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Abstract

Background: Adjuvant chemotherapy induces weight gain, glucose intolerance, and hypertension in about a third
of women. The mechanisms underlying these events have not been defined. This study assessed the association
between the microbiome and weight gain in patients treated with adjuvant chemotherapy for breast and
gynecological cancers.

Methods: Patients were recruited before starting adjuvant therapy. Weight and height were measured before
treatment and 4-6 weeks after treatment completion. Weight gain was defined as an increase of 3% or more in
body weight. A stool sample was collected before treatment, and 16S rRNA gene sequencing was performed. Data
regarding oncological therapy, menopausal status, and antibiotic use was prospectively collected. Patients were
excluded if they were treated by antibiotics during the study. Fecal transplant experiments from patients were
conducted using Swiss Webster germ-free mice.

Results: Thirty-three patients were recruited; of them, 9 gained 3.5-10.6% of baseline weight. The pretreatment
microbiome of women who gained weight following treatment was significantly different in diversity and
taxonomy from that of control women. Fecal microbiota transplantation from pretreatment samples of patients that
gained weight induced metabolic changes in germ-free mice compared to mice transplanted with pretreatment
fecal samples from the control women.

Conclusion: The microbiome composition is predictive of weight gain following adjuvant chemotherapy and
induces adverse metabolic changes in germ-free mice, suggesting it contributes to adverse metabolic changes
seen in patients. Confirmation of these results in a larger patient cohort is warranted.
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Background

A complex link exists between obesity and cancer in
women. Obesity and metabolic syndrome are associated
with a higher prevalence of postmenopausal breast can-
cer, colon cancer, endometrial cancer, and ovarian can-
cer and with a higher risk of recurrence in patients that
are treated for early-stage disease [1].

Adjuvant chemotherapy is given to patients after sur-
gery for cancer, aiming to increase the proportion of pa-
tients that are cured. Adjuvant chemotherapy induces
weight gain in about a third of women treated for breast
and gynecological malignancies [2, 3]. Increase in body
fat mass and serum lipids, increased blood pressure, and
an increase in inflammatory markers have also been de-
scribed following adjuvant chemotherapy in women [4].
A recent meta-analysis of trials testing adjuvant therapy
in breast cancer patients concluded that weight gain
after diagnosis had a negative impact on outcomes in
pre-, peri-, and early postmenopausal patients [5].
Weight gain during chemotherapy was associated with
reduced survival in prospective studies [6, 7]. Weight
gain and the associated metabolic changes increase the
risk of cardiovascular morbidity and other common and
debilitating conditions and have a negative impact on
patients’ quality of life. The mechanisms mediating the
effect of adjuvant chemotherapy on weight and metabol-
ism are not understood, limiting our ability to develop
preventive measures and to predict which patients are at
a higher risk.

The microbiome composition is distinctly different be-
tween obese and lean people and has been widely stud-
ied both in humans and in animal models. Obesity is
characterized by low bacterial richness (alpha diversity)
and high between-individual (beta) diversity [8, 9]. Fur-
thermore, microbial changes in obesity are associated
with inflammation, insulin resistance, and adiposity [10].
Mice that were transplanted with microbiota from obese
individuals develop increased body mass and adiposity
compared with mice that were transplanted with micro-
biota from lean individuals [8], suggesting that the
microbiome is not only affected by diet but also actively
induces obesity.

Previous studies looked at changes in the microbiome
in patients receiving chemotherapy [11]. These studies
showed that chemotherapy alters the microbiome and
suggested an association between the microbiome and
acute chemotherapy toxicities, mainly in the gastrointes-
tinal system [12-14]. None of these studies looked at
weight and late metabolic effects of chemotherapy.

The aim of the current study was to understand the
interplay between the intestinal microbiome and weight
gain in women treated with adjuvant chemotherapy for
breast cancer and gynecological malignancies, and test
whether the pretreatment microbiome in women who
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will gain weight following chemotherapy has obesogenic
characteristics.

