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Considerations for target oxygen saturation
in COVID-19 patients: are we under-
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Abstract

Background: The current target oxygen saturation range for patients with COVID-19 recommended by the
National Institutes of Health is 92–96%.

Main body: This article critically examines the evidence guiding current target oxygen saturation recommendation
for COVID-19 patients, and raises important concerns in the extrapolation of data from the two studies stated to be
guiding the recommendation. Next, it examines the influence of hypoxia on upregulation of ACE2 (target receptor
for SARS-CoV-2 entry) expression, with supporting transcriptomic analysis of a publicly available gene expression
profile dataset of human renal proximal tubular epithelial cells cultured in normoxic or hypoxic conditions. Finally, it
discusses potential implications of specific clinical observations and considerations in COVID-19 patients on target
oxygen saturation, such as diffuse systemic endothelitis and microthrombi playing an important pathogenic role in
the wide range of systemic manifestations, exacerbation of hypoxic pulmonary vasoconstriction in the setting of
pulmonary vascular endothelitis/microthrombi, the phenomenon of “silent hypoxemia” with some patients
presenting to the hospital with severe hypoxemia disproportional to symptoms, and overburdened health systems
and public health resources in many parts of the world with adverse implications on outpatient monitoring and
early institution of oxygen supplementation.

Conclusions: The above factors and analyses, put together, call for an urgent exploration and re-evaluation of
target oxygen saturation in COVID-19 patients, both in the inpatient and outpatient settings. Until data from such
trials become available, where possible, it may be prudent to target an oxygen saturation at least at the upper end
of the recommended 92–96% range in COVID-19 patients both in the inpatient and outpatient settings (in patients
that are normoxemic at pre-COVID baseline). Home pulse oximetry, tele-monitoring, and earlier institution of
oxygen supplementation for hypoxemic COVID-19 outpatients could be beneficial, where public health resources
allow for their implementation.
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Background
The current target oxygen saturation range for patients
with COVID-19 recommended by the NIH is 92–96%.
“The use of supplemental oxygen in adults with COVID-
19 has not been studied, but indirect evidence from
other critical illnesses suggests the optimal oxygen target
is an SpO2 between 92% and 96%” (https://www.covid1
9treatmentguidelines.nih.gov/critical-care/oxygenation-
and-ventilation/). The indirect evidence refers to the fol-
lowing two studies:

– A meta-analysis of 25 RCTs (randomized controlled
trials) in 16,037 acutely ill patients [1], which con-
cluded that liberal oxygenation (median 96%, range
94–99%) was associated with increased mortality
(relative risk 1·21, 95% CI 1·03–1·43) when com-
pared with conservative oxygenation.

– The LOCO-2 trial [2] where ARDS (acute respira-
tory distress syndrome) patients were randomized to
conservative (target partial pressure of arterial oxy-
gen [PaO2], 55 to 70 mmHg; oxygen saturation as
measured by pulse oximetry [SpO2], 88–92%) vs lib-
eral (target PaO2, 90 to 105 mmHg; SpO2, ≥ 96%)
oxygen arms. The trial was stopped early due to in-
creased deaths in the conservative arm. At day 90,
44.4% of patients in the conservative-oxygen group
and 30.4% of patients in the liberal-oxygen group
had died (difference, 14.0 percentage points; 95% CI,
0.7 to 27.2).

Main body
Here, we examine the above two studies guiding current
target oxygen saturation recommendations for COVID-
19; discuss, with supporting transcriptomic analyses, the
influence of hypoxia on ACE2 (angiotensin converting
enzyme-2, target receptor for SARS-CoV-2 entry) ex-
pression; reflect on relevant clinical observations and
considerations in COVID-19 patients; and propose a re-
evaluation of target oxygen saturation in these pa-
tients—both in the inpatient and outpatient settings.

