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Vaccination strategies for measles control

and elimination: time to strengthen local
initiatives
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Abstract

Background: Through a combination of strong routine immunization (RI), strategic supplemental immunization
activities (SIA) and robust surveillance, numerous countries have been able to approach or achieve measles
elimination. The fragility of these achievements has been shown, however, by the resurgence of measles since
2016. We describe trends in routine measles vaccine coverage at national and district level, SIA performance and
demographic changes in the three regions with the highest measles burden.

Findings: WHO-UNICEF estimates of immunization coverage show that global coverage of the first dose of measles
vaccine has stabilized at 85% from 2015 to 19. In 2000, 17 countries in the WHO African and Eastern Mediterranean
regions had measles vaccine coverage below 50%, and although all increased coverage by 2019, at a median of
60%, it remained far below levels needed for elimination. Geospatial estimates show many low coverage districts
across Africa and much of the Eastern Mediterranean and southeast Asian regions. A large proportion of children
unvaccinated for MCV live in conflict-affected areas with remote rural areas and some urban areas also at risk.
Countries with low RI coverage use SIAs frequently, yet the ideal timing and target age range for SIAs vary within
countries, and the impact of SIAs has often been mitigated by delays or disruptions. SIAs have not been sufficient
to achieve or sustain measles elimination in the countries with weakest routine systems. Demographic changes also
affect measles transmission, and their variation between and within countries should be incorporated into strategic
planning.

Conclusions: Rebuilding services after the COVID-19 pandemic provides a need and an opportunity to increase
community engagement in planning and monitoring services. A broader suite of interventions is needed beyond
SIAs. Improved methods for tracking coverage at the individual and community level are needed together with
enhanced surveillance. Decision-making needs to be decentralized to develop locally-driven, sustainable strategies
for measles control and elimination.
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Background
The measles vaccine has prevented more child deaths than
any other vaccine in use today. In 1994, building upon the
momentum created by expanded routine immunization
(RI) coverage and progress towards polio elimination, the
region of the Americas established a goal to eliminate
measles. In 2016, the strong political commitment to elim-
ination led to the region achieving this goal, through a
combination of ‘keeping up’ high RI coverage, catch-up
supplementary immunization activities (SIAs) up to age
15 years to fill immunity gaps among cohorts missed by
RI in earlier years and interrupt measles transmission, oc-
casional follow-up SIAs up to age 5 years and close moni-
toring of coverage and disease surveillance with swift
action to respond to outbreaks [1]. ‘Speed-up’ SIAs up to
30 or 39 years of age, conducted primarily for rubella
elimination [2], probably also contributed.
The rapid fall in measles incidence in the Americas

after the catch-up campaigns encouraged other regions
to adopt these strategies, initially to pursue goals of mea-
sles mortality reduction and subsequently measles elim-
ination. The level of measles population immunity
required to sustain measles elimination (the so-called
herd immunity threshold) is generally estimated to be
above 90% (discussed in Cutts et al. (2020) [3]); hence,
the World Health Organization (WHO) recommends
that countries aiming at measles elimination should
achieve ≥ 95% coverage with both doses equitably to all
children in every district [4].
Despite dramatic reductions in global reported inci-

dence and estimated mortality, success has not been uni-
form [5, 6]. Countries that have not fully implemented
and sustained these strategies have never interrupted
transmission and have experienced some of the largest
recorded outbreaks [5]. Others had initial success but
did not implement keep-up and follow-up strategies well
enough to avoid major resurgences after long periods of
low incidence [6, 7]. Globally, from a nadir of 132,490 in
2016, reported cases increased each year to 869,770 in
2019, the highest number since 1996 [8], with over half
a million cases reported from just two countries—the
Democratic Republic of the Congo (DRC) and
Madagascar [9].
This resurgence underscores the tenuous status of