Methods

Patients and samples

Patients aged 18-75 years with breast, ovarian, or endo-
metrial cancer scheduled for adjuvant chemotherapy
were eligible for the study. Breast cancer patients sched-
uled for neoadjuvant chemotherapy were also eligible.
Patients with inflammatory bowel disease and patients
treated with probiotics were excluded. Patients provided
a stool sample prior to the 1st chemotherapy cycle; sam-
ples were frozen immediately and delivered on dry ice to
the Azrieli Faculty of Medicine, Bar-Ilan University,
Safed, Israel. Weight and height were measured before
the 1st chemotherapy cycle and 4—6 weeks after treat-
ment was completed. Use of antibiotics in the prior 3
months was recorded at baseline, during chemotherapy,
and at the last visit. Patients were excluded from the
analysis if they used antibiotics during chemotherapy.
Since prophylactic antibiotics before cancer surgery is
standard of care, patients treated with antibiotics before
trial entry were allowed. Patients referred for pelvic
radiotherapy and those that experienced cancer progres-
sion were withdrawn from the study. Patients were en-
tered to the “weight gain” group if their weight increased
by 3% or more during treatment.

Bacterial DNA extraction, amplification, and sequencing
DNA was extracted from women and mice fecal sam-
ples, using the Invitrogen Purelink Microbiome DNA ex-
traction kit (Invitrogen, Carlsbad, CA) according to the
manufacturer’s instructions, following a bead-beating
step (BioSpec, Bartlesville, OK) for 2 min. Extracted
DNA was used for PCR amplification of the variable V4
region of the 16S rRNA gene by using the 515F (AATG
ATACGGCGACCACCGAGATCTACACGCT) bar-
coded and 806R (TATGGTAATTGTGTGYCAGCMG
CCGCGGTAA) primers. A reaction containing a final
concentration of 0.04% of each primer and 0.5% of
PrimeSTAR Max DNA Polymerase (Takara-Clontech,
Shiga, Japan) in 50 pl total volume was used. PCR
reactions were carried out by 35 cycles of denaturation
(95°C), annealing (55°C), and extension (72°C), with
final elongation at 72°C. PCR products were purified
using AMPure XP magnetic beads (Beckman Coulter,
Brea, CA) and quantified using Quant-iT PicoGreen
dsDNA quantitation kit (Invitrogen, Carlsbad, CA).
Samples were then pooled at equal amounts, loaded on
2% agarose E-Gel (Invitrogen, Carlsbad, CA), purified,
and sent for sequencing using the Illumina MiSeq
platform (Genomic center, Azrieli Faculty of Medicine,
BIU, Israel).
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Mouse experiments

For fecal microbiota transplantation experiments, we
chose patients that were not treated with antibiotics
(n=12) and 2 more were chosen randomly from those
that received preoperative antibiotics in order to increase
sample size. Pretreatment fecal samples from women
who gained weight (n = 6) after treatment or not (n =8)
were resuspended in 1ml sterile PBS under anaerobic
conditions, vortexed, and debris allowed to settle. Ad-
ministration to recipient germ-free Swiss Webster mice
(8—10 weeks old) was performed by oral gavage using
200 pl of the supernatant. The microbiota-recipient mice
were housed separately under SPF conditions (1 animal
per cage), maintained on a 12-h light/dark cycle, and fed
autoclaved food, with free access to water. Fecal pellets
and blood samples were taken on days 0, 14, and 28.
The animal study was compiled with the ARRIVE guide-
lines and approved by the Bar-Ilan ethics committee
(ethics approval number 41-05-2018).

Intraperitoneal glucose tolerance test

On days 14 and 28, intraperitoneal glucose tolerance test
(IPGTT) was done on mice from both groups: control
(n=8) and weight gain (n=6). The mice were fasted
overnight for approximately 16 h by transferring them to
clean cages with no food or feces. Subsequently, the
mice were given a 20% glucose solution by an IP injec-
tion in a volume of 10 ul/1 g body weight. Blood glucose
was measured from the tail at 0, 15, 30, 60, 90, and 120
min after the glucose challenge (Contour blood glucose
meter, Bayer). At time points 0, 30, and 60 min, blood
samples were collected (around 60 pl) using a fresh ca-
pillary tube coated with EDTA solution. Blood samples
were immediately placed on ice. Tubes were then centri-
fuged at 1500¢ for 20 min at 4 °C. Plasma was transferred
to a clean tube and stored at — 30 °C for further analysis.
Finally, on day 28, the mice were sacrificed after 8 h fast-
ing under CO, and blood was taken from the heart.

