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Abstract

Background: Bilirubin, a byproduct of hemoglobin breakdown and purported anti-oxidant, is thought to be cancer
preventive. We conducted complementary serological and Mendelian randomization (MR) analyses to investigate
whether alterations in circulating levels of bilirubin are associated with risk of colorectal cancer (CRC). We decided a
priori to perform analyses separately in men and women based on suggestive evidence that associations may differ
by sex.

Methods: In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition (EPIC),
pre-diagnostic unconjugated bilirubin (UCB, the main component of total bilirubin) concentrations were measured
by high-performance liquid chromatography in plasma samples of 1386 CRC cases and their individually matched
controls. Additionally, 115 single-nucleotide polymorphisms (SNPs) robustly associated (P < 5 × 10−8) with circulating
total bilirubin were instrumented in a 2-sample MR to test for a potential causal effect of bilirubin on CRC risk in 52,
775 CRC cases and 45,940 matched controls in the Genetics and Epidemiology of Colorectal Cancer Consortium
(GECCO), the Colon Cancer Family Registry (CCFR), and the Colorectal Transdisciplinary (CORECT) study.

Results: The associations between circulating UCB levels and CRC risk differed by sex (Pheterogeneity = 0.008). Among
men, higher levels of UCB were positively associated with CRC risk (odds ratio [OR] = 1.19, 95% confidence interval
[CI] = 1.04–1.36; per 1-SD increment of log-UCB). In women, an inverse association was observed (OR = 0.86 (0.76–
0.97)). In the MR analysis of the main UGT1A1 SNP (rs6431625), genetically predicted higher levels of total bilirubin
were associated with a 7% increase in CRC risk in men (OR = 1.07 (1.02–1.12); P = 0.006; per 1-SD increment of total
bilirubin), while there was no association in women (OR = 1.01 (0.96–1.06); P = 0.73). Raised bilirubin levels, predicted
by instrumental variables excluding rs6431625, were suggestive of an inverse association with CRC in men, but not
in women. These differences by sex did not reach formal statistical significance (Pheterogeneity ≥ 0.2).

Conclusions: Additional insight into the relationship between circulating bilirubin and CRC is needed in order to
conclude on a potential causal role of bilirubin in CRC development.

Keywords: Bilirubin, Cancer, Colorectal cancer, Anti-oxidants, Mendelian randomization analysis

Background
Globally, colorectal cancer (CRC) is the third most com-
mon cancer and the second leading cause of cancer-
related death [1]. CRC is more frequent in men than in
women, and its burden is expected to increase by 60% to
more than 2.2 million new cancer cases and 1.1 million
cancer deaths by 2030 [2].
Chronic inflammation is one of the hallmark character-

istics of cancer, and inflammatory cells can also release re-
active oxygen species, which trigger mutations in cancer
cells [3]. Due to the inflammatory roots of CRC [4], it
might be a candidate for prevention by anti-inflammatory
and anti-oxidative agents. A compelling body of evidence
from experimental and clinical studies has demonstrated
that serum bilirubin, a byproduct of hemoglobin break-
down, has substantial anti-inflammatory and anti-
oxidative properties [5–9]. Blood levels of total bilirubin
are usually less than 17.1 μmol/L and consist primarily of
unconjugated bilirubin (UCB) [10], which is also normally
present in the gut and can cross gut cell membranes [11].
In vitro, UCB is the most active anti-oxidant part of total
bilirubin [11–13]. The liver selectively removes UCB from
the blood, and UCB is conjugated by a uridine diphospho-
glucuronyltransferase (UGT1A1), after which it is trans-
ported to the bowel via the bile, where it is unconjugated
by bacteria and excreted in the stool or reabsorbed [5–9].

Men usually have higher total bilirubin levels than women
due to lower estrogen levels [5, 14] and a higher red blood
cell turn-over [15, 16].
As the heme pathway plays an important role against

oxidative stress, UGT1A1 gene polymorphisms might be
predictive of genetic pre-disposition to cancer [17]. Con-
genital underexpression of UGT1A1 causes mild chronic
unconjugated hyperbilirubinemia, known as “Gilbert’s
syndrome (GS),” and is associated with a polymorphism
of the 5′ end of the UGT1A1 gene promoter. The fre-
quency of Gilbert’s polymorphism is 30–45%; however,
phenotypic hyperbilirubinemia is estimated to be 5–10%
in Caucasians [18–20].
Few epidemiological studies have investigated the as-

sociation between circulating bilirubin levels and CRC
risk with inconsistent findings [17, 21–26]. Notably,
these previous studies only considered total bilirubin,
were of limited size, and were cross-sectional or retro-
spective in design with one exception [22].
In this study, we analyzed pre-diagnostic circulating

levels of UCB in relation to CRC development in the
European Prospective Investigation into Cancer and Nu-
trition (EPIC). Additionally, we applied a complementary
Mendelian randomization (MR) approach to investigate
a potential causal relationship between genetically raised
bilirubin levels and CRC in large international genetics
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consortia. We decided a priori to perform analyses sep-
arately in men and women because of the well-
established sex differences in blood levels of bilirubin
[10] and suggestive evidence that bilirubin CRC associa-
tions may differ between men and women [17, 23].

Methods
Study population and collection of blood samples and
data
EPIC is a multi-center prospective cohort of 521,330
participants (~ 70% women, 25–70 years), recruited be-
tween 1992 and 2000, predominantly from the general
population in 23 centers of 10 European countries
(Sweden, Denmark, Norway, Germany, France, Greece,
Italy, Spain, the UK, and the Netherlands) [27]. Around
80% of the participants donated a blood sample at re-
cruitment, and plasma/serum samples were collected ac-
cording to standardized procedures [27, 28] and stored
at the International Agency for Research on Cancer
(IARC, Lyon, France, at − 196 °C in liquid nitrogen), ex-
cept in Denmark (nitrogen vapor, − 150 °C) and Sweden
(− 80 °C freezers). At recruitment, participants com-
pleted standardized lifestyle and personal history ques-
tionnaires, had their diet assessed covering the previous
12 months using validated country/center-specific diet-
ary questionnaires, and had height and weight (self-re-
ported in the Oxford center and Norway, measured
elsewhere) assessed [28].

