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Hypomethylation in HBV integration
regions aids non-invasive surveillance to
hepatocellular carcinoma by low-pass
genome-wide bisulfite sequencing
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Abstract

Background: Circulating cell-free DNA (cfDNA) methylation has been demonstrated to be a promising approach
for non-invasive cancer diagnosis. However, the high cost of whole genome bisulfite sequencing (WGBS) hinders
the clinical implementation of a methylation-based cfDNA early detection biomarker. We proposed a novel strategy
in low-pass WGBS (~ 5 million reads) to detect methylation changes in circulating cell-free DNA (cfDNA) from
patients with liver diseases and hepatocellular carcinoma (HCC).

Methods: The effective small sequencing depth were determined by 5 pilot cfDNA samples with relative high-
depth WGBS. CfDNA of 51 patients with hepatitis, cirrhosis, and HCC were conducted using low-pass WGBS. The
strategy was validated in an independent WGBS cohort of 32 healthy individuals and 26 early-stage HCC patients.
Fifteen paired tumor tissue and buffy coat samples were used to characterize the methylation of hepatitis B virus
(HBV) integration regions and genome distribution of cfDNA.
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Results: A significant enrichment of cfDNA in intergenic and repeat regions, especially in previously reported HBV
integration sites were observed, as a feature of cfDNA and the bias of cfDNA release. Methylation profiles nearby
HBV integration sites were a better indicator for hypomethylation of tumor genome comparing to Alu and LINE
(long interspersed nuclear element) repeats, and were able to facilitate the cfDNA-based HCC prediction.
Hypomethylation nearby HBV integration sites (5 kb flanking) was detected in HCC patients, but not in patients with
hepatitis and cirrhosis (Methylygysk, median:0.61 vs 0.72, P = 0.0003). Methylation levels of integration sites certain
candidate regions exhibited an area under the receiver operation curve (AUC) value > 0.85 to discriminate HCC
from non-HCC samples. The validation cohort achieved the prediction performance with an AUC of 0.954.

Conclusions: Hypomethylation around viral integration sites aids low-pass cfDNA WGBS to serve as a non-invasive
approach for early HCC detection, and inspire future efforts on tumor surveillance for oncovirus with integration

activity.
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Background

Liver cancer is the fourth cause of cancer-related mortal-
ity worldwide. In the USA, liver cancer death rate in-
creased 43% from 7.2 to 10.3 per 100,000 between 2000
and 2016 [1, 2]. Hepatocellular carcinoma (HCC), the
most frequent form of primary liver cancer, generally de-
velops in patients with chronic liver disease due to hepa-
titis B virus (HBV), hepatitis C virus (HCV), alcohol
abuse, or non-alcoholic fatty liver disease [3, 4]. Chronic
inflammation, fibrosis, and aberrant hepatocyte regener-
ation favor a series of genetic and epigenetic events that
culminate in multistep hepatocyte malignant transform-
ation, through dysplastic nodules and ultimately HCC
[5-7]. The high risk of HCC development in patients
with cirrhosis (i.e., 2-7% annual risk) justifies the recom-
mendation of biannual HCC surveillance with abdominal
ultrasound (US) with or without serum alpha-
fetoprotein (AFP) in patients at high risk [8]. Non-
randomized studies suggest that early HCC detection in-
creases the odds to receive a curative treatment and in-
crease survival. However, the sensitivity of US and AFP
is 63% to detect early-stage HCC [9], which underscores
the need for improved early detection tools.

Circulating cell-free DNA (cfDNA) are small double-
stranded DNA fragments [10] found in plasma, urine, saliva,
cerebrospinal fluid (CSF), and other body fluids [11] origin-
ating of cell apoptosis and necrosis [12]. In many settings,
analyses of ¢cfDNA can be regarded as a way to perform a
“liquid biopsy,” which have been produced promising results
for genetic testing [13, 14], early cancer detection [15, 16],
and prognosis prediction [17, 18]. Apoptotic and necrotic
tumor cells release cfDNA into the peripheral blood, which
carries tumor-related genetic and epigenetic features, in-
cluding cfDNA fragment size (cfDNAyy.) [19], mutations,
copy number aberrations (CNV), and methylation changes
[17]. Meanwhile, cfDNA also carries tissue-specific informa-
tion which provides promising abilities for tissue-of-origin
mapping [19-23]. As such, cfDNA could be used as an

