results are consistent with
ACC results presented in Fig. 5, highlighting the super-
ior performance of the 1- and 2-week ahead prediction
capability of the model. The ROC AUC value remains
above 0.91 for N = 1, 2 and above 0.83 for N = 4, both in-
dicating high predictive accuracy of the model. The
ROC curves for the other relative risk classification
schemes are presented in Additional file 14: Figure S2.

Fig. 5 Aggregate model performance measured by ACC (averaged over all locations and all weeks) for all combinations of relative risk
classification schemes (i.e., R = 0.1, 0.2, 0.3, 0.4, and 0.5) and forecast windows (i.e., N = 1, 2, 4, 8, and 12), where the risk indicator is case counts

Fig. 6 Aggregate model performance measured by ROC AUC (averaged over all locations and all weeks) for a fixed relative risk classification
scheme, i.e., R = 0.4, and forecast windows (i.e., N = 1, 2, 4, 8, and 12), where the risk indicator is case counts
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Global and regional analysis
We further explore the model’s performance at a re-
gional level by dividing the countries and territories in
the Americas into three groups, namely the Caribbean,
South America, and Central America, as in [10], and
compare with the Global performance, i.e., all countries.
For each group, the average performance of the model
in terms of ACC was evaluated and presented for each
combination of risk indicator (case count and incidence
rate), classification scheme (i.e., R = 0.1, 0.2, 0.3, 0.4, 0.5
and A = 90, 80, 70, 60, 50) and forecast window (i.e., N =
1, 2, 4, 8, and 12), aggregated over then entire epidemic
period (Table 2).

Model robustness
Figure 7a and b show how the ACC varies over 10 inde-
pendent runs of the model. This sensitivity analysis was
conducted for all combinations’ risk indicator, relative

risk classification schemes, and selected epidemiological
weeks (i.e., week number/starting date: 30/18 Jan 2016,
40/28 Mar 2016, 50/6 Jun 2016, 60/15 Aug 2016, and
70/24 Oct 2016). This time period represents a highly
complex period of the outbreak with country-level rank-
ings fluctuating substantially, as evidenced in Fig. 1. Due
to computation time, the sensitivity analysis was evalu-
ated for only the 4-week forecast window. The size of
the error bars illustrates the robustness of the proposed
modeling framework.

NARX feature selection
While the NARX framework does not provide assigned
weights for each input feature as output, sensitivity ana-
lysis can be conducted to help identify the key predictive
features. We tested the performance of the NARX
framework under three different combinations of input
features, with the particular objective of quantifying the

Table 2 Summary of global and regional model performance

Relative risk
classification
scheme

Prediction
window
size (N in
weeks)

Overall prediction accuracy (ACC)