Cancer case ascertainment and selection
A detailed explanation of cancer case selection and as-
certainment in EPIC has been published previously [29].
Briefly, incident cancer cases were identified through
population cancer registries (Denmark, Italy except Na-
ples, The Netherlands, Norway, Spain, Sweden, and UK;
complete follow-up for cancer incidence ranging be-
tween December 2004 and 2008) or by active follow-up
(France, Germany, Greece, and Naples; complete follow-
up ranging between December 2006 and June 2010),
consisting of a combination of methods including health
insurance records, cancer and pathology registries, and
active follow-up of study subjects and their next of kin.
Cases were coded by anatomic location as colon and
rectal cancer cases, identified according to the 10th revi-
sion of the International Classification of Diseases (ICD-
10) and the second revision of the International Classifi-
cation of Disease for Oncology (ICD-O-2). Proximal
colon cancers included those within the cecum, appen-
dix, ascending colon, hepatic flexure, transverse colon,
and splenic flexure (C18.0-18.5). Distal colon cancers in-
cluded those within the descending (C18.6) and sigmoid
(C18.7) colon. Overlapping (C18.8) and unspecified
(C18.9) lesions of the colon were grouped among all
colon cancers only (C18.0-C18.9). Rectal cancers were

defined as tumors occurring at the recto-sigmoid junc-
tion (C19) or rectum (C20). CRC is the combination of
the colon and rectal cancer cases. Anal canal cancers
(C21) were excluded.
Controls were selected by incidence density sampling

from all cohort members alive and cancer-free at the
time of matching to cases (1:1) by sex, age at blood col-
lection, study center, time of day at blood collection,
fasting status, menopausal status, and phase of men-
strual cycle at blood collection.
A total of 1386 CRC cases (374 proximal colon, 412

distal colon, 80 overlapping proximal plus distal colon,
and 520 rectal cancers) and 1386 controls were included
in the current analyses.

Laboratory measurement of circulating bilirubin
Circulating UCB levels were measured in plasma sam-
ples following a well-established protocol [30, 31] using
high-performance liquid chromatography (HPLC,
Merck, Hitachi, LaChrom, Vienna, Austria), equipped
with a Fortis C18 HPLC-column (4.6 × 150 mm, 3 μm), a
Phenomenex SecurityGuard™ cartridges for C18 HPLC-
columns (4 × 3mm), and a photodiode array detector
(PDA, Shimadzu). An isocratic mobile phase contained
glacial acetic acid (6.01 g/L) and 0.1M n-dioctylamine in
HPLC grade methanol/water (96.5/3.5%). Before starting
the procedure, all aliquots were centrifuged and 50 μL
plasma/serum was mixed with 200 μL mobile phase.
After a second centrifugation, 120 μL of the supernatant
was injected to the HPLC at a flow of 1 ml/min.
Case-control pairs were analyzed in the same plate to

minimize batch-to-batch fluctuation. Bilirubin (alpha)
(purity ≥ 98%, Sigma Aldrich) acted as an external stand-
ard (3.3% IIIα, 92.8% IXα, and 3.9% XIIIα isomers, 450
nm). One reference plasma sample was assessed per ana-
lysis as internal standard. The coefficient of variation
(CV) between each plate was 6%.

Genetic data
Genetic determinants for bilirubin levels
Genetic instruments for the MR analysis were identified
as single-nucleotide polymorphisms (SNPs) associated
with total bilirubin levels in the largest genome-wide as-
sociation study (GWAS) (P < 5 × 10−8) conducted to date
that included 317,639 individuals of European ancestry
from the UK Biobank study [32]. UK Biobank is a pro-
spective cohort that recruited more than 500,000 men
and women aged 40–96 years between 2006 and 2010
and collected anthropometric, health, and lifestyle data
and biological samples [33]. Explained phenotypic vari-
ance for a single SNP was estimated as a function of ef-
fect size for the risk factor in standard deviation units
and minor allele frequency [34]. The strength of associa-
tions between the genetic instrument and bilirubin levels
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is reflected in the F-statistic, which is inversely related to
weak instrument bias, being 10 the minimum estimation
for a F-statistic to avoid bias of this nature [35]. The F-

statistic was estimated as F ¼ ðn − k − 1
k Þð R2

1 − R2Þ , where R2

is the proportion of phenotypic variance explained by
the genetic instrument, n is the sample size, and k the
number of genetic variants [35]. A total of 115 SNPs
were identified as genetic instruments for total bilirubin,
explaining 20.0% of phenotypic variance in circulating
total bilirubin levels with an F-statistic of 696.5.
The SNP with the largest contribution was rs6431625 in

the UTG1A1 gene on chromosome 2. This SNP explained
16.9% of phenotypic variance and was in strong linkage dis-
equilibrium (LD R2 = 0.74) with the UGT1A1*28 promoter
TA repeat polymorphism (rs3064744) in European popula-
tions [36]. The other SNPs explained a 3.1% of phenotypic
variance with an F-statistic of 89.1. All SNPs were inde-
pendently associated with total bilirubin levels (LD R2 <
0.001), and SNPs with ambiguous strand codification (A/T
or C/G) were replaced by SNPs in LD R2 > 0.8 in European
populations using the proxysnps R package. As described in
the GWAS where SNPs were identified, raw total bilirubin
levels were adjusted for age, sex and their interaction, the
top 40 principal components for population stratification,
recruitment center, socioeconomic status, and potential
technical confounders (blood draw time and its square and
interactions with age and sex; urine sample time and its
square and interactions with age and sex; sample dilution
factor; fasting time, its square, and interactions with age
and sex; and interactions of blood draw time and urine
sample time with dilution factor) [32]. These adjusted resid-
uals were inverse-normal-transformed and reflect the gen-
etic association with bilirubin levels in standard deviation
units (Supplementary Table 1, see Additional file 1). Total
bilirubin is the sum of UCB (~ 80–85%) and conjugated
bilirubin (~ 15–20%), and this ratio is constant under
physiologic conditions.