important biomarker in clinical settings. There are different
technologies to investigate methylation changes in cfDNA,
including scRRBS [20] and cfMeDIPseq [22]. A number of
studies have focused on cfDNA as the source of early detec-
tion biomarkers in HCC [24-29], while multiple studies
have focused on ¢fDNA methylation in cancer diagnosis in
the areas of specific biomarkers [25, 29], hypomethylation
[24], and tissue of origin [26—28]. Single cytosine measure-
ment and high accuracy have enabled whole genome bisul-
fite sequencing (WGBS) to become the gold standard in
DNA methylation analysis [30]. One challenge in detecting
cell-free circulating DNA (cfDNA) in plasma is the minor
fraction of cfDNA amidst the background of total circulat-
ing DNA. This is particularly true in patients with early-
stage cancers and in the minimal residual disease setting,
which benefits from deep sequencing producing a more
sensitive indicator for early cancer detection and surveil-
lance [26, 28, 31]. That said, low-depth sequencing in high
sample sizes is a cost-effective strategy for cohort studies
[32]. Utilizing reduced sequencing depth (low-pass sequen-
cing) and correspondingly decreased sequencing cost will be
crucial to facilitate an easier clinical deployment of DNA
methylation-based surveillance tools. Meanwhile, the epi-
genetic patterns of HBV integration regions, one of the
most important features of HCC, have never been investi-
gated in cfDNA-based diagnosis system.

In this study, we investigated of cfDNA methylation
profiling at low-pass WGBS and the performance of
HCC prediction. We systemically collected the most
comprehensive HBV integration sites (N =6072) and ex-
plored the DNA methylation state around HBV integration
regions of HCC patients. We evaluated the minimum se-
quencing depth for long-range average methylation around
collected HBV integration sites and provided the land-
scapes of low-pass WGBS in the liver samples from healthy
individuals, hepatitis, cirrhosis, and HCC patients. Finally,
we proposed DNA methylation around HBV integration re-
gions carry utility to predict HCC from non-HCC samples.
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Methods

Sample collection

All the blood samples of patients were collected from
Beijing Youwan Hospital. Healthy individuals enrolled by
Beijing Institute of Genomics were collected as controls.
The diagnosis of chronic hepatitis B was made according
to the guidelines for the prevention and treatment of
chronic hepatitis B: a 2015 update [33]. We collected age,
gender, HBV status, tumor size and alanine aminotrans-
ferase (ALT) test, aspartate aminotransferase (AST) test,
bilirubin test, alpha-fetoprotein (AFP) test, and other re-
lated clinical information for related samples. Meanwhile,
HCC patients were classified as early and late stage ac-
cording to the Barcelona Clinic Liver Cancer staging sys-
tem, considering A as early stage, C and D as late stage.

Cell-free DNA extraction

Ten microliters (ml) of whole blood was collected from
each patient in Streck Cell-Free DNA BCT® tubes
(Streck, Omaha, NE) and immediately shipped to Beijing
Institute of Genomics. Upon arrival, the blood was col-
lected in Streck BCT tubes which were centrifuged at
3000xg for 15 min at 4 °C within 2 h. Subsequently, the
plasma was transferred into a fresh microcentrifuge tube,
followed by a second centrifugation at 16,000xg for 10
min at room temperature. Five milliliters of resultant
plasma was used for cfDNA extraction using a QlAamp
Circulating Nucleic Acid Kit (Qiagen, Valencia, CA).
After extraction, total DNA was quantified using a Qubit
dsDNAHS Assay kit (Life Technologies, Grand Island,
NY, USA). All DNA samples were stored at — 80 °C be-
fore sequencing library construction.

Whole genome bisulfite sequencing and data processing
The TruSeq DNA Methylation Kit (Illumina Inc.) was used
according to the manufacturers’ protocol. Total cfDNA
(range from 0.5 to 88.7 ng) was used for sequencing library
construction. Bisulfite conversion of cfDNA was performed
using the EZ DNA Methylation-Gold Kit (Zymo Research)
according to the instruction manual. During conversion,
0.5% methylated lambda DNA was included as a spike-in
DNA control to estimate the conversion efficiency of un-
modified cytosine. The sequencing libraries were then per-
formed with paired-end sequencing (2 x 100bp) on an
llumina HiSeq 4000 (Illumina Inc., San Diego, CA, USA).
After base calling, all paired-end fastq files were
trimmed using cutadapt (v 1.8.3) [34] to removed adapter
sequences and low-quality bases with parameters “-q 15
--minimum-length 36.” HG19 reference genome was
downloaded from ENSEMBL. Lambda genome was also
included in the reference sequence for calculating bisulfite
conversion rate. Filtered paired-end bisulfite sequencing
data were mapped with Bismark (v0.14.5) [35] using with
default parameters. After alignment, read duplicates were
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removed using the deduplicate_bismark application in-
cluded in the bismark software. Then the BAM files pro-
duced by Bismark were sorted using samtools (v0.1.19),
and overlapping paired-end reads were clipped using Cli-
pOverlap function of bamUtil (https://github.com/stat-
gen/bamUtil) to prevent counting twice from the same
observation. For each CpG, the methylation level was
combined from both DNA strands and estimated as 1/
(m + u), where m was defined as the number of methyl-
ated cytosines and u# was defined as the number of
unmethylated cytosines. The number of methylated and
unmethylated cytosines of 1 Mb regions was generated
using R package methylKit. The average methylation level
of each long-range region was calculated as the total num-
ber of cytosines divided by the number of methylated
cytosines.

cfDNA fragment size determination and distribution
Unique reads with well alignments to human genome
(hgl9) were applied for cfDNA fragment size evaluation.
The end positions and start positions were extracted to
calculate the cfDNA size and the distribution were pre-
pared for different samples. Wilcoxon rank sum test was
applied to test the association between the median of
cfDNAg;,. in HCC and non-HCC samples.