Critical analysis of studies guiding current target oxygen
saturation recommendation
First, a closer look at the two studies on which the
current recommendations are based:
The 2018 meta-analysis was not specific to ARDS (or

even hypoxemia). RCTs in non-hypoxemic stroke pa-
tients exploring supplemental oxygen vs room air were
included in the analysis, with supplemental oxygen being
grouped in the overall “liberal oxygenation” arm and
room-air oxygenation in non-hypoxemic patients
grouped under the overall “conservative oxygenation”
arm. Non-hypoxemic stroke patients receiving room air,
i.e., “conservative oxygenation,” had a lower death rate.

Similarly, RCTs of supplemental oxygen vs room air in
largely normoxemic patients with myocardial infarction
were also included in the analyses. Extrapolating these
data to patients with ARDS raises significant concerns of
relevance. Next, one of the RCTs included in the meta-
analysis, the Oxygen-ICU Randomized Clinical Trial in
critically ill patients [3], had a significant influence on
the final analysis with a death rate of 80/243 vs 58/235
in liberal vs conservative oxygenation. In that study,
however, “conservative oxygenation” was defined as an
SpO2 of 94–98% or PaO2 between 70 and 100 mmHg,
whereas conventional/liberal oxygenation was defined as
an SpO2 of 97–100%, allowing PaO2 values up to 150
mmHg [3]. Therefore, what was considered “conserva-
tive” in that study had overlapping saturation ranges
with the definition of “liberal” in the overall analysis. In
addition, patients in the “liberal” arm in that study were
allowed very high non-physiologic PaO2 levels.
Prior to the LOCO-2 trial, the National Heart, Lung,

and Blood Institute ARDS Clinical Trials Network rec-
ommended a target PaO2 between 55 and 80 mmHg
(SpO2 88–95%). In fact, the LOCO-2 trial was conducted
with the hypothesis that the lower limits of that range
(PaO2 between 55 and 70mmHg) would improve out-
comes in comparison with target PaO2 between 90 and
105 mmHg. The opposite was true (adjusted hazard ratio
for 90-day mortality of 1.62; 95% CI 1.02 to 2.56), and
the trial was stopped early. Five mesenteric ischemic
events were reported in the conservative-oxygen group.
Put together, RCT data in ARDS patients evaluating

target SpO2 ≥ 96% (with a target upper PaO2 limit of
105 mmHg) vs target SpO2 92–95% are lacking. RCT
data in ARDS has demonstrated that SpO2 ≥ 96% is sig-
nificantly better than SpO2 88–92%. Basing oxygen sat-
uration recommendations in ARDS patients, in part, on
the 2018 meta-analysis, raises important concerns as de-
tailed above.

ACE2 and hypoxia
Second, the role of ACE2 in SARS-CoV-2 pathogenesis
and progression as a target receptor for viral entry as
well as the influence of hypoxia on ACE2 expression
merits particular consideration. ACE2 is a negative regula-
tor of the angiotensin system and a counter-regulatory en-
zyme of ACE. While ACE coverts angiotensin I to
angiotensin II, ACE2 degrades angiotensin II to angioten-
sin-(1-7). ACE2 expression and its catalytic product angio-
tensin-(1-7) have been shown to be protective against
lung injury and ARDS by opposing the proliferative,
hypertrophic, and fibrotic effects of angiotensin II [4–10].
SARS-CoV-2, by targeting (using as an entry receptor)

the very protein that is protective against the above dele-
terious effects, poses unique challenges. The binding af-
finity of SARS-CoV-2 Spike protein to ACE2 receptor
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has been reported to be 10–20 times higher than that
with SARS-CoV Spike protein [11], likely playing a key
role in the markedly enhanced virulence. ACE2 knock-
out mice had significantly lower lung injury scores and
SARS-CoV Spike RNA from SARS-CoV infection com-
pared to wild type [12].
In humans, ACE2 is expressed abundantly on the sur-

face of lung alveolar epithelial cells and enterocytes. It is
also expressed in arterial and venous endothelial cells as
well as arterial smooth muscle cells within multiple organs
(lung, stomach, intestines, kidney, brain, bone marrow,
spleen, etc.) [13]. This widespread expression of ACE2,
and its high affinity with the SARS-CoV-2 Spike protein,
possibly accounts for the range of severe clinical manifes-
tations apart from ARDS, including acute renal failure and
encephalopathy, with the pathogenic mechanism being
diffuse endothelitis and microthrombi [14–16].
Intriguingly, pulmonary artery smooth muscle cells

