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Abstract

Background: Antimicrobial resistance is driven by the overuse of antibiotics. This study aimed to develop and
validate clinical prediction models for the risk of infection-related hospital admission with upper respiratory
infection (URTI), lower respiratory infection (LRTI) and urinary tract infection (UTI). These models were used to
investigate whether there is an association between the risk of an infection-related complication and the
probability of receiving an antibiotic prescription.

Methods: The study used electronic health record data from general practices contributing to the Clinical Practice
Research Datalink (CPRD GOLD) and Welsh Secure Anonymised Information Linkage (SAIL), both linked to hospital
records. Patients who visited their general practitioner with an incidental URTI, LRTI or UTI were included and
followed for 30 days for hospitalisation due to infection-related complications. Predictors included age, gender,
clinical and medication risk factors, ethnicity and socioeconomic status. Cox proportional hazards regression models
were used with predicted risks independently validated in SAIL.
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Results: The derivation and validation cohorts included 8.1 and 2.7 million patients in CPRD and SAIL, respectively.
A total of 7125 (0.09%) hospital admissions occurred in CPRD and 7685 (0.28%) in SAIL. Important predictors
included age and measures of comorbidity. Initial attempts at validating in SAIL (i.e. transporting the models with
no adjustment) indicated the need to recalibrate the models for age and underlying incidence of infections;
internal bootstrap validation of these updated models yielded C-statistics of 0.63 (LRTI), 0.69 (URTI) and 0.73 (UTI)
indicating good calibration. For all three infection types, the rate of antibiotic prescribing was not associated with
patients’ risk of infection-related hospital admissions.

Conclusion: The risk for infection-related hospital admissions varied substantially between patients, but prescribing
of antibiotics in primary care was not associated with risk of hospitalisation due to infection-related complications.
Our findings highlight the potential role of clinical prediction models to help inform decisions of prescribing of
antibiotics in primary care.

Keywords: Antimicrobial resistance, Clinical risk prediction, Common infections, Cox regression, Risk-based
prescribing

Background

Antimicrobial resistance (AMR) is one of the biggest
global threats facing modern healthcare and medicine
[1, 2]. A recent World Health Organization report
highlighted the urgency of this problem, identifying
that drug-resistant infections cause at least 700,000
deaths globally a year [3]. This number could rise to
10 million per year by 2050 if no action is taken [4–
6]. One driving factor behind the emergence and per-
sistence of AMR is the overuse and misuse of antibi-
otics [7]. It is not purely a contemporary issue, as
government committees in the UK discussed strat-
egies to optimise antibiotic usage more than 20 years
ago [8, 9]. Despite this, the way physicians make the
decision on whether to prescribe has changed little in
that time and is still largely reliant on their immedi-
ate assessment of a patient’s symptoms.
Primary care was responsible for prescribing over 80%

of all antibiotics in the National Health Service (NHS) in
2017 [10]. Earlier research has examined antibiotic pre-
scribing patterns in primary care in the UK and found that
it is heterogeneous regionally and nationally [11–13]. A
recent study highlighted that substantial variability exists
both within and between general practices and that there
are multiple drivers behind the decision to prescribe [14].
Together, this suggests that a more evidence-based ap-
proach to decision-making for antibiotic prescribing is re-
quired to achieve better patient care. Prescribing based on
an objective evaluation of a patient’s risk is a relatively
new concept but is gaining popularity. For example, pre-
scribing of statins is now guided by the QRISK algorithm
[15], used to estimate a patient’s risk of developing cardio-
vascular disease in the following 10-year period. Applying
a similar approach to antibiotic prescribing could facilitate
a more targeted use of a medication that is becoming in-
creasingly ineffective. However, to date, there are no vali-
dated risk models for this purpose.

The aim of this study was twofold: first, to develop
and validate prognostic models that predict the risk of
developing infection-related complications in patients
who consult their general practitioner (GP) for a com-
mon infection; second, to use these models to investigate
whether there is an association between the risk of an
infection-related complication and the rate of receiving
an antibiotic prescription. Three common infections
were investigated: lower respiratory tract infections
(LRTI), urinary tract infections (UTI) and upper respira-
tory tract infections (URTI).