The enrichment score in each genomic region

The enrichment score is defined as follows:
Enrichment Score = log,(2€), DMC is the number of
DMC sites in the genomic element, where the expected

%, Nppic is the number of DMC sites

in the genome, Ncyg is the number of CpG sites in the
genomic element, and N7 is the total number of CpG
sites in the genome. DMCs inside and outside CpG
islands are annotated according to CpG islands obtained
from UCSC Genome Browser [36].

value E =

Identification and annotation of the differentially
methylated CpGs (DMCs) and genes (DMGs)

Differentially methylated CpGs (DMCs) were identified
between HCC patient and healthy individual (D4 vs.
D1). The identification of DMCs was generated using
the R package methylKit [37]. The significance of the
DMCs departure between two groups was calculated
with at least 5-fold coverage. P value was adjusted for
multiple testing with the method of Benjamini and
Hochberg [38]. The CpG sites were considered different
between case and control if the Benjamini-Hochberg-
corrected P value <0.05 and the methylation level differ-
ence was 20.2. Each DMC was annotated for each
RefSeq transcript obtained from ENSEMBL GRCh37.
Promoters are defined as regions 2kb upstream from
TSS for each RefSeq transcript. RepeatMasker
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annotations were obtained from UCSC Genome Browser
[36]. The HBV integration sites were extracted from pre-
vious reports [39-45].

Calculation of average methylation level around HBV
integration sites

Average methylation level of the CpGs within the 100 bp
of the HBV integration sites (Methylypy) was deter-
mined in tissue samples. All the CpGs with depth over 1
read were extracted. The average methylation level
within the 100 bp upstream or downstream of HBV inte-
gration sites (Methylypy) was included in all the CpGs
with depth over 1 read. This value was calculated as the
number of the total number of methylated cytosines di-
vided by the number of total cytosines within the 100 bp
of the HBV integration sites.

Long-range methylation around HBV integration sites
(Methylypysk) was defined as the average methylation
level of the CpGs within the 5kb of the reported HBV
integration sites, calculating as the number of the total
number of methylated cytosines divided by the number
of total cytosines within the 5kb of the HBV integration
sites.

Randomly resampling lower reads from total WGBS data
Regions within 5kb of reported HBV integration sites
were applied to measure the methylation status. Over-
lapping regions were merged to form a single region. A
random sampling method was used to obtain low-depth
WGBS for 5 pilot WGBS of cell-free DNA. In total, 1 M
to 10 M read pairs (increasing by 1 M step) were randomly
extracted from each WGBS data set. In each iteration, we
randomly permuted genomic regions of 5kb around the
reported HBV integration sites using BEDTools shuffle
[46]. The average methylation level of permuted regions
of this randomly sampled low-pass reads and the average
methylation level of permuted regions of total sequencing
reads were calculated. The permutation was repeated 100
times and a correlation coefficient was adopted to meas-
ure the consistency between low-pass resampling reads
and those based on total sequencing reads. For each se-
quencing depth, we repeated the random extraction 10
times to examine the variation of the correlation coeffi-
cient, and the difference (coefficient of variation, CV)
among 10 values of the correlation coefficient was used to
assess dispersion in the sampling process.

Feature selection based on HBV integration regions

Random forest based feature selection to identify the po-
tential high-performance biomarkers was applied in order
to support Methylypysy to have consistent performance in
low-pass WGBS data and to solve the minor release of
cfDNA and the lower sensitivity in early-stage HCC.
These regions should be long enough to be constantly

Page 4 of 14

detected at low-pass WGBS and could be suitable as
markers of early stage HCC. For 6072 regions flanking 5
kb of HBV integration sites, regions with depth over 10
reads in all the 54 cfDNA samples were selected (3083),
which were stable detected at low-pass sequencing. Then
the neighbor regions were merged into one large region if
their distance was less than 1 Mb. At last, 144 candidate
merged regions with length larger than 1 Mb were se-
lected and used for the feature selection procedure in
healthy individuals and early-stage HCC patients. Feature
selection was conducted using the R package “caret” based
on a random forest algorithm using function “sbf” with
parameters “sbfControl = sbfControl (functions=rfSBF,
method="‘cv, saveDetails=T).”