current global and regional measles control efforts—put
even further at risk by immunization disruptions caused
by the COVID-19 pandemic [10]. In this paper, we re-
view trends in the main drivers of measles burden—RI
coverage, SIA performance and demographic changes—
in the WHO African (AFR), Eastern Mediterranean
(EMR) and southeast Asian (SEAR) regions, which have
the highest estimated measles mortality, and propose a
change in priorities for measles control strategies post-
COVID-19.
Trends in routine measles immunization
WHO-UNICEF national estimates of immunization cover-
age (WUENIC) show that global coverage of the first dose
of measles-containing vaccine (MCV1) coverage soared
from 16% in 1980 to 68% in 1989, rose slightly to 71% in
1999, increased to 83% by 2009, and then stabilized at 85%
from 2015 to 19. All 17 countries in AFR and EMR with
WUENIC MCV1 < 50% in 2000 had increased coverage by
2019 to a median of 60%, but their coverage remained far
below levels needed for elimination. Furthermore, coverage
remained very low in 2019 in Angola (51%), Cameroon
(60%), Central African Republic (49%), Chad (41%), DRC
(57%), Ethiopia (58%), Guinea (47%), Somalia (46%), South
Sudan (49%) and Nigeria (54%) [11]. A second dose of
MCV (MCV2) was rarely part of routine schedules in coun-
tries eligible for support from the GAVI Vaccine Alliance
(GAVI) until 2010 since when introductions have acceler-
ated with 60% WUENIC MCV2 achieved by 2019.
Geospatial analyses of survey data have allowed esti-

mation of subnational and local patterns of MCV1
coverage [12–14] and show that coverage can vary sub-
stantially within countries and over time. Figure 1 shows
the results of geospatial analyses of survey data from
2000 to 2019; details of the methods are described else-
where [12]. Although MCV1 coverage in most districts
and countries increased from 2000 to 2019, there is a
band of districts across AFR from Nigeria to Somalia,
additional large areas of Guinea and Angola and parts of
Afghanistan and Pakistan where coverage was estimated
to be below 50% in 2000 and still below 50% in 2019
[12]. MCV1 coverage remained below 80% in both 2000
and 2019 at the district level in much of AFR, EMR and
parts of most countries in SEARO. By contrast, few dis-
tricts in the Americas had estimated MCV1 coverage
persistently below 80% in both 2000 and 2019.
Clustering of unvaccinated individuals poses risks for

local disease outbreaks but could also facilitate targeted
interventions. Known contributors to spatial inequity in-
clude remoteness, conflict and urban slums. For coun-
tries with available data, Fig. 2 shows the estimated
geospatial distribution of children of the target age who
did not receive MCV1 in 2017, in relation to conflict-
affected, urban and remote rural areas. Direct compari-
son between countries is limited by potential differences
in the completeness of data on conflict, but it is clear
that most unvaccinated children in EMR live in conflict-
affected areas, as do those in some of the largest African
countries such as DRC, Ethiopia and Nigeria. A high
proportion of unvaccinated children live in remote rural
locations in Chad, DRC, Ethiopia, Mauritania and the
Republic of Congo (Fig. 2a). Overall, a relatively small
proportion (~ 10%) of unvaccinated children lived in
urban areas, but analyses to date have not distinguished
the urban poor from other urban populations. Of note,



Fig. 1 Areas of low MCV1 coverage in both 2000 and 2019 in AFR, EMR and SEAR. MCV1 coverage at the second administrative level (district or
equivalent units) was estimated by Sbarra et al. [12] using survey data and geostatistical models. Areas classified as ‘barren or sparsely vegetated’
based on European Space Agency Climate Change Initiative (ESA-CCI) satellite data [15] or with fewer people than 10 per 1 × 1-km pixel based
on WorldPop estimates [16] are masked in dark grey. Countries not included in the Sbarra et al. analysis are masked in light grey
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none of these factors is identified for over half the un-
vaccinated children in many of the higher coverage
countries (Fig. 2b). Other socio-economic and cultural
factors have recently been found to be consistently asso-
ciated with higher vaccination uptake around the globe,
including high confidence in vaccines, high trust in
health care workers, higher levels of science education,
younger age and high information-seeking behaviour,
while in some countries, belonging to a minority reli-
gious group or refusing to state religious belief was asso-
ciated with lower uptake [22]. Even when mothers are
willing to accept vaccination, coverage may be low due
to health systems barriers such as inadequate communi-
cations about vaccination, unreliability of sessions and
high transport costs to reach them [23]. These analyses
suggest that current RI programmes often produce un-
equal levels of RI throughout a country and fail to reach
children in high-risk populations. Of note, during the
elimination program in the Americas, high-risk groups
were identified using coverage and surveillance data and
targeted efforts developed to reach them, with cross-
border collaboration where needed [2].
For countries to reduce reliance on SIAs, routine ser-

vices must be capable of providing high and equitable
coverage with MCV1 and MCV2. Where this is not the
case, measles continues to cause major morbidity and
mortality. From 2013 to 2018, the highest incidence
rates occurred in low- and middle-income countries
(LMICs), especially those that had low or zero historical
coverage of MCV2, an indicator of RI strength [6]. High-
est incidence rates were in unvaccinated pre-schoolers
in each region, although incidence was also high in older
persons in some LMICS such as Madagascar and in
high-income countries, where outbreaks followed many
years of low or absent transmission.