Methods
This was a retrospective cohort study using data from
two sources: the Clinical Practice Research Datalink
(CPRD GOLD) and the Secure Anonymised Information
Linkage (SAIL) databases, which made up the derivation
and validation cohorts, respectively. CPRD GOLD con-
tains longitudinal, anonymised, patient-level electronic
health records (EHRs) from general practices in the UK
with more than 5 million active patient records repre-
senting about 8% of the UK population [16]. SAIL con-
tains data from approximately 80% of general practices
in Wales and covers around 75% of the 3 million popu-
lation [17–19].
The EHRs included clinical diagnoses, prescribed

medication, vaccination history, diagnostic testing, life-
style information and clinical referrals, as well as pa-
tient’s age, gender, ethnicity, smoking history and body
mass index (BMI). Patient-level socioeconomic informa-
tion was available through linkage of the postcode of a
patient’s residence to the Index of Multiple Deprivation
(IMD) [20]. Patient-level IMD was aggregated based on
quintiles. Antibiotic prescriptions were determined using
the British National Formulary.
The derivation dataset from CPRD comprised rou-

tinely collected data from 587 general practices in
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England from 1 January 2000 to 31 December 2015.
Patient-level data from the general practices were linked
to hospitalisation data (HES for CPRD GOLD, PEDW
for SAIL) containing information on the date of hospital
admission and the clinical diagnoses established at and
during admission (coded using ICD10 codes). Linked
data were available for about half of CPRD practices
which are all located in England and for all the SAIL
practices. Patients were followed for 30 days after their
initial GP consultation to determine if they suffered fur-
ther complications as a result of their infection. The val-
idation cohort (SAIL) covered 338 general practices in
Wales from 1 January 2000 to 15 March 2017.

Study population
The study population included patients consulting their
GP for one of three infections (LRTI, UTI and URTI in-
cluding coughs, colds and sore throats). READ codes
(version 2 for CPRD and version 3 for SAIL) were used
to extract EHRs for each infection-related consultation.
Code lists used in this study are available on the Clinical
Codes Repository [21]. Across both datasets, we re-
stricted the study population to incidental consultations
(i.e. no record of previous consultation for these

infections or antibiotic prescribing 3 months before). Pa-
tients could appear in the dataset on multiple occasions
(as separate records) due to the long-term nature of the
study. For the development of the clinical prediction
models (CPMs), we excluded all patients who were pre-
scribed an antibiotic on the day of their consultation.

Outcomes
The primary outcome was the time between a patient’s
GP consultation and hospital admission due to
infection-related complications, with censoring at
30 days. Hospital admissions due to infection-related
complications were identified by the ICD10 codes for
the primary admission diagnosis, where we considered a
broad set of infections (such as hospital admission for
LRTI, pneumonia, sepsis); the full list is also available at
clinicalcodes.org [21]. Hospital admission (for any rea-
son) was also used as an additional outcome for the
study.

Predictor variables
The full list of potential predictors was derived based on
a literature review and discussions with clinical experts;
this list is outlined in Table 1.

Table 1 List of potential predictors considered for the risk prediction models

Factor Additional information

Age Age recorded at the time of consultation categorised into 11 groups: < 5 years, 5–10, 10–15, 15–20, 20–30,
30–40, 40–50, 50–60, 60–70, 70–80, 80+. The exception was for the UTI model where there were no events
in the 10–15 category (merged to create a 10–20 years category).

Gender Male/female

Charlson Comorbidity Index [22] A score summarising the number and severity of comorbidities affecting the patient. The overall score ranges
from 0 to 31 [23] but was categorised into five groups:
• Very low—score = 0 or 1
• Low—score = 2 or 3
• Medium—score = 4 or 5
• High—score = 6 or 7
• Very High—score > 7

Socioeconomic status Determined by linking the postcode of a patient’s residence to the Index of Multiple Deprivation 2010
classification [24]. IMD was categorised into quintiles: IMD 1 (least deprived) to IMD 5 (most deprived).

Ethnicity Split into two categories:
• White and not recorded/unknown
• Combined ethnic minorities

Prescriptions (non-antibiotics) in the
previous year

The number of non-antibiotic prescriptions the patient received in the previous year. This was categorised
into tertiles (low, medium and high) and was done independently for each infection. Antibiotic users were
included in this categorisation to allow the model to be extensible to that group, although they were not
included in the datasets to which the models were fitted.

Flu vaccinations A binary value to indicate whether the patient had a flu vaccination in the previous year.

Hospitalisation in the previous year A binary value to indicate whether the patient was hospitalised in the previous year.

Outpatient referral in the previous
year

A binary value to indicate whether the patient had a hospital outpatient referral in the previous year.

Year of consultation Year in which the initial GP consultation took place.

Season of consultation • Spring (March to May)
• Summer (June to August)
• Autumn (September to November)
• Winter (December to February)
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For all infections, patient data for smoking status and
BMI were missing for over 50% of patients; hence, they
were not considered during the modelling stage. Imput-
ation would not have been feasible without introducing
unnecessary bias [25]. Patients for whom IMD informa-
tion was not available (0.12%) were also removed from
the derivation dataset; this step was not required for the
validation dataset as the IMD linkage was complete. For
patient ethnicity, white and unknown were combined
(following the approach taken by Hippisley-Cox et al.
[26]), with the remaining ethnicities forming a category
labelled combined minorities.