Prediction analysis and receiver operating characteristics
(ROC) curves

The AUCs measure the discrimination between HCC
and non-HCC samples (healthy individuals, patients with
chronic hepatitis and cirrhosis). AUC values calculated
in our dataset were averaged AUC calculated across the
fivefold cross-validation runs on the overall test dataset.
The procedure is that the data including all the features
were divided into five equal parts and each of them was
set as the test dataset while the remaining as the training
dataset. In the training stage, a logistic regression-based
prediction model was used. Analysis of ROC curves was
constructed using R package PredictABEL.

Results

DNA methylation around HBV integration sites mirrors
the hypomethylation of HCC patients

In order to explore methylation profiles in cell-free-
based WGBS data, we conducted a pilot study with 5
cfDNA samples using relative high-depth WGBS: one
healthy individual (D1), one patient with chronic hepa-
titis (D2), one patient with cirrhosis (D3), and two HCC
patients (D4 and D5 of before and after surgery). The
final read count equated to a mean of 58 million (M)
reads per sample (Additional file 2: Table S1). The aver-
age DNA methylation across the genome (Methylgenome)
was much lower in the HCC patient (D4; 53.56%) com-
pared to the healthy individual and patient with chronic
hepatitis and cirrhosis (74.76%, 75.13%, and 75.65%;
Additional file 1: Fig. S1A; Additional file 2: Table SI).
We found the genome distribution of CpGs in WGBS
data tended to be located at intronic, intergenic, and re-
peat regions (Fig. 1a).

Next, we identified differentially methylated CpGs
(DMCs) and differentially methylated gene (DMGs) with
cell-free WGBS data between HCC patient and healthy
individual. On average, each cfDNA sample had 7,274,
674 CpGs with sequencing depth over 5 reads (Add-
itional file 2: Table S1). In total, we identified 2670
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DMCs in HCC patient compared to healthy individual
(Additional file 3: Table S2), of which 99.8% were hypo-
methylated in HCC patients. These hypo-DMCs clearly
separated the HCC patient from the healthy individual,
patient with chronic hepatitis and cirrhosis, and HCC
patient after surgery (Fig. 1b). Among hypo-DMCs, 174
DMCs (6.5% of 2670 DMC) were located in promoter or
gene body of 77 genes. In particular, SENP5 gene had
six significantly hypomethylated DMCs with consistently
high sequencing coverage across all the five individuals
(an average of 295 reads; Fig. 1b and Additional file 1:
Fig. S1B). Intriguingly, all six DMCs that we found in in-
tron 2 of SENP5 were located near previously reported
HBYV integration sites in HCC (Fig. 1c) [44].

We found that 80% of DMCs of HCC patients were lo-
cated within repeat regions (Fig. 1d). Considering that
repeat regions are a known target for HBV integration
[47, 48], we analyzed the location of DMCs relative to
reported HBV integration sites [39-45]. Totally, we col-
lected 6072 HBV integration sites from published re-
searches (Additional file 4: Table S3). Among the 2670
DMCs observed in HCC patient, 21 completely over-
lapped with the HBV integration sites, including one in
SENP5. Additionally, 26.8% of the DMCs were located
within a 100-bp region either upstream or downstream
of integration sites, and 73.9% of DMCs were within
5 kbp (Fig. 1d). Overall, these DMCs were more
enriched in HBV integration sites compared to promoter
and gene coding regions (Fig. le, P < 2.2 x 10~ ', Fisher’s
exact test). Considering the uneven distribution of CpGs
inside and outside CpG islands, we calculated the en-
richment score of DMCs inside and outside CpG islands,
separately. Consistent with all the DMCs, both DMCs
inside and outside CpG islands were more enriched in
HBYV integration sites (Additional file 1: Fig. S2).

Although cell-free DNA were observed to be more likely
to locate at HBV integration sites (Fig. 1a, Fisher’s exact
test), DMCs have higher enrichment in HBV integration
sites compared to the whole cfDNA background (Fig. 1la;
Fig. le). With above findings, we further examined
whether DNA methylation levels around HBV integration
regions could represent the hypomethylation of HCC gen-
ome and be used in optimization of prediction model for
HCC. In HCC tumor tissues and paired buffy coat sam-
ples in a previous study [24], the hypomethalytion near
the HBV integration sites were observed in both tumor
and buffy coat, and the closer to integration sites, the
lower methylation levels. Methylation levels were further
reduced in tumor tissue, especially within the 100-bp re-
gion near these sites (Fig. 1f and Additional file 1: Fig. S3).
We calculated the average methylation level of the CpGs
within the 100-bp region nearby HBV integration sites
(Methylygy) in each tissue sample, as the indicator for
methylation level (“Methods”). Although Methylypy was
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lower than the average methylation level across the gen-
ome (Methylyenome) in both buffy coat and tumor tissue,
tumor tissue samples had a significantly smaller
Methylygy compared with buffy coat (P=8.8x 10" > ¢
test). Particularly, Methylypy was significantly lower than
Methylsenome in tumor tissue samples (P=8.8x 10~ °t
test; Fig. 1g), which supports DNA methylation around
HBYV integration sites as a more sensitive indicator to de-
tect HCC compared to average methylation level across
the genome.