SIAs
From 2000 to 2019, AFR reported the vaccination of 1.3
billion children via SIAs, EMR 700 million and SEAR
750 million [24]. According to data from 81 post-cam-
paign coverage surveys (PCCS) reported to WHO from
these regions, 56 (69%) of SIAs reached at least 90% of
the target population [24]. Although SIAs can attain
higher and more equitable coverage than RI [13, 25, 26],
SIA coverage in countries with weaker health systems
has rarely approached the levels that would be needed
for elimination [26, 27]. Furthermore, the extent to
which SIAs reach children missed by RI is a key deter-
minant of impact but has only recently begun to be eval-
uated. PCCS are encouraged to report these data but



Fig. 2 Plots showing the estimated breakdown of under-1-year-olds not receiving MCV by characteristic per country for countries with a full set
of data, in AFR, EMR and SEAR. Panel a (left) shows countries with MCV1 coverage ≤ 80% and panel b (right) shows countries with MCV1
coverage > 80% according to WUENIC 2018. Estimated numbers of unvaccinated children were calculated from geospatial estimates of MCV1
coverage using methods described in Sbarra et al. [12] and population estimates from WorldPop [16], using the geographic distribution of < 1-
year-old children in each country as a proxy for the geographic distribution of children of the target age for MCV1 vaccination. Conflict areas
were identified using data from the ACLED [17] and Uppsala [18] conflict data programmes, 2018. The programmes provide geolocated data on
conflict events, and here (following Wagner et al. [19]), conflicts resulting in fatalities in the 2 years prior to the period of study were aggregated
and a buffer of 50 km was applied to the conflict fatalities data to identify ‘conflict-affected’ areas. Remote areas were defined as those with travel
time > 3 h to the nearest settlement of > 50,000 people using estimates from Weiss et al. [20] and the distribution and extent of urban areas were
identified using estimates from the Global Human Settlement framework [21]

Cutts et al. BMC Medicine            (2021) 19:2 Page 4 of 8
surveys often exclude conflict-affected areas and ascer-
tainment of prior vaccination status is of unknown ac-
curacy [26].
To reduce transmission, SIAs need to increase popula-

tion immunity. Because SIAs target many individuals
who will already have been eligible for RI or had measles
infection, the effective increase in population immunity
is much lower than the nominal coverage of SIAs. Esti-
mates of SIA impact on population immunity provide
more complete information. Trentini et al. [28] incorpo-
rated data from sero-surveys in dynamic transmission
models to estimate that SIAs generated about 45% of the
immunized fraction of the population in Ethiopia and
about 25% in Kenya (which had higher RI coverage) in
2015. Thakkar et al. [29] used measles surveillance data
in their models to estimate that SIAs conducted between
2012 and 2017 in Pakistan immunized 40% of the sus-
ceptible individuals reached by the campaigns. In China,
similar analyses estimated that provincial-level SIAs be-
came more effective over time. Those conducted from
1996 to 2005 resulted in estimates of 0.5% to 45% reduc-
tions in susceptible individuals in the target age classes
while SIAs from 2006 to 11 resulted in 32% to 87% re-
ductions [30]. These useful estimates, however, are avail-
able for very few LMICS.
High-quality SIAs can help to eliminate measles, but

to maintain elimination—unless routine coverage of
MCV1 and MCV2 is extremely high—SIAs must be re-
peated frequently enough to maintain the susceptible
population below the herd-immunity threshold. Predict-
ing when to conduct follow-up SIAs is challenging. As
vaccination programmes improve, measles incidence
varies more from year to year, highlighted by recent out-
breaks in Madagascar, Mongolia and others [6]. This in-
crease in inter-annual variation is predicted by
theoretical models of the epidemic dynamics as coun-
tries approach the elimination threshold [31]. Periodic
additional interventions, such as SIAs and outbreak re-
sponse vaccination, may reduce mean incidence over
many years but lead to larger outbreaks in any 1 year in
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settings where RI is not sufficient to prevent the rapid in-
crease of susceptible cohorts following campaigns [32, 33].
This increased variation in periodicity can make it harder
to decide when to conduct follow-up SIAs.
The optimum timing of SIAs often also varies within a