Insulin and lipocalin-2 analysis

Mouse blood was separated by centrifugation (1500g
for 20 min at 4°C), and the plasma stored at - 80 °C.
Ten microliters from each plasma sample was taken
for metabolic hormone (insulin) measurement, and
2 ul from each plasma sample was taken for lipocalin-
2 measurement. The multiplex adipokine panel
(MADKMAG-71K, Merck Millipore) was used ac-
cording to the manufacturer’s instructions to measure
levels of insulin. The multiplex kidney injury panel
(MKI2MAG-94 K, Merck Millipore) was used accord-
ing to the manufacturer’s instructions to measure
levels of lipocalin-2. The results were read using a
Bio-Plex MAGPIX reader and analyzed with the Bio-
Plex manager 6.1 software (Bio-Rad).
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Lipid analysis

On day 28, the mice were fasted for 8 h before sacrificed
under CO, and blood was taken from the heart for lipid
content. Mouse blood was separated by centrifugation
(1500g for 20 min at 4°C), and the plasma stored at —
80°C. Plasma levels of triglycerides, cholesterol total,
HDL, and LDL were measured using the Abbott Archi-
tect clinical chemistry analyzer at the Galilee Medical
Center clinical laboratory.

Microbiome analysis

FASTQ data was processed and analyzed using Quanti-
tative Insights Into Microbial Ecology 2 (QIIME2) pipe-
line version 2019.4 [15]. Single-end sequences were first
demultiplexed using the q2-demux plugin. In order to
improve taxonomic resolution, reads were denoised and
clustered using DADA2 via q2-dada2 [16]. Mafft [17]
and fasttree2 [18] were used for alignment and phyl-
ogeny construction for all amplicon sequence variants
(ASVs) using q2-alignment and q2-phylogeny plugins,
respectively. Taxonomy classification was done using q2-
feature-classifier [19], while final feature sequences were
aligned against Greengenes database with 99% confi-
dence [20]. In order to avoid any possible contamin-
ation, the feature table was filtered via q2-feature-table.
First, features that were annotated as mitochondria and
chloroplast were filtered. Next, features which were not
found in 20% of each sample group were removed, for
both women and mice feature tables.

The analysis, for both women and mice, was per-
formed on rarefied tables with >9300 reads per sample.
Alpha diversity was calculated using the Faith’s Phylo-
genetic Diversity [21] measure, referring for bacterial
richness within the sample, while significant differences
in bacterial richness between the groups were generated
using the Kruskal-Wallis test. Beta diversity was ana-
lyzed using weighted (quantitative) and unweighted
(qualitative) UniFrac [22] distances. Significance was de-
termined using permutational multivariate analysis of
variance (PERMANOVA) test, as implanted in QIIME2
with the default of 999 permutations, both weighted and
unweighted UniFrac.

Significant differences in bacterial abundance were
identified using Linear Discriminant Analysis (LDA) of
the effect Size (LEfSe), with an LDA score higher than
2.0 and o values of 0.05 [23].

Statistical analysis

Mouse body weights were normalized according to day
0, the first day of the experiment, in order to calculate
changes between gain weight and control transplanted
mouse groups over time. Differences in weight gain fold
change, glucose levels, lipocalin-2 levels, and lipid con-
tent (measured by triglycerides, HDL, and LDL) were
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assessed using unpaired one-tailed ¢ test. Food consump-
tion was calculated using unpaired nonparametric ¢ test.
All data represent as mean + SEM.

Machine learning and clustering

The beta diversity of each pair of samples was used as a
distance metric, and a single link hierarchical clustering
was applied to predict groups of samples. A leave one
out approach was then used to classify each sample
based on all other samples with a K=2 KNN classifier.
The precision of the classifier was defined as the total
accuracy over the test. Similarly, the alpha diversity was
defined as a score for each sample, and a ROC curve
was computed over the same groups using the alpha di-
versity score. The area under curve (AUC) was com-
puted for the ROC curve, and the accuracy at the
maximal accuracy cutoff was computed. Note that there
was no division to train and test, since the score was
predefined and not directly trained on the labels.