Statistical methods
Cox proportional hazards regression models were fitted
to the derivation cohort. Patients entered the study fol-
lowing a consultation with a GP for one of the three
common infections and were monitored for the follow-
ing 30 days. Age was categorised into 11 age groups;

initial investigation using cubic splines was considered
but found to be problematic due to the sharp increases
in incidence rates in patients > 50 years, causing the
models to overestimate the risk in older patients.
To validate the performance of the models developed

in CPRD GOLD, they were applied to the SAIL dataset
(geographical external validation). Predictive perform-
ance was assessed in terms of discrimination (ability of
the models to differentiate those who experienced the
outcome from those that did not), using established
metrics (R2 statistic for survival data and the concord-
ance value/C-statistic). Additionally, model calibration
was quantified by comparing the observed and predicted
risks for decile groups based on the predicted risk of the
patient.
Model updating methods were applied (see Supple-

ment 1) to CPMs that were found to be miscalibrated in
the validation cohort (SAIL). These updated models
were internally validated using bootstrap resampling to

Table 2 Baseline characteristics of the derivation and validation cohorts (i.e. incidental antibiotic users with no antibiotic prescription
at the date of consultation and in previous 3 months)

CPRD LRTI SAIL LRTI CPRD URTI SAIL URTI CPRD UTI SAIL UTI

Total, N 1,419,725 466,814 5,717,194 1,963,684 973,611 287,897

Males, N (%) 628,695 (44.28) 218,594 (46.83) 2,423,833 (42.4) 878,512 (44.74) 132,359 (13.59) 41,349 (14.37)

Females, N (%) 791,030 (55.72) 248,220 (53.17) 3,293,361 (57.6) 1,085,172 (55.26) 841,252 (86.41) 246,458 (85.63)

Median age, years 53 42 33 16 52 41

Age category, N (%)

≤ 5 years 155,053 (10.92) 107,097 (22.94) 1,061,821 (18.57) 628,694 (32.02) 26,824 (2.76) 18,273 (6.35)

6–18 91,898 (6.47) 38,852 (8.32) 1,012,710 (17.71) 399,829 (20.36) 69,958 (7.19) 30,133 (10.47)

18–40 242,421 (17.08) 80,786 (17.31) 1,323,811 (23.15) 432,553 (22.03) 247,607 (25.43) 93,602 (32.52)

41–60 377,157 (26.57) 91,511 (19.6) 1,174,640 (20.55) 252,776 (12.87) 240,361 (24.69) 55,948 (19.22)

61–80 414,346 (29.18) 102,210 (21.9) 920,051 (16.09) 188,988 (9.62) 264,576 (27.17) 55,318 (19.22)

Over 80 138,850 (9.78) 46,358 (9.93) 224,161 (3.92) 60,844 (3.1) 124,285 (12.77) 34,533 (12)

Ethnicity, N (%)

White and unknown 1,376,529 (96.96) 459,587 (98.45) 5,420,768 (94.82) 1,917,158 (97.63) 954,772 (97.14) 283,139 (98.38)

Combined minorities 43,196 (3.04) 7227 (1.55) 296,426 (5.18) 46,526 (2.37) 27,839 (2.86) 4668 (1.62)

Charlson Comorbidity Index, N (%)

Very low 747,870 (52.68) 306,723 (65.71) 3,973,455 (69.5) 1,577,432 (80.33) 576,725 (59.24) 198,433 (68.95)

Low 513,754 (36.19) 123,116 (26.37) 1,446,313 (25.3) 323,548 (16.48) 289,691 (29.75) 65,104 (22.62)

Medium 118,117 (8.32) 27,325 (5.85) 227,013 (3.97) 47,483 (2.42) 78,432 (8.06) 17,459 (6.07)

High 28,968 (2.04) 7078 (1.52) 51,882 (0.91) 11,425 (0.58) 20,807 (2.14) 5028 (1.75)

Very high 11,016 (0.78) 2572 (0.55) 18,531 (0.32) 3796 (0.19) 7956 (0.82) 1783 (0.62)

IMD quintile, N (%)

1—most affluent 307,540 (21.66) 112,734 (24.15) 1,321,579 (23.12) 456,651 (23.25) 230,673 (23.69) 58,126 (20.2)

2 312,919 (22.04) 92,361 (19.79) 1,289,612 (22.56) 372,911 (18.99) 234,671 (24.1) 51,635 (17.94)

3 276,524 (19.48) 95,484 (20.45) 1,128,934 (19.75) 378,739 (19.29) 197,637 (20.3) 57,876 (20.11)