(PASMC) in rats have been shown to increase the ex-
pression of ACE2 with hypoxia, both at the transcript
and protein levels [17]. In the experiment, the cells were
incubated at 3% oxygen concentration for 0, 6, 12, 24,
and 48 h. The normalized ACE2 transcript reached a
maximum of 3-fold at the 12-h timepoint, and the nor-
malized ACE2 protein expression reached a maximum
of 2-fold at the 24-h timepoint, both with high statistical
significance (Fig. 1C, 1D of ref. [17]). Similar effect of
hypoxia on upregulation of ACE2 expression, both at
the transcript and protein levels, has also been demon-
strated in human pulmonary artery smooth muscle cells
(Fig. 1A-E of ref. [18]).

We therefore sought to determine if the same trend
could also be observed in other human cells, by analyz-
ing transcriptomic datasets deposited in Gene Expres-
sion Omnibus (GEO). Indeed, we found that human
renal proximal tubular epithelial (HK2) cells cultured in
hypoxic conditions for 24 h had an increase in the ACE2
transcript (raw p value = 0.0048, adjusted p value <
0.05, Fig. 1a) [19]. Furthermore, knockdown of hyp-
oxia inducible factors 1A and 2A (encoded by HIF1A
and EPAS1) in hypoxic HK2 cells reduced ACE2 tran-
script (Fig. 1b–d) [19], indicating that hypoxia-
induced upregulation of ACE2 in these cells is likely
mediated through the hypoxia inducible factors.
Put together, cellular hypoxia, via upregulating the tar-

get receptor for viral entry, could potentially further
contribute to an increase in the severity of SARS-CoV-2
clinical manifestations. This is yet to be tested in an
in vivo model or in humans. It may be useful to deter-
mine the effect of hypoxemia on soluble ACE2 receptor
levels in COVID-19 patients.

Relevant clinical observations and considerations
Third, a few clinical considerations:
Hypoxic pulmonary vasoconstriction is a well-

recognized phenomenon [23, 24]. With clinical observa-
tions of several COVID-19 patients having a marked hyp-
oxemia disproportional to the degree of infiltrates,
pulmonary vasculature endothelitis and microthrombi
which were suspected clinically have now been shown to
be a prominent feature of COVID-19 lung pathology [25].
Any component of hypoxic pulmonary vasoconstriction

Fig. 1 a Human renal proximal tubular epithelial (HK2) cells were cultured simultaneously under either normoxic (20% O2) or hypoxic (1% O2)
conditions for 24 h. Hypoxia increased ACE2 expression (b–d). HK2 cells stably expressing shRNA (short hairpin RNA) targeting HIF1A and/or EPAS1
were cultured under hypoxic (1% O2) conditions for 24 h. (b). Under hypoxic conditions, knockdown of EPAS1 and HIF1A, alone and in
combination, reduced ACE2 expression (c, d). shRNA knockdown of EPAS1 and HIF1A gene expression was confirmed. Data expressed as mean ±
SE, with 3 replicates per group (n = 3) [19]. The gene expression profile of harvested cells was analyzed by microarray. Data were accessed
through the Gene Expression Omnibus, GSE99324, and processed using affy and limma packages [20–22]. [In summary, hypoxia increased
expression of ACE2 transcript in human renal proximal tubular epithelial (HK2) cells. Knockdown of hypoxia inducible factors 1A and 2A (encoded
by HIF1A and EPAS1) with shRNA in hypoxic HK2 cells reduced ACE2 transcript, indicating that hypoxia-induced upregulation of ACE2 transcript in
these cells is likely mediated through the hypoxia inducible factors. Hypoxia➔ ↑HIF1A and ↑HIF2A ➔ ↑ACE2] [Abbreviations: HIF1A, hypoxia
inducible factor-1-alpha; EPAS1, endothelial PAS domain-containing protein 1; GEO, Gene Expression Omnibus; shRNA, short hairpin
RNA—artificial RNA molecule with a tight hairpin turn that can be used to silence target gene expression via RNA interference (RNAi)]
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and further exacerbation of pulmonary hypertension in
this setting is best avoided. Further to this point, nocturnal
drop in oxygen saturation is a well-known phenomenon
[26], is common in patients with primary pulmonary
hypertension [27], and has also been demonstrated in pa-
tients with pneumonia and sepsis [28]. Nocturnal hypox-
emia could therefore potentially further exacerbate reflex
pulmonary vasoconstriction as well as peripheral tissue
hypoxia in patients with COVID-19 pneumonia. Patients
in regular inpatient wards or at home who maintain an
SpO2 of 92–94% during the day, with or without O2 sup-
plementation, can have nocturnal drops into the 80s, with
higher drops in patients with obstructive sleep apnea—a
highly prevalent morbidity in obese patients.
Next, diffuse systemic endothelitis and microthrombi