Metagenome analysis

To infer metagenomes, meaning the microbial genes
present in each sample, from the 16S samples, we used
PICRUSt2 [24]. PICRUSt2 provides proportions of
KEGG categories within the samples, and those categor-
ies were in turn used to look for differentially abundant
functions between the weight gain and control groups
(KEGG ortholog and pathway levels, Mann-Whitney
test, FDR corrected, alpha = 0.05).

Moreover, we used FishTaco [25], both as an alterna-
tive approach for assembling the functional profiles and
assessing functional differences between weight gain and
control groups, as well as for identifying the taxonomic
origin of such differences, if any.

Results

Thirty-three patients were recruited, 28 with breast can-
cer and 5 with gynecological malignancies. Ten patients
gained 3.5-10.6% of baseline weight, and most of them
gained more than 5%. No significant differences were
observed in food consumption based on food diaries
taken from 15 patients, before, during, and after chemo-
therapy treatment. Five parameters were measured:
calories, protein, fat, carbohydrate, sugar, and fiber in-
take (Fig. S1). Patient and chemotherapy characteristics
are summarized in Table 1. Twelve patients were with-
drawn from the analysis: 7 patients used antibiotics dur-
ing chemotherapy, 3 had missing data, 1 was recruited
but did not commence chemotherapy, and 1 was re-
ferred for pelvic radiotherapy and was withdrawn from
the study per protocol. Mean age, menopausal status,
baseline BMI, site of cancer, and treatment regimens
were not significantly different between the groups that
did and did not gain weight (Table 2 and Fig. S2).
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The microbiome analysis was based on 16 fecal sam-
ples from women before chemotherapy, out of which 9
women did not gain weight following treatment (control
group), and 7 women gained weight following treatment
(weight gain group). All women did not receive antibi-
otics during chemotherapy. Beta diversity based on
unweighted UniFrac distances revealed significant differ-
ences between the two groups (Fig. la, p value = 0.012).
Significant differences were also observed in alpha diver-
sity using Faith’s PD, pointing to a more diverse
pretreatment microbiome in the weight gain group
(Fig. 1b, p value=0.01). LEfSe analysis identified a
higher relative abundance of members of the family
Erysipelotrichaceae (and at the class and order level too)
in the pretreatment microbiomes of women that gained
weight after chemotherapy (Fig. 1c). Based on the gut
microbiome composition, we tested whether beta and
alpha diversity could be used to predict which of the pa-
tients will gain weight after chemotherapy treatment.
Samples were divided into those that gained weight and
those that did not gain weight (Fig. 1d). A single link
hierarchical clustering (Fig. 1d) was performed on the
beta diversity as a distance. This demonstrated that al-
most all the nearest neighbors of samples were from the
same group. Indeed, a K-nearest neighbor (KNN) classi-
fier (with K=2) produced an accuracy of over 87%.
Similarly, the alpha diversity could be used as classifier
by itself, with a slightly lower accuracy (82%) (Fig. 1e).

The contribution of the intestinal microbiome to
metabolic changes
In order to test the role of the intestinal microbiome in
inducing weight and metabolic changes in women
undergoing adjuvant chemotherapy, we performed fecal
microbiota transplantation (FMT) experiments. Mice
transplanted with microbiome from patients (pretreat-
ment) that gained weight were compared to mice
transplanted with microbiome from patients that did not
gain weight after chemotherapy treatment. No signifi-
cant differences were observed in weight between the
groups for 28 days (Fig. 2a). However, at day 28, mice re-
ceiving FMT from pretreatment samples from the
weight gain group had significantly higher glucose levels
0, 30, 60, and 120 min following intraperitoneal glucose
injection compared to mice that received FMT from pre-
treatment samples of the control group (Fig. 2b). The
same was true for lipocalin-2 levels (Fig. 2¢, p value =
0.04) and total cholesterol and triglycerides (Fig. 2d, p
value =0.02 and p value =0.0001, respectively), which
were higher in mice receiving FMT from women who
gained weight after therapy.