Considering the hypomethylation of HBV integration
regions in tumor tissue may be likely driven by the re-
peat regions well known to be hypomethylation in HCC
tumors, we explored whether the methylation status of
repeat elements explained the hypomethylation of HBV
integrated regions. The annotations of repeat regions in
HBV integration sites showed that the most overlapped
repeat element is Alu and LINE (12.5% and 12.3%; Add-
itional file 4: Table S3), and then we calculated the aver-
age methylation level of the CpGs within Alu
(Methylay,), LINE (Methyl; ng) in paired tissue samples
and compared with Methylygy. As shown in Fig. S4,
Methylypy was lower than Methylsy, in tumor tissue
samples (P =0.0003, t test, Additional file 1: Fig. S4). Al-
though the average Methylysy and Methyli g were
similar (P = 0.609, ¢ test, Additional file 1: Fig. S4), values
of Methyl g were not constantly low across all sam-
ples, some of which had Methyl; g much higher than
Methylypy. These suggested hypomethylation of HBV
integration regions is not likely to be driven by sur-
rounding repeat elements.

Hypomethylation of regions near HBV integration sites
effectively detected by a low-pass sequencing strategy in
cell-free WGBS data

Considering the dispersive and limited genomic regions
represented by cfDNA fragments, particularly in patients
with early-stage HCC, long-range methylation around
HBYV integration sites (Methylygysk) was applied to meas-
ure the methylation status of cfDNA in the five cfDNA
samples at high-depth sequencing volume (each com-
posed of approximately 58 M reads). As expected,
Methylygysk was much lower in the HCC patient
(49.85%) compared to the healthy individual and patient
with chronic hepatitis and cirrhosis (72.72%, 71.58%, and
71.92%; Additional file 2: Table S1; Additional file 1: Fig.
S1A). To determine the effective small sequencing depth,
we randomly sampled 1 M to 10 M mappable reads from
each sequencing dataset and calculated permuted
Methylygysk respectively (“Methods”). As predicted, when
we used more sequencing reads, permuted Methylygysk
was closer to the value calculated using total sequencing
reads. The correlation coefficient between the methylation
level from low-pass WGBS and total WGBS data saturates
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when using 5M or more reads (Fig. 2a; Additional file 1:
Fig. S5). The correlation coefficient at permuted regions be-
tween 5M resampling reads and all sequencing reads was
above 0.77 (Pearson’s correlation coefficient, Fig. 2, Add-
itional file 1: Fig. S5), and the methylation level remained
consistent after resampling 10 times (CV is 3.8%, 4.5%,
2.4%, 3.0%, 5.1% for D1, D2, D3, D4, and D5, respectively,
Additional file 1: Fig. S5). In summary, we demonstrate that
5M mappable reads without redundancy in low-pass
WGBS is a reliable approach to evaluate the methylation
level of cfDNA samples in the long-range mode.

We next sought to evaluate the ability of low-pass
WGBS of cfDNA to discriminate the patients with dif-
ferent liver diseases. We conducted low-pass WGBS to
the circulating cfDNA which are from 54 individuals, in-
cluding 17 HCC (3 early-stage HCC, 5 advanced HCC,
and 9 HCC patients after surgery; 16 were HBsAg posi-
tive and 1 was anti-HBs positive), 17 with cirrhosis (14
from HBV, 1 from NASH, 1 from alcohol, and 1 crypto-
genic cirrhosis), 17 with hepatitis B, and 3 healthy
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volunteers (Additional file 5: Table S4). On average,
102 M mappable reads were obtained (IQR=6.3M,
Additional file 6: Table S5). The cfDNA fragment size
(cfDNA;,e) in HCC samples were significantly shorter
than non-HCC samples (P =0.003, Wilcoxon rank sum
test), consistent with recent observation [19]. Particu-
larly, cfDNAy;,. in advanced HCC group were much
shorter than those in healthy individuals (P <2.2 x 10~ 16
Wilcoxon rank sum test; Fig. 3a), and the size seemed to
decrease along with liver disease progression (Fig. 3a).
As expected, the distribution of CpGs captured by low-
pass WGBS also tended to be located at intergenic and
repeat regions. Moreover, CpGs in low-pass WGBS had
much higher enrichment score of regions around re-
ported HBV integration sites than high-depth WGBS
datasets (Fig. 3b, Fig. 1a). To figure out the enrichment
at repeat regions is a feature of cfDNA or artifacts of
WGBS, we randomly extracted 10 M single reads from
published high-depth cfDNA WGBS datasets [24], in-
cluding 58 cfDNA samples and 30 tissue samples as well
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AFP (logyo) and Methylygysk

