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Abstract

Background: Tumor mutational burden (TMB) has both prognostic value in resected non-small cell lung cancer
(NSCLQ) patients and predictive value for immunotherapy response. However, TMB evaluation by whole-exome
sequencing (WES) is expensive and time-consuming, hampering its application in clinical practice. In our study, we
aimed to construct a mutational burden estimation model, with a small set of genes, that could precisely estimate
WES-TMB and, at the same time, has prognostic and predictive value for NSCLC patients.

Methods: TMB estimation model was trained based on genomic data from 1056 NSCLC samples from The Cancer
Genome Atlas (TCGA). Validation was performed using three independent cohorts, including Rizvi cohort and our
own Asian cohorts, including 89 early-stage and n late-stage Asian NSCLC patients, respectively. TCGA data were
obtained on September 3, 2018. The two Asian cohort studies were performed from September 1, 2018, to March
5,2019. Pearson’s correlation coefficient was used to assess the performance of estimated TMB with WES-TMB. The
Kaplan-Meier survival analysis was applied to evaluate the association of estimated TMB with disease-free survival
(DFS), overall survival (OS), and response to anti-programmed death-1 (PD-1) and anti-programmed death-ligand 1
(PD-L1) therapy.

Results: The estimation model, consisted of only 23 genes, correlated well with WES-TMB both in the training set
of TCGA cohort and validation set of Rizvi cohort and our own Asian cohort. Estimated TMB by the 23-gene panel
was significantly associated with DFS and OS in patients with early-stage NSCLC and could serve as a predictive
biomarker for anti-PD-1 and anti-PD-L1 treatment response.
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Conclusions: The 23-gene panel, instead of WES or the currently used panel-based methods, could be used to
assess the WES-TMB with a high relevance. This customized targeted sequencing panel could be easily applied into
clinical practice to predict the immunotherapy response and prognosis of NSCLC.
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Background

Tumor mutational burden (TMB), commonly defined as
the number of nonsynonymous mutations, has been pro-
posed as a promising predictive biomarker for the re-
sponse to immune checkpoint inhibitors (IClIs).
Importantly, this metric tightly correlates with overall
survival (OS) in resected non-small cell lung cancer
(NSCLC) patients [1]. In 2015, Rizvi et al. demonstrated
that an increased number of nonsynonymous mutations
were associated with improved objective response, dur-
able clinical benefit (DCB), and progression-free survival
(PFS) in NSCLC patients who received anti-programed
death (PD)-1 therapy [2]. Clinical studies have also re-
vealed a significant correlation between TMB and ob-
jective response rate (ORR) to ICIs in multiple tumor
types [3-5]. In addition, Devarakonda et al. recently re-
ported that high TMB was associated with a better sur-
vival prognosis in patients with resected NSCLC, and
the benefit of adjuvant chemotherapy was more pro-
nounced in patients with low TMB [6].

The gold standards for TMB calculation are through
whole-genome sequencing (WGS) or whole-exome se-
quencing (WES). However, several obstacles, such as the
high demand for quality and quantity of tissue samples,
the cost and time consumption, and the unavailability
for translation to TMB evaluation by circulating tumor
DNA (ctDNA) in blood (bTMB) [7], hinder the clinical
application of these techniques. As a result, targeted
next generation sequencing (NGS) of cancer-related
gene panels (CGP) has been developed, serving as surro-
gates for WES for TMB estimation. To date, the Food
and Drug Administration (FDA) has approved several
NGS panels for TMB estimation (e.g., FoundationOne
CDx (F1CDx) and Memorial Sloan Kettering Cancer
Center’s Integrated Mutation Profiling of Actionable
Cancer Targets (MSK-IMPACT)), which include about
300-500 genes and cover over one megabase of coding
DNA [7, 8]. Recently, many new NGS panels consisting
of different numbers of genes have been developed and
validated, most of which were designed initially for guid-
ing the use of target therapies. These panels mainly in-
clude cancer-related oncogenes and tumor suppressor
genes, many of which do not contribute to or even nega-
tively correlate with TMB, thus are not accurate for
TMB evaluation. Besides, inclusion of these genes in an
NGS panel enlarges the panel size used for TMB