country. The minimally sufficient SIA interval depends
on both the birth rate and the RI coverage, which govern
the decrease in population immunity in between cam-
paigns [33, 34]. Sub-national variation in birth rates and
vaccination coverage mean that SIA intervals based on
national rates may be either insufficient or more fre-
quent than necessary to maintain elimination in any
sub-national unit [33, 35].
To compound difficulties in choosing the desired inter-

val, delays to planned SIAs are not uncommon, e.g. due to
delays in obtaining funding and logistical support, political
changes, natural or man-made disasters [36, 37]. Appro-
priate timing of SIAs is critical to immunize susceptible
individuals before an increase in transmission occurs [29].
Major outbreaks have been reported shortly before a
scheduled follow-up SIA in e.g. Burkina Faso, DRC and
Kenya [36, 37] while delays in implementing outbreak re-
sponse vaccination campaigns may allow widespread
transmission to occur [38].

Demographic changes
Along with immunization coverage, demographic changes
can drive trends in measles incidence. Merler et al. [39]
and Li et al. [30] illustrated that measles incidence de-
clined faster than expected by vaccination coverage alone
due to concomitant reductions in birth rates in Italy and
China, respectively. Where birth rates are high, RI cover-
age must be higher [40] and SIAs must be more frequent
[34] to maintain a given level of population immunity.
From 1980 to 2018, crude birth rates per 1000 population
fell much less in AFR than in other regions (from 46.7 to
34.9 in AFR, 42.4 to 25.7 in EMR and 35.6 to 17.6 in
SEAR). From 2000 to 2018, the population aged under 15
years increased by over 50% in AFR, by about 24% in
EMR and remained stable in SEAR. At given RI and SIA
coverage, this increase means a greater density of unvac-
cinated children and higher risk of measles transmission.
Regional and national demographic summaries may

mask significant subnational variations in risk profiles. For
example, high rates of rural to urban migration have seen
urban areas grow more rapidly than rural areas, with dif-
fering demographic profiles [41]. The influx of susceptible
persons, from areas with lower access to vaccination but
also low measles transmission, to crowded urban areas fa-
cilitates measles transmission [42, 43], especially if recent
migrants are not recognized officially and vaccinated in a
timely fashion. Cyclical rural-urban migration, as illus-
trated in Niger [44] and Pakistan [29], may further limit
access to RI and affect the performance of SIAs. Improved
socio-demographic data need to be incorporated into stra-
tegic planning of measles elimination.

Conclusions
Despite tremendous progress in reducing measles burden
worldwide through immunization and demographic
changes over the last four decades, the global measles situ-
ation in 2020 remains tenuous. Increased measles inci-
dence and outbreaks in many LMICS result from stagnant
or falling and unequal RI coverage and suboptimal SIA
implementation [6]. In this fragile moment, the COVID-
19 pandemic is worsening immunization vulnerabilities,
putting the world at even higher risk for major outbreaks
of measles and other vaccine-preventable diseases [45].
The postponement of SIAs due to the COVID-19 pan-

demic provides an opportunity to increase the priority
given to RI and to implement a range of strategies to en-
hance its reach. To overcome fears and rumours relating
to COVID-19, substantial community engagement will
be required to plan, promote and monitor services. This
could provide a foundation for building stronger services
post-COVID. At health facilities and outreach sites, in-
creased attention and funding is needed to implement
strategies to diagnose and remedy causes of missed op-
portunities for vaccination [46] and other barriers to
utilization of services such as stockouts and cancellation
of sessions due to lack of transport or human resources
[47]. The COVID-19 pandemic has led to a re-emphasis
on administering MCV (and other missed vaccination
doses) to eligible children older than 12 months [48],
and this message needs reinforcement after the pan-
demic to enhance routine MCV1 and MCV2 coverage.
In urban areas, vaccination sessions should be conducted
more frequently with flexible, extended hours to facili-
tate attendance by working mothers. Vaccination ser-
vices should be designed in collaboration with target
communities including urban slums and interventions
designed to vaccinate recent arrivals in, and visitors to,
cities [49]. Systems for tracking the vaccination status of
every child, with active follow-up of those behind on
routine vaccinations need to be strengthened [50]. Rou-
tine services should aim to fill immunity gaps beyond
infancy.
Some of the lowest coverage countries have conducted