4 271,090 (19.09) 77,055 (16.51) 1,078,634 (18.87) 335,535 (17.09) 174,247 (17.9) 53,226 (18.49)

5—most deprived 251,652 (17.73) 89,180 (19.1) 898,435 (15.71) 419,848 (21.38) 136,383 (14.01) 66,944 (23.26)
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correct for in-sample optimism (since we did not have a
further independent dataset to perform further geo-
graphical external validation). After completing model
derivation and updating, there were six CPMs: one for
each of the three indications, across both CPRD and
SAIL. To investigate antibiotic prescribing according to
the predicted risk, the models were applied to all pa-
tients (non-antibiotic and antibiotic users) in the rele-
vant dataset (e.g. the LRTI CPRD model to all LRTI
patients in the CPRD dataset). Patients were categorised
into 10 groups based on their risk level, and the pre-
scribing rate for each group was compared.

The extent of risk-based prescribing of antibiotics was
evaluated in the CPRD cohort containing both antibiotic
and non-antibiotic users with an incidental common in-
fection by first estimating the risks of infection-related
hospital admission. This was based on the predictions by
the three development prediction models. The probabil-
ity of patients who received an antibiotic prescription
was then estimated for each of the three common infec-
tions. The study considered non-linear relationships be-
tween whether patients received an antibiotic and the
risk of antibiotic prescribing using fractional polynomial
models [26]. The final fractional polynomial model was

Table 3 Counts and incidence rates for events of hospitalisation due to infection-related complications for the non-antibiotic users
in both the validation and derivation cohorts

CPRD LRTI, N cases
(incidence)#

SAIL LRTI, N cases
(incidence)#

CPRD URTI, N cases
(incidence)#

SAIL URTI, N cases
(incidence)#

CPRD UTI, N cases
(incidence)#

SAIL UTI, N cases
(incidence)#

Total events, N 1646 1777 3702 7117 249 319

Males 780 (10.76) 902 (24.90) 1783 (1.38) 3797(7.55) 92 (3.40) 121 (11.70)

Females 866 (9.89) 875 (22.64) 1919 (1.12) 3320 (5.48) 157 (1.71) 198 (5.62)

Age category

≤ 5 years 220 (6.99) 793 (32.06) 1131 (1.56) 4957 (11.41) 9 (1.07) 43 (7.66)

6–18 29 (3.65) 27 (5.99) 253 (0.45) 567 (2.55) 6 (0.56) 15 (2.99)

18–40 79 (3.71) 56 (6.51) 502 (0.80) 469 (2.16) 7 (0.25) 13 (1.14)

41–60 170 (5.33) 103 (11.90) 450 (0.81) 279 (2.32) 18 (0.79) 19 (3.17)

61–80 475 (11.38) 292 (19.74) 662 (1.57) 368 (4.33) 75 (2.72) 72 (8.36)

Over 80 673 (26.15) 506 (37.27) 704 (6.52) 477 (15.74) 134 (6.27) 157 (17.47)

Charlson Comorbidity Index

1—very low 579 (6.74) 1152 (22.36) 2139 (0.98) 6156 (6.67) 48 (0.70) 136 (4.46)

2 605 (11.19) 379 (22.54) 1014 (1.46) 694 (4.37) 104 (2.99) 109 (10.65)

3 307 (21.07) 171 (36.67) 362 (3.61) 180 (8.68) 49 (4.48) 49 (14.47)

4 108 (27.45) 50 (37.56) 130 (5.77) 59 (11.98) 37 (11.11) 17 (16.25)

5—very high 47 (28.58) 25 (46.26) 57 (7.37) 28 (18.03) 11 (7.96) 8 (18.72)

IMD quintile

1—most affluent 329 (9.73) 436 (25.36) 762 (1.09) 1946 (7.33) 52 (1.98) 70 (7.76)

2 392 (11.33) 358 (24.39) 744 (1.11) 1451 (7.09) 52 (1.90) 51 (6.23)

3 343 (10.73) 344 (22.53) 723 (1.23) 1290 (6.14) 46 (1.93) 65 (7.23)

4 318 (10.68) 305 (23.61) 769 (1.36) 1105 (5.97) 51 (2.32) 71 (8.00)

5—least affluent 264 (8.83) 334 (22.54) 704 (1.46) 1325 (5.44) 48 (2.46) 62 (5.89)

Ethnicity

White or unknown 1578 (10.13) 1762 (23.80) 3398 (1.20) 6954 (6.44) 244 (2.12) 317 (7.05)

Combined minorities 68 (15.79) 15 (18.09) 304 (1.72) 163 (5.46) 5 (1.29) 2 (3.31)

Hospitalisation (in previous
year)