estimation and can lead to an inferior cost-effective con-
sequence. It is important to note that cancer type-
specific mutation load estimation models have proven to
be necessary because of the different mutation land-
scapes among varying tumor types [9]. Although DNA
damage repair (DDR) genes, negatively predictive genes
(STK11 and KEAPI), and TMB-associated genes such as
MUCI16, POLE, POLDI, and TTN have been included in
the NGS panels for TMB evaluation [10-14], with the
burgeoning developments in immunotherapy, there is a
need for more specific panels that focus on TMB estima-
tion for NSCLC.

Herein, by using The Cancer Genome Atlas (TCGA)
database as a training set and multiple real-world co-
horts as a validation set, we constructed an optimized
TMB estimation model with the smallest number of
carefully selected TMB-associated genes that could be
used as both predictive markers for immunotherapy and
prognosis biomarkers for resected NSCLC patients.

Methods

Patient cohorts

Genomic and clinical data for 1026 NSCLC samples, in-
cluding 522 lung adenocarcinoma (LUAD) and 504 lung
squamous cell carcinoma (LUSC) samples, were down-
loaded from TCGA database for the model construction.
For the validation of the model, three independent co-
horts were used, including a previously published study
(the Rizvi cohort [2]), a surgery cohort composing of 89
early-stage NSCLC patients who underwent surgical
treatment, and a ZS immunotherapy cohort composing
of 73 advanced NSCLC patients who received ICI treat-
ment. All the 73 patients in the ZS immunotherapy co-
hort received either anti-PD-1 (nivolumab, n =14;
pembrolizumab, n =35; SHR-1210, n =19) or anti-PD-
L1 (atezolizumab, n = 5) monotherapy agents. There are
34 patients who received durable clinical benefit (DCB,
anti-PD-1 (n =31), anti-PD-L1 (n =3)) and 39 patients
with no durable benefit (NDB, anti-PD-1 (# = 37), anti-
PD-L1 (n =2)). All three validation cohorts were used to
evaluate the performance of the TMB estimation model.
Additionally, the surgery cohort was also used for sur-
vival validation in resected NSCLC patients. Both the
Rizvi and immunotherapy cohorts were also used for
validation of ICI outcome predictability in advanced
NSCLC patients. The clinical details for all enrolled
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patients were collected. The treatment efficacy for those
treated with immunotherapy was assessed using Re-
sponse Evaluation Criteria in Solid Tumors (RECIST)
version 1.1, with durable clinical benefit (DCB) defined
as partial or stable disease lasting over 6 months [15]. All
procedures were approved by the ethics committees of
the National Cancer Center. All patients provided writ-
ten informed consent.

Whole-exome sequencing and data processing

We performed whole-exome sequencing of samples
from two cohorts in the validation set, including 89
early-stage NSCLC patients who underwent surgical
treatment and 73 advanced NSCLC patients who re-
ceived ICI treatment. For those 89 early-stage NSCLC
patients, both tumor and matched normal samples were
obtained and subjected to WES. Briefly, DNA libraries
were prepared using the MGIEasy Exome Capture V4
Probe Set capture kit (cat. no: 1000007745) with a cap-
ture region size of 36 Mb. BGI-Seq 500 instruments were
used for pair-end sequencing (2 x 100 bp). The data were
processed according to the manufacturer’s protocol [16].
The mean coverage was 167x and 161x in tumor and
normal samples, respectively.