Genome-wide data on CRC risk
Epidemiological and genetic data were derived from 51
studies (Supplementary Table 2, see Additional file 1)
participating in the Genetics and Epidemiology of Colo-
rectal Cancer Consortium (GECCO) [37], the Colon
Cancer Family Registry (CCFR) [38], and the Colorectal
Transdisciplinary (CORECT) study [39]. Men and
women with incident invasive colorectal adenocarcin-
oma (ICD-9, codes 153-154) were included as cases. All
CRC cases were confirmed by medical records, path-
ology reports, or death certificates. A total of 52,775
cases and 45,940 matched controls were included in the
analyses [40]. On average, 51% of the study participants
were men and the mean age was ~ 60 years; in all stud-
ies, controls were matched to cases on age and sex. The

UK Biobank CRC cases and controls were excluded from
the genetic consortia. This should prevent that weak in-
struments (i.e., genetic instruments not explaining much
variation in circulating bilirubin) bias the MR risk esti-
mate towards observed traditional risk estimates due to
sample overlap between the SNP discovery sample (UK
Biobank) and the CRC case-control samples [34].
Genotype information was available for all included

studies. Details on genotyping, quality assurance, and
imputation are described elsewhere [41]. In short, SNPs
were excluded based on call rate (< 98% GECCO; < 95%
CORECT), lack of Hardy-Weinberg equilibrium in con-
trols (P < 1 × 10−4), or low minor allele frequency (≤ 1%).
Analyses were restricted to individuals self-reported as
of European descent and clustering with Utah residents
with Northern/Western European ancestry from the
CEU population in principal component analysis, includ-
ing the HapMap II populations as reference. Summary
statistics for genetic association with CRC risk were ob-
tained for all studies included in the consortia and are
shown in Supplementary Table 1.

Statistical analyses
Serological analyses
Our a priori decision to perform all statistical analyses
separately in men and women was confirmed by a strong
effect modification by sex with regard to CRC risk in
EPIC (Pheterogeneity = 0.008). Conditional logistic regres-
sion models were used to estimate odds ratios (OR) and
95% confidence intervals (CI) for associations between
log-transformed UCB levels (log-UCB), standardized per
one standard deviation (1-SD) increments, and CRC risk.
Two models were constructed: a crude model which was
conditioned on the matching criteria and then a multi-
variable model adjusted for level of education (none/pri-
mary school, technical/professional, secondary school,
university degree), BMI (continuous, kg/m2), height
(continuous), smoking status (never, former, and current
smoker), physical activity (inactive, moderately inactive,
moderately active, and active), alcohol consumption (g/
day), dietary intakes of fiber (g/day), red meat (g/day),
processed meats (g/day), dairy products (g/day), and
total energy intake (kcal/day), and in women ever use of
hormone therapy (HT, yes/no). Based on prior know-
ledge about the causal structure, we adjusted for vari-
ables that allowed all backdoor paths to be blocked in
the directed acyclic graph (DAG) shown in Supplemen-
tary Figure 3, while avoiding adjustment for variables af-
fected by either the exposure or the outcome [42].
Missing values in any of the categorical covariates were
treated as a separate category.
We also investigated the potential non-linear dose-

response associations between circulating levels of UCB
and CRC risk. We used three-knot restricted cubic spline
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models at Harrell’s default percentiles (i.e., 10th, 50th, and
90th) in combination with a Wald-type test [43].
We tested for effect modification by categories of age

(median), BMI (median), alcohol consumption (median),
smoking status, menopausal status, use of HT, genotypes
of the main UGT1A1 SNP (rs6431625), and follow-up
time (categories) by adding in the multivariable model a
multiplicative interaction term between log-UCB and
each of the aforementioned variables at a time. These
hypothesis-free analyses were meant to assess the
consistency of associations across population subgroups.
Additional heterogeneity analysis was performed by can-
cer sub-sites (colon vs. rectum and proximal vs. distal).
For this, we fitted stratified conditional logistic regres-
sion models based on competing risks and calculated the
OR and their 95% CI in the subgroups of interest [44].
Finally, to evaluate the robustness of the results and

address potential sources of bias such as reverse caus-
ation and residual confounding, we performed a range of
sensitivity analyses. To exclude individuals with hepatic
impairment, we calculated BTR index (the molar ratio of
branched-chain amino acids to tyrosine) [45] and
Fischer’s ratio (the molar ratio of branched-chain amino
acids to tyrosine and phenylalanine) [46], which are clin-
ical indicators of liver dysfunction and metabolism. Last,
the fully adjusted models in EPIC were repeated after ex-
cluding subjects with missing values in any covariate.
To validate the genetic instruments for total bilirubin,

we regressed the allele dose of the bilirubin-increasing
allele of the main SNP (rs6431625) in the UGT1A1 gene
on the measured bilirubin levels in the EPIC sample with
available GWAS data (N controls = 808).

Genetically predicted total bilirubin levels vs. CRC risk in
GECCO/CCFR/ and CORECT
We investigated the genetic instruments for total bilirubin
levels in relation to CRC risk using a 2-sample MR in 52,
775 cases and 45,940 control participants within GECCO,
CCFR, and CORECT (28,207 cases/22,204 controls in
men and 24,568 cases/23,736 controls in women). With
this sample size, the power was 80% to detect an OR ≥
1.065 for the sex-stratified analyses per one standard devi-
ation increment of total bilirubin levels.
Each genetic variant provides an estimation of the total

bilirubin level effect on cancer risk (Wald estimate: gen-
etic effect on CRC risk/genetic effect on total bilirubin
levels). Before performing the main MR analysis, we
assessed the presence of outlier observations within the
SNP Wald estimates using the MR pleiotropy residual
sum and outlier (MR-PRESSO) test [47]. This method
identifies heterogeneity between SNP effects (PGlobal) as
an evidence of horizontal pleiotropy, identifies outlier
SNPs, and tests if the presence of outliers is biasing the
estimation of risk (PDistortion). Then, as the main MR