161 (23.33) 143 (35.97) 236 (4.22) 320 (13.43) 38 (6.06) 51 (20.74)

Outpatient referral (in
previous year)

1163 (12.08) 837 (27.07) 2434 (1.53) 2832 (7.22) 194 (2.45) 162 (7.69)

Flu vaccination (in previous
year)

920 (14.80) 553 (25.61) 1332 (2.21) 1059 (6.60) 150 (3.60) 146 (11.20)

#Incidence rates of the number of events per 1000 person-months
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selected by Akaike Information Criterion (AIC) from the
combination of two terms for predicted risk of infection-
related hospital admissions including x-2, x-1, x-0.5,
log(x0), x0.5, x1, x2, x3. The models were adjusted for
the calendar year.
The analysis was done using R versions 3.3.3 to 3.5

[27] depending on the analysis environment used for the
two datasets. The ‘survival’ package [28] was used to fit
the survival models and estimate hazard ratios (HRs)
and 95% confidence intervals (CIs). Other packages used

included the ‘pec’ package [29] to calculate survival
probabilities, the ‘survminer’ package [30] to check the
proportional hazards assumption and the ‘rms’ package
[31] for the bootstrap validation. The polynomial ana-
lysis was done by R package “mfp” [32].

Results
A total of 10.8 million incidental consultations for URTI,
LRTI and UTI were analysed in this study: 8,110,530
from CPRD and 2,727,646 from SAIL. There were 6,311,

Table 4 HRs for the incidence of hospital admission due to infection-related complications in the derivation cohort (CPRD GOLD)

LRTI, HR (95% CI) URTI, HR (95% CI) UTI, HR (95% CI)

Age category

< 5 2.43 (1.54–3.82) 2.20 (1.88–2.56) 10.48 (2.20–49.83)

5–10 2.18 (1.22–3.90) 0.67 (0.54–0.83) 9.21 (1.84–46.00)

10–15 1.30 (0.61–2.76) 0.38 (0.29–0.51) 0.88 (0.08–9.76)

15–20 1.21 (0.57–2.56) 0.91 (0.72–1.15)

30–40 1.35 (0.81–2.27) 1.08 (0.89–1.29) 2.00 (0.37–10.95)

40–50 1.63 (1.00–2.65) 0.93 (0.77–1.12) 3.73 (0.79–17.61)

50–60 1.75 (1.09–2.81) 0.93 (0.77–1.13) 4.05 (0.88–18.65)

60–70 1.85 (1.16–2.95) 1.12 (0.92–1.36) 4.55 (1.02–20.22)

70–80 3.18 (2.01–5.03) 1.70 (1.40–2.06) 9.78 (2.30–41.61)

80+ 5.76 (3.67–9.05) 4.82 (4.01–5.78) 15.23 (3.63–63.97)

Charlson Comorbidity Index

2 1.05 (0.92–1.21) 1.33 (1.21–1.45) 2.08 (1.42–3.05)

3 1.28 (1.08–1.51) 1.76 (1.53–2.01) 1.95 (1.23–3.08)

4 1.43 (1.13–1.80) 2.27 (1.86–2.76) 4.24 (2.57–6.97)

5 1.58 (1.15–2.16) 2.93 (2.22–3.86) 3.10 (1.53–6.27)

Ethnicity

Combined minorities 2.12 (1.66–2.72) 1.54 (1.36–1.74) 1.03 (0.42–2.51)

Prescription (non-antibiotis) category

Medium 1.35 (1.13–1.60) 0.86 (0.77–0.94) 2.84 (1.44–5.61)

High 2.09 (1.71–2.57) 1.15 (1.02–1.29) 4.59 (2.22–9.51)

Gender—female 0.81 (0.73–0.89) 0.82 (0.76–0.87) 0.72 (0.56–0.94)

Flu vaccination 0.84 (0.74–0.94) 0.97 (0.88–1.06) 0.69 (0.52–0.92)

IMD quintile

2 1.10 (0.95–1.27) 0.97 (0.88–1.07) 0.89 (0.6–1.30)

3 1.03 (0.88–1.20) 1.06 (0.96–1.17) 0.88 (0.59–1.31)

4 1.06 (0.91–1.24) 1.19 (1.07–1.31) 1.15 (0.78–1.69)

5 0.87 (0.74–1.03) 1.26 (1.14–1.40) 1.29 (0.87–1.92)

Outpatient referral in previous year 1.07 (0.95–1.20) 1.25 (1.16–1.35) 0.84 (0.61–1.17)

Season

Spring 1.05 (0.91–1.22) 0.86 (0.79–0.94) 0.81 (0.56–1.17)

Summer 1.10 (0.94–1.30) 0.74 (0.66–0.82) 0.92 (0.64–1.31)