Global Caribbean South America Central America

Risk indicator Risk indicator Risk indicator Risk indicator

Incidence Cases Incidence Cases Incidence Cases Incidence cases

R = 0.1 1 95.71 96.95 94.63 98.84 93.65 92.28 97.95 94.18

2 94.29 96.12 92.90 98.86 91.68 90.78 97.01 90.67

4 91.30 93.13 89.38 97.30 87.11 84.80 95.34 84.14

8 86.34 90.63 85.72 95.70 74.58 81.97 91.74 76.69

12 82.57 87.05 81.75 93.59 68.63 75.94 87.99 68.14

R = 0.2 1 93.07 93.54 91.73 94.94 92.65 90.16 92.64 87.33

2 90.01 92.27 88.30 93.93 89.37 88.60 89.26 84.68

4 84.68 88.09 82.66 89.72 82.77 84.40 82.28 76.49

8 75.22 81.87 71.58 83.96 69.34 76.27 73.73 65.25

12 68.96 78.25 65.01 80.92 62.75 71.30 63.73 58.09

R = 0.3 1 90.70 93.41 88.30 94.05 91.41 91.41 90.58 87.84

2 86.74 89.82 85.27 91.06 86.68 86.68 84.15 80.46

4 80.85 84.31 77.10 85.36 82.63 79.38 78.73 72.76

8 70.10 76.46 64.73 77.31 69.34 71.34 66.31 58.05

12 63.37 71.66 56.86 70.66 62.39 64.88 57.35 56.86

R = 0.4 1 90.46 91.68 88.25 91.31 93.03 90.54 87.84 86.64

2 86.79 88.52 84.62 88.24 89.76 86.30 83.10 81.51

4 79.36 81.67 76.41 81.97 83.04 75.44 72.57 71.83

8 68.47 72.85 61.67 71.12 73.19 71.19 62.29 54.66

12 59.82 65.22 51.89 60.33 62.21 60.96 53.19 53.43

R = 0.5 1 89.51 91.16 89.67 90.25 87.42 88.42 85.10 90.41

2 86.21 86.90 84.83 86.13 85.15 82.84 83.10 84.15

4 77.67 78.46 76.29 77.55 75.44 75.71 70.71 67.72

8 66.42 68.05 61.99 65.78 69.80 68.26 53.60 47.46

12 56.16 58.31 48.04 51.81 62.21 54.90 43.38 46.81
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role of travel data in our outbreak prediction model. We
considered (i) a simple “baseline” model using only case
count and incidence data; (ii) an expanded baseline
model that includes case and incidence data, and all
non-travel related variables; and (iii) the proposed model
which includes all features listed in Table 1. The results
comparing the performance of these three models with
the detailed list of input features for each is provided in
Additional file 15: Table S1. The results reveal the case-
related data (regional case counts and incidence rates) to
be the dominant explanatory variables for predicting
outbreak risk in a region, as would be expected. The in-
clusion of non-travel-related variables (regional suitabil-
ity, regional GDP, regional physicians, regional hospital
beds, regional population density) is not shown to im-
prove predictive capability over the baseline model and,

in fact, sometimes performs worse than the baseline
model. In contrast, the inclusion of travel data (weekly
case-weighted travel risk, weekly incidence-weighted
travel risk, weekly incoming travel volume, weekly out-
going travel volume) is revealed to improve the predict-
ive capability, especially for the shorter prediction
windows, with a higher AUC ROC for a majority (20 of
the 25) of the scenarios tested. These results support the
inclusion of the dynamic travel-related variables, which
substantially increase the complexity of the model (in-
puts) and, thus, justify the use of the NARX framework
selected.

Discussion
Our model uses a range of environmental, socio-demo-
graphic, and dynamic travel data to predict the spread of

Fig. 7 Model performance and robustness. ACC is averaged over all locations for selected epidemiological weeks when risk indicator is a case
counts and b incidence rate, and a fixed forecast windows (i.e., N = 4). The error bars represent the variability in expected ACC across ten runs for
each combination
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Zika in the Americas and the potential for local transmis-
sion. Therefore, our model expands on previous work by
considering the static and dynamic aspects of Zika virus
transmission that were previously done in isolation [48,
67, 84]. Overall, the proposed model is shown to be accur-
ate and robust, especially for shorter prediction windows
and higher risk thresholds. As would be expected, the per-
formance of the proposed model decreases as the predic-
tion window increases because of the inherent uncertainty
in outbreak evolution over long periods of time. Specific-
ally, the model is almost 80% accurate for 4-week ahead
prediction for all classification schemes and almost 90%
accurate for all 2-week ahead prediction scenarios, i.e., the
correct risk category of 9 out of 10 locations can always be
predicted, indicating strong performance. When the ob-
jective is to identify the top 10% of at-risk regions, the
average accuracy of the model remains above 87% for pre-
diction up to 12 weeks in advance. Generally, the model
performance is shown to decrease as the risk threshold is
reduced, e.g., the size of the high-risk group is increased,
representing a more risk-averse policy. The decrease in
performance is likely due to the increased size and fluctu-
ation of the high-risk country set over time for lower
thresholds. For example, for the absolute risk threshold of
A = 50, the number of countries classified as high risk fluc-
tuates between 1 and 34 throughout the course of the epi-
demic, compared with A = 90, where the set only ranges
from 0 to 12 (see Additional file 12: Figure S1). These re-
sults reveal the trade-off between desired forecast window
and precision of the high-risk group. The quantifiable
trade-off between the two model inputs (classification
scheme and forecast window) can be useful for policies
which may vary in desired planning objectives.
The results in Figs. 3 and 4, as well as Table 2, reveal a