approach used in this study, SNP Wald estimates were
combined in a single causal estimation through a likeli-
hood-based MR approach, which is considered the most
accurate MR method to estimate effects when there is a
continuous log-linear association between risk factor and
disease risk [48]. The multiplicative random effects
inverse-variance weighted MR estimator was also applied
[49]. However, the presence of pleiotropic variants can
lead to biased causal effect estimates. In order to over-
come this potential issue, several MR sensitivity analyses
for data with potentially invalid instruments were applied.
Initially, to evaluate the extent to which directional plei-
otropy (non-balanced horizontal pleiotropy) may affect
the effect estimate, we used the intercept test within an
MR-Egger weighted linear regression approach [50]. Fur-
thermore, two additional approaches, namely the weighted
median method [51] and the modal-based estimate ap-
proach [52], relying on the distribution on SNP effects,
were applied. In the former, the causal effect estimate is
weighted towards the median of the distribution of SNPs
used in the genetic instrument, while in the latter, the ef-
fect estimate is reflected by the mode of density distribu-
tion provided by SNP Wald estimates. Both methods are
less sensitive to SNPs with biased effects. Finally, to iden-
tify whether the strongest SNP (rs6431625) was driving
the association estimates, we obtained MR estimates leav-
ing out this SNP from the SNP set.
Additionally, we investigated the between-sex hetero-

geneity of main causal effects by estimating the percent-
age of variance that is attributable to sex heterogeneity
(I2 statistic), and the P value derived from Q statistic for
heterogeneity (Pheterogeneity), assuming a fixed-effect
model of 1 degree of freedom.
Scatter plots were used to depict the genetic associ-

ation on total bilirubin levels and CRC risk. All statistical
analyses and plots were performed using Stata SE14
(Stata Corporation, College Station, TX, USA) and R
(MRPRESSO, TwoSampleMR, and ggplot2; The R pro-
ject). The significance testing was based on two-sided P
values of less than 0.05.

Results
Baseline characteristics of the EPIC participants are
shown in Table 1. Mean follow-up time from blood col-
lection to cancer diagnosis was 4.3 years (± 2.5 SD).
Among men, cases compared to controls had higher
UCB concentrations, were heavier (higher weight and
BMI), and consumed more alcohol. Among women,
cases compared to controls had lower UCB concentra-
tions, were heavier (higher weight) and taller, and con-
sumed less dairy products.
There was a suggestive higher frequency of genotypes

in the homozygotes or heterozygotes than the frequency
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Table 1 Baseline characteristics of colorectal cancer cases and their matched controls by sex in the EPIC nested case-control study

Parameters Men Women

Case Control P Case Control P

N 658 658 728 728

Age at blood collection (years) 58.6 (7.1) 58.5 (7.1) 0.9 58.1 (7.7) 58.0 (7.7) 0.9

Follow-up from blood collection (years) 4.3 (2.5) 4.3 (2.5)

Weight (kg) 82.5 (12.1) 80.4 (11.1) 0.001 68.5 (12.4) 66.8 (10.8) 0.007

Height (cm) 173.8 (6.8) 173.4 (6.8) 0.3 161.5 (6.5) 160.8 (6.5) 0.03

BMI (kg/m2) 27.3 (3.8) 26.7 (3.3) 0.01 26.3 (4.7) 25.9 (4.2) 0.08

UCB (μmol/L) 4.3 (2.6) 4.0 (2.2) 0.02 3.2 (1.8) 3.4 (1.9) 0.08

Frequency of main SNP (rs6431625) (n, %) 0.1 0.2

TT genotype (wild-type) 163 (36) 147 (41) 219 (39) 159 (35)

TC genotype 216 (48) 160 (45) 258 (46) 218 (48)

CC genotype 75 (17) 50 (14) 83 (15) 74 (16)

Smoking status (n, %) 0.2 > 0.9

Never 156 (24) 185 (28) 426 (59) 428 (59)

Former 310 (47) 278 (42) 160 (22) 159 (22)

Current 180 (27) 184 (28) 138 (19) 137 (19)

Physical activity (n, %)† 0.3 0.1

Inactive 157 (24) 155 (24) 207 (28) 170 (23)

Moderately inactive 191 (29) 184 (28) 248 (34) 269 (37)

Moderately active 159 (24) 137 (21) 154 (21) 144 (20)

Active 143 (22) 169 (26) 116 (16) 140 (19)

Education (n, %)‡ 0.1 0.9

None 39 (6) 39 (6) 43 (6) 40 (5)

Primary school completed 227 (35) 241 (37) 238 (33) 258 (35)

Technical/professional school 154 (23) 177 (27) 170 (23) 166 (23)

Secondary school 84 (13) 54 (8) 141 (19) 135 (19)

Longer education (incl. university deg.) 139 (21) 131 (20) 104 (14) 111 (15)

Unknown 9 (1) 12 (2) 27 (4) 15 (2)

Menopause stage (n, %) 0.6

Pre-menopausal 85 (12) 90 (12)

Post-menopausal 507 (70) 515 (71)

Peri-menopausal 98 (13) 95 (13)

Surgical postmen (bilateral ovariectomy) 38 (5) 28 (4)

Ever use of HT (n, %) 0.8

No 533 (73) 526 (72)

Yes 165 (23) 174 (24)

Daily dietary intake, median (5th, 95th percentile)

Energy (kcal) 2286 (1383, 3558) 2278 (1410, 3488) 0.8 1870 (1093, 2906) 1860 (1191, 2850) 0.7