For those 73 advanced NSCLC patients, biopsy speci-
mens were available for WES. The genomic DNA was
extracted using the QIAamp DNA FFPE Tissue Kit and
quantified using the dsDNA HS Assay Kit (Thermo-
Fisher Scientific, USA). Libraries were constructed with
the KAPA Hyper Prep Kit (KAPA Biosystems, USA). An
[lumina HiSeq4000 platform was used for sequencing
with PE150 sequencing 161 chemistry (Illumina, USA)
[17]. The average coverage depth was 140x.

Candidate gene selection

Genomic data for 1026 NSCLC samples from TCGA
were used for candidate gene selection, which were used
to construct the mutation load estimation model. The
candidate genes were selected based on two criteria: mu-
tation frequency higher than or equal to 10% and signifi-
cant association with mutation load [9]. The mutation
frequency of a gene was calculated as the percentage of
patients with mutation in the gene. Mutation load-
associated genes were defined as where the WES-TMB
was significantly different between the patients with the
mutated gene and those with wild-type counterparts
(Additional file 1: Table S1).

Mutation estimation model construction

The mutation estimation model construction was based
on TCGA data in the training set. In detail, the first step
was to build a mutation estimation model, using the
fewest genes, which tightly associated with WES-TMB.
In our study, we constructed the estimation model by
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simply randomly selecting a specified number of genes
from all the genes or TMB-associated genes and
summed the mutational number as the estimated TMB.
Under every given number of genes, the procedure was
repeated 1000 times, resulting in 1000 random models.
We then calculated the Pearson correlation coefficient
(r) between the estimated and actual mutation load of
WES-TMB. The results allowed us to select the model
with highest r under the specified number of genes. The
next step was to identify which of those best models
under the specified number of genes correlated with the
clinical outcomes of overall survival (OS) and disease-
free survival (DFS). The final step was to select a model
using the fewest genes that tightly associate with the
WES-TMB and have both prognostic value for those
early-stage NSCLC patients and predictive value for
those late-stage NSCLC patients who received ICI
treatment.

RNA expression difference between TMB high and low
groups

To compare gene expression patterns, we downloaded
an mRNA data set of 1026 NSCLC patients from TCGA
database. mRNA expression was analyzed using gene set
enrichment analysis (GSEA) (http://software.broadinsti-
tute.org/gsea/index.jsp) [18]. We divided these patients
into estimated high (>4 mutational counts) and low
TMB groups (<4 mutational counts), and identified
whether immune-related gene signatures associated with
tumor mutation status. The genes found to be on the
leading edge of the enrichment profile were subjected to
pathway analysis. Genes with expression over 0 in more
than 80% of the samples were included in the GSEA.
The normalized enrichment score (NES) is generally the
primary statistic for examining gene set enrichment
results.

Statistical analysis

The Mann-Whitney U test was used to assess the
differences in the mutation load between the two
groups. The genes with Kruskal-Wallis-corrected p
values lower than 0.05 were identified as the mutation
load-associated genes and selected as potential candi-
date genes. Survival analysis was performed using the
Kaplan-Meier curves, with a p value determined by a
log-rank test, and the statistical tests were two-sided
and considered statistically significant at p<0.05,
unless otherwise stated. The analyses were performed
using GraphPad Prism version 5.0 (GraphPad Prism).
Correlations between estimated mutation burden and
whole-exome sequencing-calculated TMB were deter-
mined by Pearson’s correlation coefficient. The
analyses were performed using R-3.5.3.
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Results

Candidate gene selection for model construction

The flowchart of the construction of estimation model is
shown in Fig. S1 in Additional file 1. The somatic muta-
tion data of 1026 cases of NSCLC were downloaded from
TCGA database as the training set (TCGA cohort), in-
cluding 522 adenocarcinoma and 504 squamous cell car-
cinoma subtypes of NSCLC (Additional file 1: Table S2).
Subsequently, a mutation matrix including screened non-
synonymous mutations in 181,115 genes was generated.
Furthermore, we identified genetic alterations in 116
genes with mutation frequency>10% in general NSCLC
patients and significantly correlating with WES-TMB (p
value range 6.95E-54 to 4.52E-3). These 116 genes were
then used as candidate genes for the construction of the
TMB estimation model (Additional file 1: Table S3).