The mice microbiome analysis was done at days 14
and 28 of the experiment. Beta diversity based on un-
weighted UniFrac distances (Fig. 3a, d) was significantly
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Table 1 Patients and treatment characteristics (only patients who were included in analysis)
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Patient ~ Age group  Site of cancer  Baseline Menopause  Chemotherapy regimen Percentage of  Fecal microbiota

number  range BMI range weight change  transfer

Control
2 50-60 Breast >30 Post Adriamycin + cyclophosphamide, paclitaxel — —2.8 No
3 60-70 Breast 25-30 Post Adriamycin + cyclophosphamide, paclitaxel ~ —0.7 No
6 70-75 Breast 25-30 Post Adriamycin + cyclophosphamide, paclitaxel —7.8 No
7 60-70 Breast 20-25 Post Adriamycin + cyclophosphamide, paclitaxel 0.0 Yes
11 60-70 Breast 25-30 Post Paclitaxel 16 Yes
15 50-60 Endometrium > 30 Post Paclitaxel + carboplatin 1.2 No
16 60-70 Breast* >30 Post Adriamycin + cyclophosphamide, paclitaxel — —4.9 Yes
18 60-70 Breast® 20-25 Post Adriamycin + cyclophosphamide, paclitaxel — —2.0 Yes

+ carboplatin

19 60-70 Endometrium  25-30 Post Paclitaxel + carboplatin 0.1 Yes
26 40-50 Breast 20-25 Post Adriamycin + cyclophosphamide, paclitaxel ~ —2.0 Yes
29 30-40 Breast* <20 Pre Adriamycin + cyclophosphamide, paclitaxel ~ —5.2 Yes
32 40-50 Breast > 30 Pre Docetaxel + carboplatin -15 No
33 50-60 Breast 20-25 Pre Docetaxel -4 No
Mean 56.77 27.65 -1.9

Weight gain
1 50-60 Endometrium  25-30 Post Paclitaxel + carboplatin 10.2 Yes
4 40-50 Breast > 30 Pre Paclitaxel 6.1 Yes
5 60-70 Breast 25-30 Post Adriamycin + cyclophosphamide, paclitaxel 3.5 Yes
20 60-70 Breast 25-30 Post Paclitaxel 55 Yes
21 50-60 Breast >30 Post Adriamycin + cyclophosphamide, paclitaxel ~ 11.5 Yes
22 40-50 Breast 20-25 Pre Adriamycin + cyclophosphamide, paclitaxel 7.2 Yes
24 50-60 Ovary >30 Post Paclitaxel + carboplatin 10.7 Yes
30 60-70 Breast 20-25 Post Adriamycin + cyclophosphamide 35 No
Mean 55.50 28.05 7.3

*Neoadjuvant therapy for breast cancer

different at both time points (p value =0.003 and p
value = 0.001, respectively). When comparing alpha di-
versity using Faith’s Phylogenetic Diversity (Fig. 3b, e),
significant differences were also observed at days 14 and
28 (p value =0.009 and p value = 0.03, respectively). To

Table 2 The association of the different variables tested with
weight gain after adjuvant chemotherapy. We used a Pearson
correlation for continuous factors. For discrete factors, we used
an ANOVA analysis

Variable p value
Age 0.5379
Menopause 0.6745
Baseline BMI 0.1987
Site of cancer 0.2475
Chemotherapy regimen 0.1085
Microbiome beta diversity 0.012
Microbiome alpha diversity 0.01

tease out which bacteria differed between the experi-
mental groups, we conducted a LEfSe analysis (Fig. 3c,
f). On day 14, mice receiving FMT from the control
group had higher relative abundance of the genera
Alistipes and Oscillospira and of the bacterial families
Odoribacteraceae and Rikenellaceaea. Mice receiving
the pretreatment samples from the weight gain group
had significantly higher levels of Ruminococcus,
Coprobacillus, and an unclassified member of the
Erysipelotrichaceae.

On day 28, LEfSe analysis identified the genus Holde-
mania and the bacterial families Odoribacteraceae
(which was also higher at day 14) and Porphyromonada-
ceae as significantly higher in the control mice. In the
mice transplanted with the pretreatment samples from
the weight gain group, Akkermansia was overrepre-
sented compared to the control group together with an
unclassified member of the Erysipelotrichaceae (which
was also overrepresented in this group on day 14).
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Fig. 1 The pretreatment gut microbiome of women who will gain weight following chemotherapy is different from the gut microbiome of
women who will not gain weights. 165 rRNA sequencing was performed to characterize bacterial changes. a Principal coordinates analysis based
on unweighted UniFrac distance matrix between women that will (red) and will not (blue) gain weight following chemotherapy treatment (p
value =0.012). b Alpha diversity comparison based on phylogenetic diversity (p value =0.01). ¢ Linear Discriminant Analysis (LDA) of the effect
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Comparative analysis of the functional profiles based on
the outputs of both PICRUSt2 and FishTaco did not
show a statistically significant difference between the

weight gain and control groups.