Alcohol (g) 15 (0, 80) 13 (0, 71) 0.04 3 (0, 33) 4 (0, 33) 0.6

Red meat (g) 51 (8, 145) 49 (7, 135) 0.4 38 (4, 105) 40 (3, 105) 0.9

Processed meat (g) 34 (4, 111) 32 (2, 111) 0.1 21 (1, 71) 20 (1,68) 0.7

Fiber (g) 23 (12, 38) 23 (12, 40) 0.2 21 (12, 35) 22 (12, 34) 0.1

Dairy products (g) 257 (36, 765) 282 (43, 767) 0.1 299 (50, 801) 324 (63, 813) 0.02
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Table 1 Baseline characteristics of colorectal cancer cases and their matched controls by sex in the EPIC nested case-control study
(Continued)

Parameters Men Women

Case Control P Case Control P

Country (n, %) > 0.9 > 0.9

France 40 (5) 40 (5)

Italy 77 (12) 77 (12) 108 (15) 108 (15)

Spain 86 (13) 86 (13) 79 (11) 79 (11)

UK 123 (19) 123 (19) 125 (17) 125 (17)

The Netherlands 23 (3) 23 (3) 147 (20) 147 (20)

Greece 21 (3) 21 (3) 19 (3) 19 (3)

Germany 120 (18) 120 (18) 64 (9) 64 (9)

Sweden 44 (7) 44 (7) 30 (4) 30 (4)

Denmark 164 (25) 164 (25) 105 (14) 105 (14)

Norway 11 (2) 11 (2)

Fasting status (n, %) > 0.9 > 0.9

No 324 (50) 324 (50) 361 (51) 360 (51)

Inbetween 141 (22) 140 (22) 139 (19) 139 (19)

Yes 185 (28) 185 (28) 215 (30) 215 (30)

Values are means (SD) unless stated otherwise. Categorical variables are expressed as n (%) and continuous variables as means (SD) or medians (5, 95%). Paired T
test (mean comparison) or Wilcoxon rank sum test for dietary intakes and chi-square test for categorical variables were used to calculate the P value. Number of
missing values (cases/controls): physical activity (12/18), smoking status (16/15), education (11/7), and HT (30/28). Missing values were not excluded in percentage
calculations; therefore, the percent’s sum across subgroups is not 100%
Abbreviations: N number, UCB unconjugated bilirubin, BMI body mass index, HT hormone therapy
†A study participant was considered active if he/she reported a leisure time activity of at least 1 h per week in at least one season
‡Education level was defined as high in case of final secondary school examination and otherwise as low. More details have been published previously [27, 28]

Table 2 Odds ratio and 95% confidence interval for the association between bilirubin levels and CRC risk

Men Women

Odds ratio (95% CI) Odds ratio (95% CI)

n cases/controls Crude Adjusted n cases/controls Crude Adjusted

Nested case-control study EPIC (1-SD)†

log-UCB 658/658 1.13 (1.00–1.28) 1.19 (1.04–1.36) 728/728 0.86 (0.77–0.97) 0.86 (0.76–0.97)

P 0.05 0.01 0.01 0.02

MR approach for total bilirubin (1-SD)*

rs6431625 Wald estimate§ 28,270/22,204 1.07 (1.02–1.12) 24,568/23,736 1.01 (0.96–1.06)

P 0.006 0.73

114 SNPs likelihood-based MR estimate§ 28,270/22,204 0.89 (0.80–1.00) 24,568/23,736 1.00 (0.89–1.11)

P 0.05 0.96

Abbreviations: n number, P P value, CI confidence interval, log-UCB log-transformed unconjugated bilirubin
†EPIC (European Prospective Investigation into Cancer and Nutrition): Conditional logistic regression models were used to estimate odds ratios (OR) and 95%
confidence intervals (CI) for associations between log-transformed UCB levels (log-UCB), standardized per one standard deviation (1-SD) increments, and CRC risk.
The crude model was conditioned on the matching factors including study center, age at blood collection (1 year), fasting status and time (3 h intervals) at blood
collection, among women, additionally by menopausal status (pre-, peri-, and post-menopausal or surgically menopausal), and hormone therapy (HT) (yes, no).
The multivariable model was adjusted for level of education (none/primary school, technical/professional, secondary school, university degree), BMI, height,
smoking status (never, former, current smoker), physical activity (inactive, moderately inactive, moderately active, active), alcohol consumption (g/day), dietary
intakes of fiber (g/day), red meat (g/day), processed meats (g/day), dairy products (g/day), and total energy intake (kcal/day)
*MR approach: Mendelian randomization approach; data from the Colon Cancer Familiar Registry (CCFR), the Colorectal Transdisciplinary (CORECT) study, and the
Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO)
§Odds ratio and 95% confidence interval for colorectal cancer per 1-SD increment in bilirubin levels estimated through a likelihood-based MR approach
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of the wild-type in CRC cases as compared to controls
in men, and less so in women.

Serological analyses: association between circulating
bilirubin levels and CRC risk
In the EPIC cohort, among men, we observed a positive
association between pre-diagnostic UCB levels and CRC
risk in both crude and multivariable adjusted models
(multivariable OR = 1.19, 95% CI = 1.04–1.36; P = 0.01;
per 1-SD increment in log-UCB). In contrast, we ob-
served an inverse association between UCB and CRC
risk in women in both crude and multivariable adjusted
models (multivariable OR = 0.86, 95% CI = 0.76–0.97;
P = 0.02; per 1-SD log-UCB increment) (Table 2). These
associations followed a linear trend in men (Pnonlinearity =
0.7) and in women (Pnonlinearity = 0.1), but for the latter
with little change in the OR between 4 to 15 μmol/L of
UCB (Supplementary Figure 1, see Additional file 1).