Winter 1.37 (1.20–1.55) 1.03 (0.95–1.11) 1.16 (0.83–1.63)

Year of consultation 1.00 (0.98–1.01) 0.99 (0.98–1.00) 0.99 (0.96–1.02)

Hospitalisation in previous year 1.58 (1.33–1.86) 2.12 (1.85–2.43) 1.59 (1.11–2.26)
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321 antibiotic users (58.23%) and 4,526,855 non-
antibiotic users (41.77%), with 33,067 events recorded in
CPRD and SAIL combined. Comparisons between the
two datasets indicate that the validation cohort had a
much younger demographic (mean age CPRD = 38.98;
SAIL = 29.80), although most other covariates had
broadly similar values (Table 2). The disparity in mean
age can be accounted for by the SAIL dataset having
many more patients in the under 6 age group (e.g. in
CPRD, the prevalence of URTIs was 18.6%, whereas for
SAIL, it was 32.0%), which serves to reduce the average
age of the population. The high level of white and un-
known ethnicity is also striking. This is primarily due to
the high level of unrecorded data for ethnicity, and the
values are in line with other similar studies [33].
The incidence rate of events was low among non-

antibiotic users, with the mean rate being 1.71 cases per
1000 person-months in the derivation cohort and 7.49
in the validation cohort. For both datasets, the incidence
rate increases with age (for adults) and increasing Charl-
son Comorbidity Index (Table 3). Most of the hospital
admissions for infection-related complications were for
LRTI (CPRD, 10.28 cases per 1000 person-months;
SAIL, 23.73), followed by UTI (2.09; 7.00) then URTI
(1.23; 6.42).

CPM derivation
After developing the CPMs within CPRD, age proved to
be the most influential characteristic in determining the
risk level across all infections (Table 4). The HRs were
highest for the youngest and oldest patients taking the
values of 2.43 (LRTI), 2.20 (URTI) and 10.48 (UTI) for the
< 5 category, and 5.76 (LRTI), 4.82 (URTI) and as high as
15.23 (UTI) for the 80+ category. Other factors that had a
strong impact on risk were those detailing the patient’s
past medical history such as their Charlson Comorbidity
Index and previous history of hospitalisation. As expected,
within the development cohort (CPRD), the models were
well-calibrated (Fig. 1), and the concordance values re-
ported ranged from 0.71 to 0.82 (Table 5).

Model external validation
During first attempts at validation in the SAIL cohort
(i.e. geographical validation), the concordance values
were 0.61 (LRTI), 0.68 (URTI) and 0.73 (UTI), but poor
calibration was observed; the Brier score (averaged over
10 risk groups) was 13.17 cases per 1000 person-months
for LRTI (URTI, 5.25; UTI, 4.87). The parameter causing
the most divergence when transporting the models was

Fig. 1 Predicted against observed risks for non-antibiotic users in
the derivation cohort (CPRD GOLD) for each decile (stratified by risk
level). x-axis: predicted risk (N events per 1000 person-months). y-
axis: observed risk (N events per 1000 person-months)
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age. Therefore, we updated all of the models to adjust
for these differences using an additional age factor (fur-
ther justification is provided in Supplement 1). Once
these models had been refitted (overall adjustment of
age shown in Table 6), the calibration was much better
(Fig. 2)—Brier score, 3.78 cases per 1000 person-months
for LRTI (URTI, 0.92; UTI, 1.76). Bootstrap validation of
these models in the validation cohort leads to optimism-
corrected concordance values of LRTI, 0.63; URTI, 0.69;
and UTI, 0.73. Supplement 2 provides the TRIPOD
Checklist for prediction model development.

Antibiotic prescribing rates
The probability of antibiotic prescribing was plotted for
each of the 10 stratified groups of predicted risk for each
infection and dataset (Fig. 3). Prescribing rates remained
relatively constant across all levels of predicted risk. For
all three infection types, patients with very low risks of
being hospitalised for infection-related complications
were as likely to be prescribed an antibiotic as those with
much higher risks.
Additional sensitivity analysis was done using the out-

come of hospitalisation for any reason—application of
these models to all patients reiterated this finding show-
ing that prescribing rates were relatively uniform across
all risk groups.