Discussion

Women treated with adjuvant chemotherapy are at risk
for weight gain and other adverse metabolic conse-
quences like hypertension, lipid metabolic changes, and
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chronic inflammation [4]. The reason for these changes is
not clear, nor is the reason why some women are more
prone than others to these adverse consequences. Previous
studies have shown that different factors, such as physical
activity and energy consumption, can play a role in weight
gain during chemotherapy treatment [26, 27]. Those fac-
tors are also known to affect the gut microbiome compos-
ition [28]. However, in this study, we show for the first
time that the pretreatment microbiome of patients that
gained weight following adjuvant chemotherapy is differ-
ent than the microbiome of patients that did not gain
weight, and that fecal transplantation from patients that
gained weight results in glucose intolerance, adverse lipid
changes, and inflammatory changes in germ-free mice.
These results suggest that the intestinal microbiome is
mediating metabolic changes in women treated by chemo-
therapy in the adjuvant setting. Moreover, the pre-
chemotherapy composition of the intestinal microbiome
can predict which patients will gain weight following
treatment.

A recent study by Carter et al. looked at the micro-
biome of women recovering from cancer and showed
that microbiome diversity was associated with cardiore-
spiratory fitness in 37 women after breast cancer treat-
ment [29]. However, their cohort was heterogeneous,
and chemotherapy was not a part of adjuvant therapy in
30% of patients. The association of the microbiome with
BMI or weight change was not analyzed; however, in line
with our results, microbiome diversity was negatively as-
sociated with percentage of body fat.

The bacterial family of Erysipelotrichaceae, which was
more abundant in pretreatment samples of women that
gained weight following treatment, has been indicated in
multiple studies to have a role in metabolic disorders
[30-32]. One possible mechanism suggested has been
the immunogenic properties of some of the members of
this family which may lead to gut inflammation and to
weight gain [30]. Members of this family were also over-
represented in the mouse experiment at 14 and 28 days
in the mice who received FMT from the weight gain
group, once again highlighting the potential contribution
of this family to weight gain. It is also worth mentioning
that members of this family have been linked to choles-
terol and lipid levels which in our study were shown to
be higher in the mice receiving FMT from the weight
gain group [30, 33]. On the other hand, members of the
family Odoribacteraceae persisted in the control mice.
Bacteria in this family are known succinate consumers,
and levels of succinate are lower in obesity [34], possibly
explaining why these bacteria were significantly overrep-
resented in the control group.

To our knowledge, this is the first study looking at the
microbiome and late consequences of adjuvant
chemotherapy. Adjuvant chemotherapy is administered

Page 8 of 10

to patients in order to decrease risk for disease recur-
rence, and treatment decisions must balance its benefits
with the risk of long-term toxicity. The microbiome is a
modifiable risk factor for obesity [35, 36] and can serve
both as a biomarker and a target for intervention.

Our cohort was well characterized, and data regarding
oncological therapies and antibiotic use was systematic-
ally collected. We chose to include patients with breast,
ovarian, and endometrial cancer and to exclude women
with gastrointestinal and other cancer types since the
chemotherapy regimens that are used in breast and
gynecological malignancies are relatively similar. How-
ever, there are some limitations to the study. The size of
our cohort does not allow firm conclusions and the re-
sults need to be verified in a larger patient cohort. We
are currently enrolling additional patients and plan to
study additional metabolic changes such as lipids, glu-
cose, and blood pressure and their association with the
microbiome in each type of cancer separately and with
specific chemotherapy drugs. Additional mice experi-
ments that include chemotherapy administration are also
planned.

Conclusions

In this study, the composition of the intestinal micro-
biome and its diversity were associated with weight gain
following adjuvant chemotherapy in women treated for
breast and gynecological malignancies. Mice FMT exper-
iments suggest that the microbiome mediates adverse
metabolic effects of chemotherapy. Further research of
the predictive value of the microbiome, as well as its
mechanistic contribution to weight and metabolic
changes following chemotherapy, is warranted.
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