Construction of the TMB estimation model
Genes used for the TMB estimation model were ran-
domly selected from the 116 candidate genes, and the
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estimated TMB was defined as the sum of all nonsynon-
ymous mutation counts of the selected genes. Under
each specified number of abstracted genes, the proced-
ure was repeated 1000 times, thus resulting in 1000 sep-
arate random models. The serial correlations of
estimated TMB by these random models and WES-TMB
were evaluated using the Pearson correlation coefficient
(r). As expected, the correlations between the estimation
models and WES-TMB increased with the number of
genes (Fig. 1a, b, Additional file 1: Fig. S2a, b). Com-
pared with unselected genes in the range of genomic
genes, the estimated TMB based on 116 selected genes
was significantly more closely associated with WES-
TMB in terms of either the mean or the maximum r
(Fig. 1c, d, Additional file 1: Fig. S2¢, d). The maximum
r increased from 0.675 with one gene included to greater
than 0.900 with 21 genes included and then reached a
plateau. When the included gene number exceeded 21,
the r values were comparable, though increased slowly
as the number increased (Fig. 1b). We asserted that r
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greater than 0.9 in the estimation models was accept-
able. As such, we considered a model with this effect,
but including the least number of genes, an ideal model
for clinical application.

In reference to previous reports that TMB is associ-
ated with prognosis in patients with resected NSCLCs,
the optimal TMB estimation model was further evalu-
ated based on the correlation of estimated TMB with OS
and DFS in models with r over 0.9. Ultimately, we con-
structed an estimated TMB model with only 23 genes
and r of 0.9056 (p<0.0001; Fig. 2a, Additional file 2),
which was significantly associated with both OS and
DES (Fig. 2b, c¢). The cutoff value of the estimated TMB
by the 23-gene panel was defined as 4 mutational counts
(the median value of estimated TMB based on TCGA
database) (Additional file 1: Fig. S3a, b) that were equal
or over 4 mutational counts as TMB-high cases and less
than 4 mutational counts as TMB-low ones. These genes
included UNC13C, HMCN1, ZNF536, KMT2D, USH2A,
XIRP2, PCDH15, AHNAK?2, ADGRL3, RELN, NF1, TTN,
ADGRG4, CUBN, CACNAIE, MRC1, COLI11AI, NAV3,
CSMDI1, APOB, CSMD3, COL22A1, and EPHAS
(Additional file 1: Table S4). The model yielded good
performances in both subtypes of NSCLC, with correla-
tions of 0.9244 for LUAD (Additional file 1: Fig. S4a)
and 0.8781 for LUSC (Additional file 1: Fig. S4b). The
average CDS length of these 23 genes was 12k nucleo-
tides (3k—80k, Additional file 1: Table S4), and the total
length was 0.28M nucleotides, which was considered to
be a great reduction of sequencing cost for mutation
load estimation. We concluded that the 23-gene panel is
the ideal model based on TCGA training set.

Analytic validation of the 23-gene panel in Asian resected
NSCLC patients

To validate the performance of the estimation model, we
conducted WES on 89 Chinese, stage IA-IIIA NSCLC
patients after radical pneumonectomy (surgery cohort,
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Additional file 1: Table S1). The correlation of 23-gene
TMB with WES was 0.8487 (r, p <0.0001, Fig. 3a). As
shown in Fig. 3b, TMB-high (>4 mutational counts) ac-
cording to the 23-gene panel associated with a better
DFS compared with those with TMB-low (log-rank, p =
0.0191). Besides, a tendency towards improved OS was
observed in the patients with higher estimated TMB,
though a statistical difference was not reached due to
the fact that most patients were still alive (Fig. 3c).