similar trend at the regional level as was seen at the glo-
bal level, with a decrease in predictive accuracy as the
forecast window increases in length, and the high-risk
group increases in size. As shown in Fig. 3, the ACC re-
mains above 90% for R < 0.3, indicating superior model
performance. For example, at Epi week 40, R = 0.3 and
N = 4 (using outbreak data and other model variables up
to Epi week 36), there were 16 total regions classified as
high risk, of which the model correctly identified 13.
Furthermore, of the 16 high-risk regions, 8 were in the
Caribbean (i.e., Aruba, Curacao, Dominican Republic,
Guadeloupe, Haiti, Jamaica, Martinique, and Puerto
Rico), of which the model correctly identified 7. Only
Aruba in the Caribbean and Honduras and Panama were
the only regions incorrectly predicted as low risk in this
scenario; accurately classifying low-risk regions is also
important (and assuring the model is not too risk-
averse). For the same scenario, i.e., Epi week 40, R = 0.3
and N = 4, all 18 low-risk Caribbean locations and 17 of
the 19 low-risk non-Caribbean locations were accurately

classified by the model. Paraguay and Suriname were the
only regions incorrectly predicted as high risk. These re-
sults are consistent with the high reported accuracy of
the model, i.e., overall ACC = 90.15%; Caribbean ACC =
96.15%.
Figure 4 reveals that the performance of the model,

expectedly, deteriorates as the forecast window in-
creases; however, the average accuracy remains above
80% for prediction up to 8 weeks ahead and well about
90% for up to 4 weeks ahead. The prediction accuracy
for the Caribbean slightly lags the average performance
in the Americas. Specifically, for R = 0.2, 5 of the 11
Caribbean regions were designated as high-risk locations
at Epi week 40, i.e., Dominican Republic, Guadeloupe,
Jamaica, Martinique, and Puerto Rico. For a 1-week pre-
diction window, N = 1, the model was able to correctly
predict 3 of the high-risk regions (i.e., Jamaica,
Martinique, Puerto Rico); for N = 2, it correctly identified
two (i.e., Martinique, Puerto Rico); and for N = 4, it
again correctly identified three (i.e., Guadeloupe,
Martinique, Puerto Rico). However, the model did not
correctly predict any high-risk locations in the Carib-
bean at N = 8 and N = 12 window lengths. This error is
due to the low and sporadic reporting of Zika cases in
the region around week 30 and the high variability of
the outbreak over the 8- and 12-week period. Similar
prediction capability is illustrated for R = 0.5 (not shown
in the figure), in which case out of the 13 Caribbean
high-risk locations, the model correctly identifies all lo-
cations at N = 1, 2, and 4; 10 of the 13 locations at N = 8;
and only 1 of the 13 at N = 12.
When comparing performance across regions (see

Table 2), results reveal the predictive accuracy is best
for the Caribbean region, while predictions for Cen-
tral America were consistently the worst; the discrep-
ancy in performance between these groups increases
as the forecast window increases. The difference in
performance across regions can be attributed to the
high spatial heterogeneity of the outbreak patterns,
the relative ability of air travel to accurately capture
connectivity between locations, and errors in case
reporting that may vary by region. For example, the
Caribbean, which consists of more than twice as
many locations as any other group, first reported
cases around week 25 and remained affected through-
out the epidemic. In contrast, Central America
experienced a slow start to the outbreak (at least ac-
cording to case reports) with two exceptions, namely
Honduras and El Salvador. The large number of af-
fected region in the Caribbean, with more reported
cases distributed over a longer time period, contrib-
uted to the training of the model, thus improving the
predictive capability for these regions. Additionally,
the geographically isolated nature of Caribbean islands
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enables air travel to more accurately capture
incoming travel risk, unlike countries in Central and
South America, where individuals can also move
about using alternative modes, which are not
accounted for in this study. These factors combined
explain the higher predictive accuracy of the model
for the Caribbean region and, importantly, help to
identify the critical features and types of settings
under which this model is expected to perform best.
Finally, the robustness of the model predictions is

illustrated by the short error bars in Fig. 7. The model is
also demonstrated to perform consistently throughout the
course of the epidemic, with the exception of week 30, at
which time there was limited information available to
train the model, e.g., the outbreak was not yet reported in
a majority of the affected countries. Comparing Fig. 7a
and b reveals relatively similar performance for both risk
indicators, and Additional file 13: Table S2 demonstrates
the model’s flexibility and adaptability with respect to both
the risk scheme chosen, i.e., relative or absolute, and the
metric used to classify outbreak risk, i.e., number of cases
or incidence rate in a region.