Fig. 3 Landscape of plasma cfDNA in healthy individuals and hepatitis, cirrhosis, and HCC patients. a The distribution of cfDNA fragment size in
the group of healthy, hepatitis, cirrhosis, early-stage HCC, advanced HCC, and HCC after surgery. The vertical dashed lines indicate the median
values in all groups. b The enrichment scores of CpGs at different genomic elements and regions surrounding HBV integration sites of all the 54
cfDNA samples at low-pass WGBS. HBVi represents for HBV integration site. ¢ The enrichment scores of CpGs at different genomic elements of
cfDNA and tissue samples by randomly resampling 10 M reads from published dataset. P values between cfDNA samples and tissue samples at
CpG island, promoter, exon, intron, intergenic, repeat region, HBV integration site, HBVi £100 bp, and HBVi 5 kb are 4.1 x 1072, 76% 10712, 15 %
10773,49x 1078 47%x 1073, 21 %1072, 13%x107"",92% 1072, and 1.9x 107", respectively. d Long-range methylation around HBV integration
sites (Methylygysy) in all the 54 samples. The black dot represents for AFP level (log;o) for the corresponding individual. e The correlation between

as analyzed region enrichment score. Overrepresentation
of regions around reported HBV integration sites was
also observed in these datasets (Fig. 3c; Additional file 1:
Fig. S6). Strikingly, compared to tumor tissue and bufty
coat, cfDNA samples were less enriched in functional
elements (CpG island, promoter, and exon) and more
enriched in intergenic, repeat regions and HBV inte-
gration regions in both randomly 10M reads and
high-depth data (randomly 10M reads in Fig. 3c;
high-depth reads in Additional file 1: Fig. S6), sug-
gesting this enrichment is a feature of cfDNA and the
bias of cfDNA release.

Using our low-pass WGBS datasets, we explored
whether DNA methylation in HBV integration regions
could mirror the hypomethylation profiles of cfDNA
from HCC patients and the potential for early HCC de-
tection. According to Methylygysk, the advanced HCC
patients showed significantly hypomethylation level
compared to healthy individuals (< 66.1%; P =0.03, Wil-
coxon rank sum test; Fig. 3d; Additional file 6: Table
S5). However, for early-stage HCC patients, this methy-
lation level was relatively higher, ranging from 68.5 to
72.3%. As expected, after surgery, most HCC patients (8/
9) demonstrated similar ¢fDNA methylation levels to
healthy individuals and patients with chronic hepatitis or
cirrhosis. Nevertheless, one (P45) out of the nine HCC
patients exhibited a lower methylation after surgery
(63.97%, Fig. 3d; Additional file 6: Table S5) and died
2 months later due to tumor recurrence, suggesting that
there were micro-metastasis with tumor cells in that
individual. Additionally, a negative correlation was ob-
served between Methylygysic and alpha-fetoprotein
(AFP) levels (Pearson’s correlation coefficient = - 0.59,
P=59x10"% Fig. 3d, e). Besides, Methylypysk
seemed to have no difference among healthy individ-
uals and patients with chronic hepatitis and cirrhosis
(P>0.1, Wilcoxon rank sum test). We also included
one patient with acute hepatitis B in the hepatitis
group and found that Methylygysk from this patient
was similar to patients with chronic hepatitis (Fig. 3d;
Additional file 6: Table S5).

DNA methylation around HBV integration regions aid
HCC prediction

We evaluated Methylygysi by their differentiation ability
to HCC from non-HCC cfDNA samples using receiver
operating characteristic (ROC) curves based on a logistic
regression model by fivefold cross-validation.
Methylypysk showed the distinguish ability of HCC
from non-HCC with AUC =0.85. We also applied ran-
dom forest-based feature selection to identify the poten-
tial high-performance biomarkers (“Methods”). Top 5
regions were identified in distinguishing patients from
healthy individuals (chrl3: 19442162-20,713,822; chrl:
10121993-12,279,387;  chrl0:  11149668-13,266,296;
chr10: 38027603-39,151,628; chrl0: 84035111-85,772,
043). All our cfDNA samples had these regions well se-
quenced, with the minimum amount of sequencing
reads at 1991 (Additional file 7: Table S6). Their methy-
lation levels were significantly lower in either early-stage
or advanced HCC patients than in healthy individuals,
and demonstrated obvious decreasing tendency along
with disease progression (Fig. 4a; Additional file 7: Table
S6). Further investigation showed the prediction model
using regions 1, 2, and 5 could reach better performance
for HCC patients (AUC > 0.85; Fig. 4b). All these predic-
tion models exhibited improved discrimination perform-
ance compared to clinical variables (ALT, AST, Tbil,
AFP) (Additional file 1: Fig. S7A).