play an important pathogenic role in the wide range of
systemic manifestations (such as acute renal failure, en-
cephalopathy, cardiovascular complications) seen in
COVID-19 patients [14–16, 29], explaining the improved
outcomes associated with systemic anticoagulation [29].
In the presence of these systemic microthrombi, hypox-
emia would be expected to result in a higher degree of
peripheral tissue hypoxia/injury. This is another reason
why the optimal oxygen saturation in COVID-19 ARDS
may be higher than that in ARDS of other etiologies.
The phenomenon of “silent hypoxemia” resulting in

some COVID-19 patients presenting to the hospital with
severe hypoxemia disproportional to symptoms is now
being increasingly noted [30–32], and albeit not fully
understood at this stage, may be a harbinger for clinical
deterioration [30], and further supports outpatient moni-
toring with pulse oximetry and earlier institution of oxy-
gen supplementation.
Lastly, with overburdened health systems around the

world and viral transmission considerations, COVID-19
patients in the outpatient setting (suspected and con-
firmed) are instructed to come in to the hospital if their
respiratory status deteriorates, most often with no oxy-
gen saturation monitoring at home. While this approach
may be essential in managing burdened health system
resources and caring for the critically sick, it risks a sig-
nificant delay in oxygen supplementation for patients in
the outpatient setting. With the lack of strikingly effect-
ive therapeutic modalities to date, inpatient mortality
numbers and percentages for COVID-19 patients around
the world have been staggering [33–37]. (It is of rele-
vance to note here that even in non-COVID-19 pneu-
monia outpatients, oxygen saturations less than 92% are
known to be associated with major adverse events [38].)
Put together, while the effects of the degree/duration of

hypoxemia in COVID-19 patients have not been compre-
hensively studied, the concern of its potential adverse ef-
fects (above that in pneumonia/ARDS of other etiologies)
is based on the above-detailed specific considerations and

well-known principles in respiratory/internal medicine. If
maintaining a higher oxygen saturation in hypoxemic
COVID-19 patients in the outpatient setting could have a
role in decreasing the severity of disease progression and
complications, earlier institution of oxygen supplementa-
tion at home and tele-monitoring could potentially be
beneficial.

Conclusions
The above considerations, put together, call for an ur-
gent exploration and re-evaluation of target oxygen sat-
uration in COVID-19 patients, both in the inpatient and
outpatient settings. While conducting randomized con-
trolled trials in the inpatient setting exploring a target
SpO2 ≥ 96% (target upper PaO2 limit of 105 mmHg) vs
target SpO2 92–95% would be relatively less complex in
terms of execution and logistics, the outpatient setting
would require special considerations such as frequent
tele-visits and pulse oximetry recordings, home oxygen
supplementation as needed to meet target oxygen satur-
ation, and patient compliance. Until data from such tri-
als become available, it may be prudent to target an
oxygen saturation at least at the upper end of the recom-
mended 92–96% range in COVID-19 patients both in
the inpatient and outpatient settings (in patients that are
normoxemic at pre-COVID baseline). Home pulse oxim-
etry, tele-monitoring, and earlier institution of oxygen
supplementation for hypoxemic COVID-19 outpatients
could be beneficial but should be studied systematically
given the significant public health resource implications.
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