Discussion
This study developed three clinical prediction models to
predict the risk of infection-related hospitalisation fol-
lowing a GP consultation for URTI, LRTI and UTI using
the population-based CPRD and SAIL datasets. The
models were successfully adjusted and updated to gener-
alise over datasets covering England and Wales. The
models were then applied to datasets containing both
antibiotic and non-antibiotic users, and we observed that
the decision to prescribe an antibiotic was independent
of the risk of hospitalisation due to infection-related
complications. Furthermore, it was found that the risk
levels of patients vary significantly both across the pa-
tient cohort and by indication, which indicates that risk
scores provide enough discrimination between patients
to offer a viable alternative to traditional approaches to
prescribing largely based on symptoms alone. Together,
these two observations suggest a potential way to
achieve further optimisation of antibiotic usage in pri-
mary care.
In previous work, there have been very few at-

tempts to apply clinical risk prediction modelling to
the management of infectious conditions. The predic-
tion models that have been developed in this area
have focused on specific resistance strains [34, 35] or
specific age groups [36] and have had much smaller
patient cohorts compared to the size of the popula-
tions considered in this study. The major strength of
this work is the utilisation of two large independent
population-based EHR datasets (both in terms of vol-
ume and timespan) for model development and valid-
ation. Moreover, individual risk models were
developed for each infectious condition, rather than
combining multiple conditions in a single model (as
others have done [15, 37]).
In 2016, the King’s Fund in the UK examined the

pressures of general practice and highlighted the is-
sues faced by practitioners such as increasing work-
load, greater complexity of work and pressures to
meet strict deadlines [38]. In this context, a clinical
risk prediction model to objectively assess a patient’s
risk of hospitalisation may be welcomed. Estimated
risk scores could be presented to the patient, sup-
porting a shared decision-making approach during

Table 5 Performance metrics for the prediction models fitted to the derivation cohort (CPRD GOLD)

LRTI URTI UTI

C-statistic (area under curve) 0.719 (se = 0.007) 0.71 (se = 0.005) 0.821 (se = 0.018)

R2 0.006 (max possible = 0.217) 0.001 (max possible = 0.036) 0.003 (max possible = 0.048)

Likelihood ratio test 1032 on 29 df, p = 0 2571 on 29 df, p = 0 366.2 on 28 df, p = 0

Wald test 1023 on 29 df, p = 0 3005 on 29 df, p = 0 258.3 on 28 df, p = 0

Score (log-rank) test 1218 on 29 df, p = 0 3926 on 29 df, p = 0 436.9 on 28 df, p = 0

Internal bootstrap concordance (C-statistic) 0.719 0.710 0.821

Table 6 Adjusted age HRs following model adjustment in the
validation cohort (SAIL)

LRTI, HR (95% CI) URTI, HR (95% CI) UTI, HR (95% CI)

Age category

< 5 5.47 (2.25–13.26) 5.85 (4.36–7.78) 11.63 (0.97–140.52)

5–10 1.29 (0.40–4.13) 1.71 (1.18–2.47) 3.96 (0.26–58.42)

10–15 1.29 (0.29–5.66) 0.82 (0.50–1.36) 3.27 (0.10–107.46)

15–20 0.76 (0.15–4.02) 1.03 (0.66–1.62)

30–40 1.24 (0.43–3.61) 1.00 (0.69–1.46) 1.76 (0.10–30.33)

40–50 1.16 (0.41–3.29) 0.97 (0.65–1.42) 1.42 (0.09–22.89)

50–60 1.91 (0.72–5.00) 0.94 (0.62–1.41) 3.00 (0.23–38.79)

60–70 1.81 (0.72–4.66) 1.03 (0.69–1.55) 3.32 (0.28–39.43)

70–80 2.45 (0.98–6.09) 1.65 (1.12–2.41) 4.40 (0.41–47.44)

80+ 4.03 (1.65–9.77) 4.29 (3.05–6.01) 7.62 (0.76–78.04)
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the consultation. Additional work is needed to valid-
ate the clinical risk prediction models before they
could be used in clinical practice, but this work rep-
resents the first step towards changing the way GPs
assess and treat patients for multiple common
infections.
Whilst some may argue that the link between anti-

biotic prescribing and infection-related hospitalisation
is not necessarily causal, it is indisputable that antibi-
otics are the most effective large-scale treatment for
common infections. Hence, ensuring the efficient use
of antibiotics in primary care is the easiest way to
manage the cases of infection-related hospitalisation
downstream.
Simplified versions of the models presented here have

been made available to medical professionals as an edu-
cational resource through a risk calculator tool (Fig. 4)
as part of the BRIT Antibiotic Prescribing Dashboard,
which is on the HSCN (Health and Social Network).
Whilst the models are able to advise on which patients
are at the highest risk, they do not explicitly identify
which patients should or should not be offered treat-
ment. Given that antibiotics are relatively cheap and very
effective, the decision over whether to prescribe is often
complicated by the fact that not treating a serious bac-
terial infection has a much higher cost to the individual
than over-treating, leading to physicians prescribing “just
in case” [39]. Patients with infections can deteriorate
quickly (possibly over a matter of hours), whereas other
clinical prediction models investigate conditions (e.g.
cardiovascular disease or types of cancer [33, 40, 41])
that develop over a much longer period of time and
allow a longer period in which to intervene.
Conversely, it cannot be automatically assumed that