Performance verification by comparing the 23-gene panel
with other commercial panels

Next, we compared the 23-gene panel with two com-
mercial panels based the 73 early-stage NSCLC data, in-
cluding F1CDx (405 genes) and MSK-IMPACT (414
genes). There are two overlap genes between the 23-
gene panel with FICDx and MSK-IMPACT, namely
NFI and EPHAS. The 23-gene TMB has a tight correl-
ation with the TMB estimated by F1CDx (F1CDx-TMB)
or MSK-IMPACT (MSK-TMB) (r=0.7046 and 0.6480,
respectively, both p <0.0001, Fig. 4a, b). In addition,
when the 23 genes were added to the two commercial
panels, the correlation of the incorporated panels with
WES-TMB significantly increased from 0.9437 (95% CI
0.8523-0.9338) to 0.9579 (95% CI 0.9182-0.9640) (p <
0.05) for F1CDx (Fig. 4c, d) and from 0.9270 (95% CI
0.7832-0.9008) to 0.9579 (95% CI 0.8883-0.9505) (p <
0.05) for MSK-IMPACT (Fig. 4e, f). To further verify the
specificity of these 23-gene panels, we compared them
with other 23 randomly selected gene panels from the
116 genes. The procedure was repeated 1000 times,
resulting in the random Pearson correlation coefficients
from 0.8958 to 0.9455 of F1CDx plus random 23 genes
and from 0.8642 to 0.9291 of MSK plus random 23
genes. The performance of our 23-gene model was bet-
ter than 99% of random models, which indicated the ir-
replaceability of these genes.
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Based on the survival data from our 89 early-stage
NSCLC patients, significant correlations were observed
between survival outcomes (DFS) and the TMB level
stratified with F1CDx or MSK-IMPACT panel
(Additional file 1: Fig. S5a, c). Interestingly, the 23 genes
could improve the association of these two commercial
panels with DFS (Additional file 1: Fig. S5b, d). If the in-
corporated panels were used for analysis, TMB-high esti-
mated by both of the two new panels (FICDx + 23-gene
panel or MSK-IMPACT + 23-gene panel) demonstrated
improved DFS compared with those of estimated TMB-
low under the cutoff values indicated in Fig. S3c and S5
of Additional file 1.

Immune-regulatory gene expression signatures stratified
by TMB level based on the 23-gene panel

To investigate the difference in immune status between
TMB-high and TMB-low estimated by the 23-gene
panel, we analyzed immune-regulatory gene expression
signatures based on the RNAseq data of 1026 NSCLC
cases from TCGA. The GSEA revealed a prominent en-
richment of mRNA signatures involved in the inflamma-

tory response; TNF-o; interferon-a, y (IFN-a, )
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response; IL6-JAK-STAT3 signaling; and allograft rejec-
tion (Fig. 5).

Immunotherapy response prediction by the established
23-gene panel
Finally, we analyzed the performance of TMB estimated
by the 23-gene panel in the prediction of response to
ICIs, using two independent NSCLC cohorts. In the
Rizvi cohort, the correlation between the TMB estimated
by the 23-gene panel and WES was 0.8529 (empirical p
value of r < 0.0001, Fig. 6a). The estimated TMB was sig-
nificantly different between the patients with durable
clinical benefit (DCB; a partial or stable response lasting
over 6 months) and no durable benefit (NDB; Mann-
Whitney p = 0.0047; Fig. 6b). Survival analysis was then
applied for the comparison of the PFS between the pa-
tients (n =34) with TMB-high (>4 counts) and TMB-
low (<4 counts) by the 23-gene panel. Patients with
TMB-high demonstrated significantly improved PFS
compared with those with TMB-low (14.5 vs. 3.5
months, log-rank p = 0.0238) (Fig. 6¢).