To validate our findings, we applied this method in an
independent cohort in a previous study [24]. This cfDNA
cohort was comprised of 32 healthy individuals and 26
HCC patients with early stage (BCLC stage is A or B)
based on single-end bisulfite sequencing. To achieve simi-
lar sequencing depth, we randomly sampled 10 M reads
from each plasma sample. All the important features iden-
tified in above model showed significantly decreasing
methylation in early-stage HCC compared to healthy indi-
viduals (P < 0.001, Wilcoxon rank sum test; Fig. 4c; Add-
itional file 8: Table S7). The above established prediction
model demonstrated competitive performance in HCC
detection with genome-wide hypomethylation analysis
(AUC=0.93 and 091, P=0.734, DeLong test; Fig. 4d).
With all the 58 cfDNA samples, region 5 was still the best
HCC indicator (AUC =0.918, Additional file 1: Fig. S7B).
Moreover, the combination of multiple features provided
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improved prediction for HCC. When combing
Methylygysk, region 1, region 2, region 3, and region 5 all
together in the prediction model, it provided the best pre-
diction performance with AUC = 0.954 (Fig. 4e).

Discussion

In summary, we found cfDNA prefer enriched in inter-
genic, repeat regions and previously reported HBV inte-
gration regions indicating a non-random feature of
cfDNA releasing from solid tissues. Furthermore, we dem-
onstrated a long range of DNA methylation around HBV
integration regions was a sensitive indicator to detect
HCC compared to average methylation level across the
genome. Hypomethylation of these regions are independ-
ent of integration events, which make them either suitable
for the occurrence of viral integration, or ensure the tran-
scription activity of integration sites recently attracting a
lot of interests [49]. We demonstrate that DNA methyla-
tion around HBV integration regions could serve as HCC
detection biomarkers. We also demonstrated DNA methy-
lation around HBV integration regions reflected genome-
wide demethylation changes from non-tumoral tissues to
HCC and could be used as a low-cost approach detecting
minimal tumoral residual disease after surgical resection.
In summary, our study provided a novel low-cost HCC
diagnosis strategy in which HBV integration regions were
employed, and this strategy will also be promising for
similar attempts in a lot of oncovirus also known to have
integration ability during infection [50].

Patients with chronic liver disease are at risk of HCC de-
velopment, highest among those with cirrhosis. Profes-
sional societies recommend HCC surveillance in those
patients at high risk who will benefit from early diagnosis
so they might receive curative therapies. The recom-
mended strategy for surveillance includes abdominal
ultrasound with or without alpha-fetoprotein (AFP) every
6 months. However, image examination required special
equipment (the ultrasound machine) and trained
personnel to perform and interpret the study, potential
barriers especially considering the large population of
patients with HBV infection in China. Ultrasound is also
operator dependent. Therefore, there is an unmet clinical
need for new non-invasive diagnostic tests that is not op-
erator dependent, such as liquid biopsy using circulating
tumor cells [51]. Unfortunately, The European Associ-
ation for the Study of the Liver did not recommend the
use of any existing tumor markers such as AFP and L3
fraction for HCC surveillance due to their suboptimal per-
formance for early detection, and in the prior version of
the American Association for the Liver Diseases, AFP was
felt to lack both sensitivity or specificity for early detection
of HCC. Subjects at highest risk for HCC are those with
chronic hepatitis and advanced fibrosis; hepatic inflamma-
tion can result in elevation of AFP and up to 30% of HCC
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was non-AFP producing. Current study found a strong
negative correlation between Methylygys, and AFP levels.
However, unlike AFP, the Methylypysi level was not af-
fected by the presence of inflammation, hence making it a
more specific tumor marker. Currently new blood-based
measurements are commonly compared with AFP, which
had already been shown to have inadequate sensitivity and
specificity, hence we believe future comparison should be
between new biomarkers and ultrasound for early detec-
tion of HCC. Although WGBS of ¢fDNA has been shown
effective for cancer detection [27], the cost of cfDNA
WGBS in cancer patients is one of the challenges for wide
application. In this paper, we explored the cfDNA methy-
lome of hepatitis, cirrhosis, and HCC patients and exam-
ined the feasibility of HCC detection using low-pass
WGBS. We demonstrated the measurement of DNA
methylation around HBV integration regions could be ap-
plied in low-pass cell-free WGBS at 5 million reads to re-
flect liver disease status of chronic hepatitis, cirrhosis, and
HCC. Moreover, DNA hypomethylation in HBV integra-
tion regions has shown promising results as a potential
biomarker for early HCC detection.

Previous studies have been shown that the fragmenta-
tion process of cfDNA is not random [52, 53]. Our re-
sults show low-pass WGBS for ¢fDNA tended to capture
fragments from repeat regions and HBV integration
sites. Because open chromatin regions are easily de-
graded, fragments from open chromatin regions (pro-
moter and gene coding regions) were less likely to be
detected in cfDNA. When decreasing the sequencing
volume, overrepresentation of genomic repeat regions
and HBV integration regions was observed in cfDNA.
This suggests that the signal from these regions could
remain given adequate sequencing depth in low-pass
WGBS. Since HBV integrations tend to localize at repeat
regions, DMCs of advanced HCC patient were also
enriched in previously reported HBV integration sites.