Effect modification and sensitivity analyses
The association of UCB levels with CRC risk in EPIC
women differed by age (Table 3). We observed an inverse
association between UCB levels and CRC risk in older
women (> 58.5 years) (multivariable OR = 0.73, 95% CI =
0.61–0.87; P = 0.001; per 1-SD increment in log-UCB), but
not in younger women (OR = 1.01, 95% CI = 0.85–1.19;
P > 0.9) (Pheterogeneity = 0.008). Serum levels of UCB were
lower in older women compared with younger women.
No effect modification by age at blood collection was ob-
served in men (Pheterogeneity = 0.3).
In contrast, in men (Pheterogeneity = 0.02), but not in

women (Pheterogeneity = 0.14), effect modification by the
rs6431625 genotype was observed (Table 3). In men with
homozygous genotype of the bilirubin-increasing effect
allele (CC) in rs6431625, higher levels of measured UCB
were positively associated with CRC risk (OR = 2.01, 95%
CI = 1.26–3.20; P = 0.003; per 1-SD increment in log-

Table 3 The association between unconjugated bilirubin (UCB) levels and colorectal cancer risk across strata of potential effect
modifiers in the EPIC study

Colorectal cancer

Variables Men Women

n cases/controls† Odds ratio (95% CI) P Pheterogeneity n cases/controls† Odds ratio (95% CI) P Pheterogeneity

Adjusted model 658/658 1.19 (1.04–1.36) 0.01 728/728 0.86 (0.76–0.97) 0.02

Age at blood collection
(year, median)

658/658 0.30 728/728 0.008

< 59.2/< 58.5 329/329 1.28 (1.06–1.54) 364/364 1.01 (0.85–1.19) > 0.90

≥ 59.2/≥ 58.5 329/329 1.10 (0.92–1.32) 364/364 0.73 (0.61–0.87) 0.001

rs6431625 (increasing levels
C allele)

333/333 0.02 428/428 0.14

TT genotype (wild-
type)

117/139 1.1 (0.73–1.65) 0.60 168/151 0.69 (0.49–0.99) 0.04

TC genotype 160/146 0.92 (0.64–1.32) 0.60 194/206 0.71 (0.53–0.95) 0.02

CC genotype 56/48 2.01 (1.26–3.20) 0.003 66/71 1.06 (0.74–1.53) 0.7

Smoking status 658/658 0.40 728/728 0.20

Never 170/170 1.26 (1.00–1.59) 0.05 427/427 0.83 (0.71–0.98) 0.03

Former 294/294 1.06 (0.86–1.30) 0.60 160/160 0.84 (0.66–1.07) 0.20

Current 182/182 1.33 (1.08–1.64) 0.01 137/137 0.99 (0.78–1.25) 0.90

Unknown 12/12 0.93 (0.35–2.49) 0.90 4/4 0.05 (0.00–0.1) 0.20

Follow-up time (years) 658/658 0.20 728/728 0.60

1 (< 2) 141/141 0.96 (0.74–1.25) 0.80 158/158 0.82 (0.65–1.05) 0.10

2 (2–4) 173/173 1.34 (1.04–1.72) 0.02 160/160 0.96 (0.76–1.23) 0.80

3 (> 4) 244/244 1.23 (1.03–1.50) 0.02 280/380 0.84 (0.71–0.99) 0.04

No effect modifications by BMI (median), alcohol consumption (median), menopausal status, and use of HT were observed (all P ≥ 0.7)
Abbreviations: n number, P P value, CI confidence interval
†Cases matched 1:1 to control subjects. EPIC (European Prospective Investigation into Cancer and Nutrition): Conditional logistic regression models were used to
estimate odds ratios (OR) and 95% confidence intervals (CI) for associations between log-transformed UCB levels (log-UCB), standardized per one standard
deviation (1-SD) increments, and CRC risk. The crude model was conditioned on the matching factors including study center, age at blood collection (1 year),
fasting status and time (3 h intervals) at blood collection, among women, additionally by menopausal status (pre-, peri-, and post-menopausal or surgically
menopausal), and hormone therapy (HT) (yes, no). The multivariable model was adjusted for level of education (none/primary school, technical/professional,
secondary school, university degree), BMI, height, smoking status (never, former, current smoker), physical activity (inactive, moderately inactive, moderately
active, active), alcohol consumption (g/day), dietary intakes of fiber (g/day), red meat (g/day), processed meats (g/day), dairy products (g/day), and total energy
intake (kcal/day)
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UCB), while no associations were observed in those with
heterozygous (TC) or wild-type (TT) genotypes. Homo-
zygote UGT1A1 bilirubin-increasing allele carriers
(rs6431625) had higher serum UCB levels compared to
heterozygotes or wild-type in the EPIC population with
GWAS data (R2 = 0.20; P < 0.001, N controls = 808)
(Supplementary Figure 2, see Additional file 1).
No differences in the association between UCB levels

and CRC risk in men and women were observed across
categories of BMI, alcohol consumption, smoking status,
menopausal status, use of HT, and follow-up time in years
(Table 3). Estimated associations between UCB levels and
CRC risk in men and women were also robust to sensitiv-
ity analyses (Supplementary Table 3, see Additional file 1).
There was no heterogeneity in associations by anatom-

ical sub-sites (colon vs. rectum, or proximal colon vs.
distal colon) (all Pheterogeneity ≥ 0.1) (Table 4).

Genetically predicted bilirubin levels and CRC risk in
GECCO/CCFR/ and CORECT
In light of the heterogeneous results across the main
UGT1A1 SNP (rs6431625) genotype categories in sero-
logical analyses, we applied a MR approach to this SNP
separately from the other genetic instruments. In the
MR analysis of the rs6431625, higher levels of genetically
predicted bilirubin were positively associated with CRC
risk in men (OR = 1.07, 95% CI = 1.02–1.12; P = 0.006;
per 1-SD of total bilirubin), but not in women (OR =
1.01, 95% CI = 0.96–1.06; P = 0.73) (Table 2) (I2 = 64.0%;
Pheterogeneity = 0.10).
In the MR analyses of the other 114 genetic instruments,

no outlier SNPs were identified by MR-PRESSO analyses,
with some heterogeneity among the instruments (PGlobal <
0.04). The likelihood-based MR risk estimates, which ex-
cluded rs6431625, showed some evidence that higher levels
of bilirubin were inversely associated with CRC risk in men
(OR = 0.89, 95% CI = 0.80–1.00; P = 0.05), while in women,
no association was observed (OR = 1.00, 95% CI = 0.89–
1.11; P = 0.96) (Table 2) (I2 = 39.0%; Pheterogeneity = 0.20).
Scatter plots depicting the genetic association of the 115
SNPs with total bilirubin levels and with CRC risk, together
with MR risk estimates for the genetic instrument compris-
ing the 114 SNPs, are shown in Fig. 1.
In MR sensitivity analyses of the 114 SNP instrument, the

MR-Egger test did not detect directional pleiotropy in the
intercept analysis for total bilirubin levels in men or women
(Pintercept ≥ 0.45). The additional inverse-variance weighting,
weighted median, and modal-based estimates provided
similar results compared to the likelihood-based MR risk
estimates (Supplementary Table 4, see Additional file 1).