national SIAs at 2–3 yearly intervals since 2001, such
that SIAs have become a strategy to compensate for
weak RI rather than interrupt transmission. Other ap-
proaches could be more effective and efficient. For ex-
ample, conducting regular national Periodic
Intensification of Routine Immunization (PIRI) could be
easier to plan with shorter lead time than SIAs, for
which funding applications are required 12–18months
in advance and delays are common. This would also
mean that children missed through other strategies
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receive MCV at a younger age than if they wait 2–3
years for the next SIA, thus increasing the chance of
protecting the child before exposure to measles. Subna-
tional approaches also need evaluation to tailor activities
to the local demographic and security situations. The ex-
perience of microplanning gained in SIAs needs to be
translated into improved planning and intensification of
RI, including better planning of outreach sites or mobile
team use according to geospatial data and more rational
human resources deployment that maximizes the use of
community-based workers. New approaches to estimat-
ing population numbers at fine spatial scales through
the use of satellite building mapping, surveys and geosta-
tistical models [51] should provide better estimates of
population denominators than the use of simple projec-
tions from census baselines that can be decades old. The
collection of recent enumeration data from small sample
areas, or the use of listing data from recent surveys, can
provide training data for statistical models that utilize
relationships between these enumeration data and geo-
spatial covariates to estimate population numbers in
unsampled areas, together with uncertainty metrics. Ex-
amples of application of such approaches have been
shown recently for Nigeria [52], Zambia [53] and DRC
[54], with outputs available to explore at https://apps.
worldpop.org/woprVision. Better information on popula-
tion denominators, demographics and mobility will im-
prove planning and monitoring.
A large proportion of children unvaccinated for MCV

live in remote rural and conflict-affected areas. In these
places, flexible approaches developed at the local level
such as multiple rounds of vaccination using mobile
teams [55] can be used during lulls in fighting [56, 57].
Resources need to be decentralized to facilitate district-
level decision-making and rapid action when access to
previously difficult areas is possible. When people flee
conflict-affected areas, vaccination needs to be provided
at the first opportunity at their destinations. Strong
community-based communication and support mecha-
nisms will enable this [57].
In the Americas, close monitoring of coverage and dis-

ease surveillance were priority components of the elim-
ination plan and led to timely action when gaps were
identified. These systems need revitalizing in LMICs.
Prioritizing the implementation of data quality improve-
ment plans should improve the accuracy of routinely re-
ported data on doses administered via RI and SIAs by
age group, along with program inputs. Digitizing infor-
mation can help programmes track each child’s vaccin-
ation status and improve coverage monitoring [50].
Measles surveillance, which is currently extremely insensi-
tive, needs substantial investment to improve the investi-
gation of suspect cases and root cause analysis of
outbreaks. Laboratory confirmation is greatly constrained
by the need to transport specimens to central laboratories;
hence, the roll-out of point of care diagnostics [58] should
help increase the specificity of reporting in more remote
areas. As routine coverage improves and the interval be-
tween measles outbreaks lengthens, there is a risk of
unrecognized accumulation of susceptible persons in older
ages [6]; hence, it is important to use multiple sources of
data to identify population immunity gaps.
Countries and their international partners face difficult

decisions for maintaining health services during COVID-
19 and revitalizing them afterwards. There will probably
be unprecedented demands for national campaigns aiming
to catch-up quickly for service disruption, but reinvigorat-
ing RI is essential in areas which have so far failed to attain
high RI coverage. SIAs have an important role in reducing
measles transmission and filling immunity gaps but are
currently not sufficient to achieve or sustain measles con-
trol in the weakest countries. We believe that this is a time
to reflect on methods to strengthen health systems, in-
cluding routine surveillance and immunization, in the
countries and districts where RI coverage has remained
low for two decades or more. A broader range of strategies
needs evaluation to ensure that RI improves while redu-
cing inequities in a sustainable way [59], and create condi-
tions that would make future measles elimination feasible.
Now, more than ever, political will is needed to fund the
required structural changes in immunization programmes
to protect all persons against measles and other vaccine-
preventable diseases [60].
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