To further validate the performance of the estimation
model for response to ICIs, we performed WES of 73
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advanced (stage IIIB-IV) NSCLCs in another Asian co-
hort (ZS immunotherapy cohort). All of these 73 pa-
tients received with anti-PD-1 or anti-PD-L1 treatment.
The r between the estimated and actual mutation bur-
den was calculated to be 0.8844 (empirical p value of r <
0.0001, Fig. 6d). The estimated TMB was significantly
different between the patients with DCB and NDB
(Mann-Whitney p = 0.0133, Fig. 6e). The PFS was associ-
ated with estimated TMB (log-rank p =0.0479, Fig. 6f),
demonstrating that the estimated mutation burden de-
rived from Caucasian NSCLCs from TCGA could pre-
dict the immunotherapy treatment response quite well
in Asian patients. We further calculated the HR at differ-
ent cutoff values in the ZS immunotherapy cohort and
found the 3 mutational counts in this cohort resulted
the best HR value (Additional file 1: Fig. S6). As a result,
when applied in clinical practice, the cutoff value still
needs to be further evaluated accordingly.

Comparison of the 23-gene panel with previously
reported TMB-related genes

Mutations in TTN, MUCI16, POLE, and POLDI have
been previously reported to correlate with elevated TMB
levels [12-14]. The frequencies of these 4 genes in
NSCLC, based on 1026 cases from TCGA, were 46%,
40%, 4.8%, and 0%, respectively. WES-TMB was signifi-
cantly different between the patients with these mutated

genes and those with wild-type counterparts
(Additional file 1: Fig. S7). However, only MUCI16 muta-
tions exhibit significant correlation with OS and DFS in
TCGA cohort (Additional file 1: Fig. S7a-c), while they
failed to confirm the results in our surgery cohort
(Additional file 1: Fig. S8). Notably, none of these 3 gene
mutations could predict the response or PES in either
the Rizvi cohort or our immunotherapy cohort
(Additional file 1: Fig. S9).

Discussion

In the present study, we developed a novel and optimal
TMB estimation model composed of only 23 genes,
which allowed precise estimation of the WES-based
TMB both in early-stage and late-stage NSCLC patients.
Importantly, our established 23-gene panel can success-
fully predict the survival outcomes in both resected
NSCLCs and patients receiving ICIs in multiple valid-
ation cohorts. To the best of our knowledge, our TMB
estimation model is both the first and the smallest panel
described to date, which can be used as a biomarker to
stratify patients not only after radical pneumonectomy,
but also with advanced NSCLC receiving ICIs.

The total CDS length of the 23-gene panel was 0.28M
nucleotides, with an average of 12k (3k—80k). The TTN
is also included in our panel; although it has the longest
CDS length of 81k, the total length was acceptable when



Tian et al. BMC Medicine (2020) 18:232

TTN is included. Besides, in a recent study, 7TN muta-
tion was reported to be associated with TMB in solid tu-
mors, including NSCLC, and correlated with response to
ICIs [14]. As a result, the 23-gene panel was considered
to be a great reduction of sequencing cost for mutation
load estimation.

Several cancer-related genes have been previously re-
ported to be associated with WES-TMB in some cancer
types. For example, melanoma patients with LRP1B mu-
tations exhibited a higher mutational load than those
with the wild-type gene [19]. Li et al. reported that mu-
tations in MUCI6 are associated with TMB and survival
outcomes in patients with gastric cancer [13]. Two
DDR-related genes (POLE and POLDI) were also shown
to correlate well with WES-TMB in pan-cancer types
[12]. Undoubtedly, it would be ideal to utilize a single
gene to estimate TMB and effectively predict response
to immunotherapy. However, we found that singly, all
these genes failed to correlate well with the efficacy of
ICIs or survival outcomes after resection; the correlation
of any individual gene with WES-TMB was moderate
(mean r=0.34 (0.09-0.68)). These results indicate that
using a single gene to estimate TMB is insufficient.