Discussion
We investigated the relation between pre-diagnostic
levels of circulating UCB, the main component of total

bilirubin, and CRC risk in the EPIC study, and then com-
plemented these analyses with an MR approach using data
from large-scale genetic consortia of CRC. In the sero-
logical analysis, higher circulating levels of UCB were posi-
tively associated with CRC risk in men and inversely
associated in women. The complementary MR analysis
supported a positive association between total bilirubin
levels, genetically predicted by a UGT1A1 SNP (rs6431625),
and CRC risk in men, but not in women. We further found
that bilirubin levels predicted by instrumental variables ex-
cluding the UGT1A1 SNP were suggestive of an inverse as-
sociation with CRC in men, which is in line with our initial
hypothesis, but not in women.
These directionally different associations of

bilirubin-raising genetic instruments with CRC in
men suggest that the UGT1A1 SNP either has hori-
zontal pleiotropic effects through pathways other than
elevated blood levels of bilirubin or indicates an ele-
vated bilirubin distribution among individuals with
GS as compared to the general population. Both sce-
narios are biologically plausible.

Table 4 The association between unconjugated bilirubin (UCB)
concentrations and colorectal cancer risk by anatomical sub-
sites in the EPIC study
Colorectal cancer

Men Women

n cases/
controls†

Odds ratio
(95% CI)

P n cases/
controls†

Odds ratio
(95% CI)

P

Adjusted
model

658/658 1.19
(1.04–1.36)

0.01 728/728 0.86
(0.76–0.97)

0.02

Anatomical site 658/658 > 0.9‡ 728/728 0.2‡

Colon 381/381 1.18
(0.99–1.42)

0.07 485/485 0.81
(0.70–0.95)

0.008

Rectum 277/277 1.19
(0.99–1.43)

0.06 243/243 0.95
(0.62–0.79)

0.79

Colon sub-site 339/339 0.1‡ 447/447 0.9‡

Proximal 156/156 1.10
(0.83–1.47)

0.5 218/218 0.77
(0.62–0.95)

0.017

Distal 183/183 1.55
(1.15–2.11)

0.01 229/229 0.79
(0.62–1.00)

0.06

EPIC (European Prospective Investigation into Cancer and Nutrition):
Conditional logistic regression models were used to estimate odds ratios
(OR) and 95% confidence intervals (CI) for associations between log-
transformed UCB levels (log-UCB), standardized per one standard deviation
(1-SD) increments, and CRC risk. The crude model was conditioned on the
matching factors including study center, age at blood collection (1 year),
fasting status and time (3 h intervals) at blood collection, among women,
additionally by menopausal status (pre-, peri-, and post-menopausal or
surgically menopausal), and hormone therapy (HT) (yes, no). The
multivariable model was adjusted for level of education (none/primary
school, technical/professional, secondary school, and university degree), BMI,
height, smoking status (never, former, current smoker), physical activity
(inactive, moderately inactive, moderately active, and active), alcohol
consumption (g/day), dietary intakes of fiber (g/day), red meat (g/day),
processed meats (g/day), dairy products (g/d), and total energy
intake (kcal/day)
Abbreviations: n number, P P value, CI confidence interval
†Cases matched 1:1 to control subjects
‡Pheterogeneity
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Potential pleiotropic effects of the UGT1A1 SNP in-
clude a reduced capacity of the UGT1A1 enzyme in the
liver or gut to metabolize xenobiotics and toxic sub-
stances (e.g., heterocyclic aromatic amines, in well-done
red meat) [24]. Furthermore, the influence of sex hor-
mones on UGT1A1 activity [14], and differences in
UGT1A1 expression between men and women, leading
to differential bilirubin conjugation and circulating levels
[53], might partly explain the sex differences in CRC risk
found in this study. There is suggestive evidence for sex
differences in the UGT1A1 variants and CRC risk [23].
In our control outcome and yet unpublished work, we
observed similar sex differences in associations between
bilirubin, predicted by the same UGT1A1 SNP, and risk
of pancreatic cancer (suggestive positive association in
men and null association in women) using data of gen-
etic consortia on pancreatic cancer (Supplementary
Table 5, see Additional file 1).

In a second scenario, the findings in men could indi-
cate that bilirubin, an anti-oxidant in vitro [30, 54–56],
could trigger pro-oxidative processes at high-normal
levels in the gut, similar to what has been described for
ascorbic acid [57]. Both serological and MR analyses in-
dicated that increased CRC risk was confined to men
with a genetic pre-disposition to high bilirubin levels (in
our study: bilirubin effect allele (CC) in rs6431625). It is
estimated that 11–16% of Caucasians carry a homozy-
gous bilirubin-increasing risk allele [58], and if one in
ten individuals have a physiologic trait that affects their
risk of cancer, this would have significant implications
for future cancer prevention. Nevertheless, follow-up
studies are needed to fully clarify the role of bilirubin in
CRC development; for example, by conducting a multi-
variable MR [59], where bilirubin is jointly instrumented
with potential other phenotype(s) that could be associ-
ated with UGT1A1 variants.