Limitations
There are several limitations in this work. The underlying
data on case reporting vary by country and may not repre-
sent the true transmission patterns [85]. However, the
framework presented was flexible enough to account for
these biases, and we anticipate this will only be improved
as data become more robust. Additionally, 2015 travel
data was used in place of 2016 data, as has been done pre-
viously [50, 65, 66], which may not be fully representative
of travel behavior. Furthermore, air travel is the only mode
of travel accounted for; thus, additional person move-
ments between country pairs that share land borders are
unaccounted for, and as a result, the model likely underes-
timates the risk posed to some regions. This limitation
may partially explain the increased model performance for
the geographically isolated Caribbean Islands, which rep-
resent a large proportion of ZIKV-affected regions. This
study does not account for species of mosquitos other
than Ae. Aegypti, such as Ae. Albopictus, which can also
spread ZIKV; however, Ae. Aegypti are known to be the
primary spreading vector and responsible for the majority
of the ZIKV epidemic in the Americas [66]. Additionally,
alternative non-vector-borne mechanisms of transmission
are ignored. Lastly, due to the lack of spatial resolution of
case reports, we were limited to make country to country
spread estimates. Our work neglects the vast heterogeneity
in mosquito presence particularly in countries like Brazil.
We do however appreciate that there is considerable
spatial variation within countries that will bias our
estimates (i.e., northern vs. southern Brazil) and that this
may influence the weekly covariates used in this study.

We again hypothesize that models will become better as
the spatial resolution of available data increases.

Conclusions
We have introduced a flexible, predictive modeling frame-
work to forecast outbreak risk in real time that can be
scaled and readily applied in future outbreaks. An applica-
tion of the model was applied to the Zika epidemic in the
Americas at a weekly temporal resolution and country-
level spatial resolution, using a combination of population,
socioeconomic, epidemiological, travel pattern, and vector
suitability data. The model performance was evaluated for
various risk classification schemes, forecast windows, and
risk indicators and illustrated to be accurate and robust
across a broad range of these features. First, the model is
more accurate for shorter prediction windows and
restrictive risk classification schemes. Secondly, regional
analysis reveals superior predictive accuracy for the
Caribbean, suggesting the model to be best suited to
geographically isolated locations that are predominantly
connected via air travel. Predicting the spread to areas that
are relatively isolated has previously been shown to be dif-
ficult due to the stochastic nature of infectious disease
spread [86]. Thirdly, the model performed consistently
well at various stages throughout the course of the
outbreak, indicating its potential value at the early stages
of an epidemic. The model performance was not evaluated
against simpler alternative statistical models such as linear
regression, which was not the aim of this work. We do,
however, encourage rigorous model comparisons in future
work. The outcomes from the model can be used to better
guide outbreak resource allocation decisions and can be
easily adapted to model other vector-borne epidemics.
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Additional file 12: Figure S1. Number of high-risk countries each week
under all absolute risk classification schemes. The number of countries
classified as high risk each week for each absolute case incidence
threshold, ranging from A = 50 to A = 90. In parentheses is the weekly
incidence rate defining the high-risk threshold based on the percentile
(A) specified. (EMF 45 kb)

Additional file 13: Table S2. Summary of model performance. ACC is
presented for each combination of risk indicator (case count and
incidence rate), classification scheme (i.e., R = 0.1, 0.2, 0.3, 0.4, 0.5, and A =
90, 80, 70, 60, 50) and forecast window (i.e., N = 1, 2, 4, 8, and 12), for
selected Epi weeks throughout the epidemic. ROC AUC (averaged over
all locations and all EPI weeks) is computed for all combinations of risk
indicator (case count and incidence rate), classification scheme
(i.e., R = 0.1, 0.2, 0.3, 0.4, 0.5 and A = 90, 80, 70, 60, 50) and forecast
window (i.e., N = 1, 2, 4, 8 and 12). (DOCX 21 kb)

Additional file 14: Figure S2. Aggregate model performance measured
by ROC AUC. The ROC AUC is averaged over all locations and all weeks,
for each relative risk classification scheme, i.e., R = 0.1, 0.2, 0.3, 0.4, 0.5 and
forecast window i.e., N = 1, 2, 4, 8, and 12. For the results shown the risk
indicator is case counts. (DOCX 212 kb)

Additional file 15: Table S1. Summary of model sensitivity to feature
selection. The ACC and ROC AUC performance of the model is computed
and presented under different combinations of input data features. The
proposed model is compared against two baseline models; one includes
only case (and incidence) data, and the second includes case and all
non-travel related data, while the final proposed model includes all
features. The results presented are for the absolute risk classification
scheme, where the risk indicator is incidence rate. (DOCX 21 kb)
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