We adopted an approach focusing on regions from
HBV integration sites as surrogate regions for plasma
hypomethylation analysis in HCC patients. Although we
chose HBV integration sites as the indicator, it does not
necessarily indicate that the analysis is only suitable for
patients with HBV infection. In our sample set, we also
included three patients without HBV infection (P1, P18,
and P19; Additional file 5: Table S4). While HBV inte-
grations carried by dominant tumor clones are likely to
have some specific DNA molecular features [25, 54—56],
we also demonstrated that methylation changes in HBV
integration regions may be common in HCC and inde-
pendent of HBV infection. Interestingly, we found hypo-
methylation in HBV integration regions have higher
sensitivity for HCC diagnosis. For example, one chronic
hepatitis patient, P14, had the Methylygys, at 69.5%, the
methylation level of region 5 at 72.4%, and an abnormal
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AFP level (141.9 ng/ml). The corresponding P14 blood sam-
ple was initially labeled as chronic hepatitis since he was a
follow-up patient with chronic HBV infection; however, he
was diagnosed with HCC in this examination and died 8
months later. Therefore, it is plausible that the patient had
significant circulating tumor cells at the time of sample col-
lection since his AFP was also significantly elevated. Except
P14, the sample from a chronic hepatitis patient, P2, showed
that the methylation level of region 5 was 70.7% and the
Methylypys, was 68.5%. Using the sample from a clinical
visit 6 months following the initial sample collection, the
methylation level of region 5 increased to 73.92%, whereas
the Methylygysi increased to 71.34%. This patient had no
detected HCC in follow-up. As a predictor of HCC, the most
challenging aspect is to determine appropriate cutoffs for
disease status, which necessitates large sample sizes in future
studies. Nevertheless, our study successfully illustrated that it
is necessary to monitor the patients with suspicious methyla-
tion changes in cfDNA according to multiple indicators,
combining their prognostic signals to improve accuracy. We
compared our strategy with genome-wide hypomethylation
analysis in a published dataset, and our strategy had com-
petitive classification performance with the genome-wide hy-
pomethylation analysis used in the original publication [24].
Moreover, the calculation of methylation in these regions
does not rely on a reference panel of healthy individuals and
is thus independent of either sequencing quality and inclu-
sion criteria of the reference panel.

Target sequencing have already achieved certain pro-
gress in  tumor detection, but genome-wide
characterization of methylation profiles is the promising
direction to overcome the false negative errors due to
tumor heterogeneity and optimize the genomic regions
used for surrogating the methylation level changes specific
to tumor patients, such as previously reported HBV inte-
gration sites in our observation. We believe low-pass
WGBS will facilitate efforts using large sample size for
novel solutions and finally improve the clinical implemen-
tation of methylation evaluation. Although we have found
some stable methylation patterns using low-pass WGBS
using the fivefold cross-validation in the training set and
testing the results in an independent cohort, the results in-
dicate there may be some level of overfitting in the test
data set, hence the generalization of our strategy should
be further validated in larger studies in the future. The
low-coverage caused by the low-pass WGBS sequencing
introduced analysis challenges; however, it may still have
clinical utility in augmenting early detection of HCC. This
study can serve as a platform to motivate further develop-
ment of low-pass DNA methylation approaches to im-
prove the accuracy of HCC diagnoses and surveillance.
Subsequent larger studies will aid in the determination of
accurate cutoff values for disease stages, especially for
those with small tumors. Furthermore, we anticipate that
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blood samples from HCC patients at multiple time points
hold strong utility in tracking disease progression.

Conclusions

We have proposed a novel strategy in which we utilized
DNA methylation around HBV integration regions to
apply low-pass WGBS to monitor DNA methylation
levels in cfDNA fragments generated by liver disease and
hepatocellular carcinoma. Overrepresentation of cfDNA
fragments in intergenic, repeat regions, and HBV inte-
gration regions compared to functional elements (pro-
moter and gene coding regions) provide additional
insights into the mechanisms of HCC molecular patho-
physiology and may aid in early HCC diagnosis and clin-
ical decisions. HBV integration-based DNA methylation
in cfDNA exhibited excellent predictive performance for
detection of HCC, which shows utility as stable and
powerful diagnostic biomarkers for cancer surveillance
in liver diseases ranging from hepatitis, cirrhosis, and
early-stage and advanced hepatocellular carcinoma. It
will broaden clinical implementation of WGBS as a
methylation-based cfDNA early detection biomarker for
liver cancer and inspire future efforts on tumor surveil-
lance for cancer-causing viruses.
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