Fig. 1 Scatter plots depicting the genetic association between total bilirubin levels and colorectal cancer risk. Per allele association of total
bilirubin SNPs with inverse-normal-transformed bilirubin levels (x axis) and risk for colorectal cancer (y axis; logarithmic scale) in men (a) and in
women (b), together with the likelihood-based MR estimate for the genetic instrument comprising of the 114 SNPs (dashed-blue line) and their
95% CI (dotted-blue lines)
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The few studies to date that have investigated the asso-
ciation between circulating bilirubin levels and CRC risk
have reported inconsistent results [17, 19, 22]. In an ex-
ploratory retrospective case-control study (174 cases),
lower total bilirubin levels were associated with higher risk
of CRC in men and in women [17]. In a prospective inves-
tigation in the National Health and Nutrition Examination
Survey (NHANES I), a null association between total bili-
rubin levels and incidence of CRC was reported (110 cases
men and women combined) [22], whereas a prior cross-
sectional analysis in the NHANES III reported an inverse
association between total bilirubin levels and CRC (83
cases, men and women combined) [19]. These inconsist-
encies are most likely attributable to differences in study
design and/or limited sample sizes. The current analysis
goes beyond previous studies in that we used a prospective
design with pre-diagnostic blood samples and a large
number of incident cases that provided sufficient power
for sex stratification.
To our knowledge, no other studies to date have inves-

tigated potential causal association between circulating
bilirubin and CRC risk using an MR approach. However,
variants in the UGT1A1 gene have been previously ex-
amined in relation to CRC. Consistent with our findings,
a positive association between the UGT1A1*28 allele
(homo-/heterozygous for higher bilirubin) and CRC risk
in men (OR = 1.97, 95% CI = 1.22–3.19; P = 0.005), but
not in women (P = 0.26) was reported in a Macedonian
retrospective case-control study [23]. However, another
retrospective case-control study [60], which combined
men and women, found no significant association be-
tween UGT1A1*28 and CRC risk (OR = 1.10, 95% CI =
0.84–1.50). In contrast, Jiraskova et al. [17] reported an
inverse association between the UGT1A1*28 polymorph-
ism and CRC risk in men (OR = 0.75, 95% CI = 0.58–
0.96) and also a non-significant inverse association in
women (OR = 0.88, 95% CI = 0.66–1.18), which however
may have limited generalizability due to a highly selected
study sample. Our approach goes beyond these studies
in terms of sample size, comprehensive SNP analyses
and linking for the first time circulating bilirubin to a
cancer outcome using an MR approach.
In subgroup analyses of our EPIC study, we found a

stronger inverse association between UCB and CRC risk
in older women (> 58.5 years) compared to younger
women. This effect modification by age was not ob-
served in men. The age patterns seen with bilirubin were
observed in previous studies in respect to indicators of
metabolic health in men and women [61, 62]. However,
a more likely explanation for this finding in women is
bias due to differential selection of women less suscep-
tible for CRC over time [63].
The main strengths of our study were the prospective

design with long follow-up time between blood sampling

and CRC diagnosis, and large sample size to stratify by
sex and anatomical sub-sites of CRC with access to bio-
markers and lifestyle factors for a better control of po-
tential confounding. Second, we applied an MR
approach to address potential confounding, including re-
sidual confounding, and reverse causation in our sero-
logical analysis.
Our study was limited by the lack of liver enzyme data

at baseline in the EPIC study to infer hepatic pathology
which would impact bilirubin synthesis. In order to
overcome this issue, we used Fischer’s ratio and BTR
index for excluding those subjects potentially having
liver abnormalities; therefore, we could be sure that par-
ticipants who had higher UCB did not suffer from liver
disease. Second, storage of samples for prolonged pe-
riods of time could have contributed to a degradation of
UCB concentrations. As with traditional epidemiological
analysis, selection bias can also adversely affect MR stud-
ies [63]. Given that attrition rates in the genetic consor-
tia were reported as low [38, 39] and that the GWAS on
bilirubin was not conditioned on another [32], selection
bias may not explain our findings [64]. A major assump-
tion in our MR was that the genetic instruments affect
CRC risk only through bilirubin levels. Potential pleio-
tropic effects of our UGT1A1 SNP (rs6431625) cannot
be excluded, and pathways other than mild hyperbiliru-
binemia associated with lower UGT1A1 activity could
therefore also play a role in CRC development [24].
Nevertheless, it is also biologically plausible that our ob-
served associations reflect the effect of an elevated distri-
bution of circulating bilirubin. This is supported by our
serological finding that the positive association between
serum levels of bilirubin and CRC risk was confined to
men with a genetic pre-disposition to high bilirubin
levels (in our study: bilirubin effect allele (CC) in
rs6431625). A look-up at the PhenoScanner database in-
dicated self-reported liver or biliary/pancreas problems,
which likely hints at undiagnosed GS.
We also assessed potential horizontal pleiotropy of the

other genetic instruments without the UGT1A1 SNP
[65]. The corresponding MR analysis after strictly re-
moving all SNPs, (including those associated with yet
unknown phenotypes), which might have violated the
exclusion restriction (horizontal pleiotropy) and the in-
dependence assumption (no confounders) [59, 66], re-
sulted in virtually similar associations, despite our
conservative unsupervised approach (Supplementary
Table 4). These excluded SNPs were genome-wide asso-
ciated with educational attainment, BMI, mean corpus-
cular volume of red blood cells, and others
(Supplementary Table 6). We also employed a set of
sensitivity MR methods (e.g., conservative MR-Egger ap-
proach) [50], known to be robust for different types of
pleiotropy, and there was no indication of horizontal
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pleiotropy in our MR analysis. Lastly, weak instruments
in a two-sample MR study can bias estimates towards
the null [51], which we deem unlikely in our study given
the F-statistics of our UGT1A1 SNP (F = 696.5) and of
our other instruments (F = 89.1).

Conclusions
In conclusion, we observed that higher circulating biliru-
bin levels were positively associated with CRC risk in
men. Both serological and MR analysis suggested that
increased CRC risk was confined to men with a genetic
pre-disposition to high bilirubin levels. In women, the
inverse relationship between circulating bilirubin and
CRC risk observed in the serological analysis was not
supported in the MR approach. Additional insight into
the relationship between circulating bilirubin and CRC
is needed in order to conclude on a potential causal role
of bilirubin in CRC development.
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