antibiotics should only be given to patients with a high
risk of infection-related hospitalisation—clinical assess-
ment is a crucial part of the process, and a risk-based
judgement is never complete on its own. There are many
additional factors that can complicate the decision-
making process including whether the infection is genu-
ine, if symptoms will improve with treatment, and po-
tential for infection-related complications. Despite this,
the calculators provide a further complementary tool
and could work to counteract individual proclivities in
prescribing.
Model transportability was a problem during the valid-

ation phase of the work, showing that it was difficult to

Fig. 2 Predicted against observed risks for non-antibiotic users in
the validation cohort (SAIL) for each decile (stratified by risk level);
models were adjusted for the validation cohort by adding an extra
predictor to model age in the derivation cohort. x-axis: predicted risk
(N events per 1000 person-months). y-axis: observed risk (N events
per 1000 person-months)
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find a model that generalised well to both populations.
Domain validation (as done in this study) is notoriously
difficult [42] and rarely attempted [43, 44] because it is
not easy to account for the demographic contrast and, in
this case, local infectious factors. Here, the validation co-
hort (SAIL) showed a much higher incidence rate of
complications overall, in particular, among young
children (age < 5), part of which could be attributable
to the measles epidemics in South Wales in recent
years [45]. Wide CIs were also observed for some
groups, e.g. for patients 80+, UTI—this is likely down
to the low occurrence of events for this indication,
particularly for the baseline group (age 20–30), lead-
ing to low statistical power. Despite this difficulty,
standard approaches were applied to account for
these differences and underpin the results presented,
by allowing us to develop CPRD-specific and SAIL-
specific models, using the former as the foundations
for the latter.
The main limitation with a study of this type is that

EHRs can only provide a static snapshot of a patient’s con-
sultation. Because of this, there is no way to fully under-
stand the severity or type of symptoms seen by the
practitioner. Here, we separated consultations into three
different infections using a single umbrella term to de-
scribe many different READ codes, giving the impression

that all cases of a single infection have the same level of
seriousness, when, in reality, that is not the case. The vast
array of codes available and variety by which the same
condition can be coded adds to the complexity of con-
ducting this type of analysis [46]. However, despite these
limitations, this was the best approach because it would
have been very difficult to build the prediction models for
individual read codes as the incidence rate would have
been too low. Our models were also limited by the selec-
tion of the predictors; in particular, some factors were not
included. For instance, despite a clear regional variation in
primary care antibiotic prescribing [14, 47], this aspect
was not built into the prediction models as an explanatory
variable. This was done because the intention was to make
the model applicable to different regions and ultimately to
be used in a clinical setting across the entire UK. Smoking
status and BMI, which may be important predictive vari-
ables, were also omitted from the models due to large
amounts of missing information in the EHRs. Finally, the
data used in the study failed to capture instances of de-
layed prescription or cases where patients do not take (or
complete) their prescribed course. These are both inter-
esting subgroups of the main population and would pos-
sibly warrant further investigation in their own study.
A recent study investigating the drivers of antibiotic

prescribing found that prescribing guidelines alone do

Fig. 3 Probability of antibiotic prescribing stratified by predicted risk level for both the derivation and validation cohorts (o = LRTI – derivation
cohort; Δ = LRTI – validation cohort; = URTI – derivation cohort; + = URTI – validation cohort; □ = UTI – derivation cohort; * = UTI – validation
cohort). x-axis: decile of predicted risk. y-axis: probability of antibiotic prescribing
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not positively influence a change in prescribing, and
suggests that more targeted interventions are needed
[14]. To achieve the ambitious government target of
reducing antibiotic use in the community by 15% by
2024 [48], innovative approaches are required in pri-
mary care. Whilst this study represents a start to-
wards that goal, further work is needed including
further validation of the models in new datasets and
creating new models for other common infections. As
well as the research step, it is crucial that this
intelligence is available to practitioners to inform
their decision-making. An antibiotic prescribing dash-
board containing this information is being developed,
with the hope of working with general practices to
construct a dynamic way to integrate this into point-
of-care decision support [49].

Conclusions
Three clinical risk prediction models were presented,
capable of evaluating a patient’s risk of developing fur-
ther complications as a result of their common infection.
The models have been fitted and validated using two
large national datasets. Examining prescribing by risk
stratification highlighted the lack of relationship between
a patient’s risk level and their chance of being prescribed
an antibiotic; this is likely due to practitioners prescrib-
ing to symptoms but it does show a significant area

where improvements could be made to tackle overpre-
scribing of antibiotics.
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