Theoretically, the larger a NGS gene panel, the closer
the estimated TMB is to the actual amount. However,
the cost-effective balance for clinical usage must be con-
sidered. In particular, when TMB is detected using per-
ipheral blood, super sequencing depth (e.g., 10,000-20,
000x), due to the low abundance of circulating tumor
DNA, will significantly drive up the cost [20]. To date,
two commercial gene panels (F1ICDx and MSK-IMPA
CT) have been widely used for TMB estimation. These
two panels demonstrate good performance in correlation
with WES-TMB [21]. Our established gene panel, which
includes a very limited number of genes, demonstrated
comparable correlation coefficients with these two large
panels, indicating the promising reliability of a small
panel as a surrogate for WES-TMB. Notably, the major-
ity of genes used in our model were not included in the
currently used commercial gene panels. If the genes in
our panel were incorporated into the big commercial
gene panels, the correlation coefficients with WES-TMB
increased. These results demonstrate that the 23 genes
we have selected here may be used independently or as
complement to the currently used gene panels specific
for NSCLC. Inclusion of the 23 genes should be consid-
ered in future NGS gene panels.

Recently, Lyu et al. developed a small gene panel with
24 genes to estimate actual TMB, derived from 230
LUADs in TCGA database. The construction and valid-
ation cohorts used for Lyu et al’s 24-gene panel were
mainly from Caucasian patients. However, our 23-gene
panel, though also derived from TCGA database, was
successfully validated in multiple Asian patient cohorts.
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These results suggest that our 23-gene panel may be
more suitable to NSCLC and applicably potent regard-
less of race and subtypes (Additional file 1: Fig. S10).

Similar with the findings of Devarakonda et al. [6], we
observed that high TMB associated with improved OS in
resected NSCLC patients. In colon cancer patients with
resected stage II, mismatch repair deficiency, high TMB
has been utilized as a good prognostic biomarker [22]. In-
deed, these results possess internal rationality. Both high
neo-epitope burden [23] and intense TIL infiltration [24]
have been associated with favorable survival outcomes in
early-stage lung cancer. High TMB may reflect the im-
munogenicity in some degree, which could mediate the
shaping of tumor-host immune interactions. Taken to-
gether, these and our findings suggest that quantifying
genomic instability through TMB estimation can be used
to stratify patients so as to guide adjuvant treatment.

Owing to the lack of information on HLA-, it is difficult
to judge whether the predictive value of our gene panel is
due to neo-antigen generation derived from the included
gene mutations or if the estimated TMB based on the 23-
gene panel is simply a representative reflection of genomic
instability as an “accompanying passenger.” The other
limitation of our study is the small number of patients
who received the immunotherapy treatment. Thus, a lar-
ger number of cases from a multicenter study are required
for the validation of the performance of the treatment re-
sponse prediction. In addition, our validation cohorts were
retrospective; a prospective study is necessary to translate
our estimation model into clinical practice. In addition to
TMB, other features, such as PD-L1 expression, microsat-
ellite instability, and neo-antigen burden, have emerged as
potential predictive biomarkers for ICIs [25-27]. However,
challenges in defining cutoff values, intertumoral and
intratumoral heterogeneity, and test platform uniformities
have limited their clinical applications [10]. Therefore, fu-
ture strategies that combine different predictive features
may be more effective biomarkers for the accurate predic-
tion of cancer immunotherapy response [28], but need to
be carefully integrated.

Conclusions

In summary, we have successfully constructed a novel
TMB estimation model using only 23 genes that can be
used to estimate the WES-TMB, and stratify survival
prognosis after radical surgery and clinical outcomes of
ICI therapy in NSCLC patients. Thus, a customized panel
for the targeted sequencing of these selected genes, in-
stead of whole-exome sequencing, can be designed or uti-
lized as complementary genes included in the current
NGS panels. Consequently, by using our model, the cost-
effectiveness may be considerably improved, making
realization of cancer immunotherapy response more ac-
cessible in standard clinical settings [29].
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