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Abstract

Background: SARS-CoV-2 has induced a worldwide pandemic and subsequent non-pharmaceutical interventions
(NPIs) to control the spread of the virus. As in many countries, the SARS-CoV-2 pandemic in Germany has led to a
consecutive roll-out of different NPIs. As these NPIs have (largely unknown) adverse effects, targeting them precisely
and monitoring their effectiveness are essential. We developed a compartmental infection dynamics model with
specific features of SARS-CoV-2 that allows daily estimation of a time-varying reproduction number and published this
information openly since the beginning of April 2020. Here, we present the transmission dynamics in Germany over
time to understand the effect of NPIs and allow adaptive forecasts of the epidemic progression.

Methods: We used a data-driven estimation of the evolution of the reproduction number for viral spreading in
Germany as well as in all its federal states using our model. Using parameter estimates from literature and,
alternatively, with parameters derived from a fit to the initial phase of COVID-19 spread in different regions of Italy, the
model was optimized to fit data from the Robert Koch Institute.

Results: The time-varying reproduction number (Rt) in Germany decreased to < 1 in early April 2020, 2–3 weeks after
the implementation of NPIs. Partial release of NPIs both nationally and on federal state level correlated with moderate
increases in Rt until August 2020. Implications of state-specific Rt on other states and on national level are
characterized. Retrospective evaluation of the model shows excellent agreement with the data and usage of inpatient
facilities well within the healthcare limit. While short-term predictions may work for a few weeks, long-term
projections are complicated by unpredictable structural changes.

Conclusions: The estimated fraction of immunized population by August 2020 warns of a renewed outbreak upon
release of measures. A low detection rate prolongs the delay reaching a low case incidence number upon release,
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showing the importance of an effective testing-quarantine strategy. We show that real-time monitoring of
transmission dynamics is important to evaluate the extent of the outbreak, short-term projections for the burden on
the healthcare system, and their response to policy changes.

Keywords: SARS-CoV-2, COVID-19, Epidemiology, Modeling, Non-pharmaceutical interventions, Reproduction
number, Healthcare usage

Background
The outbreak of the novel coronavirus SARS-CoV-2
(CoV/COVID-19) in China has induced a worldwide pan-
demic. The comparably high lethality in the elderly pop-
ulation and in patients with comorbidities [1, 2], together
with a widely absent immunization of the population
against the novel virus as well as the limited health sys-
tem capacity estimated to become overwhelmed by an
unlimited virus spreading [3], led to non-pharmaceutical
interventions (NPIs) to reduce virus transmission mostly
by reducing inter-individual contacts. The aim of these
measures was to achieve at least a delay of viral spread-
ing, allowing the healthcare system to extend its capacities
and to treat less patients per time or, ideally, achieve
a complete stop of viral spreading. The NPIs installed
in Germany have been effective in containing viral dis-
semination [4]. Hence, in the light of economic damage
incurred by restrictions [5], a gradual release of NPIs
was decided with moderate effects on virus transmission.
However, the length of the serial interval, which is in the
range of 4–7.5 days (mean values) for CoV [6–8], and an
inevitable delay in testing and reporting imply that any
sudden outbreaks may be recognized too late and care-
ful continuous monitoring of the infection dynamics on a
regional basis is required. Thus, current political decisions
need foundational information about current infection
dynamics and their response to changes in NPIs such
as partial release of contact restrictions or school open-
ings, ideally on a regional basis. In fact, a declining or
stable number of daily reported cases despite releasing
measures can be misleading if the trend of the achieved
reproduction number, the delay between changes in the
infection dynamics, and their manifestations in reported
case numbers are not taken into account. Furthermore,
the high variance of the locally reported new cases adds
to this uncertainty. Thus, it is extremely important to
construct a model that not only captures the disease
dynamics but also has the potential to provide information
on the trend of the outbreak by considering the time-
dependence of the reproduction number for COVID-19.
The situation in Europe was recently analyzed [7]. Here,
a systematic analysis of the development of the reproduc-
tion number over the time period of the COVID-19 out-
break in Germany and in all federal states of Germany is
provided.

A second level of information necessary for political
decisions on NPIs is the prospective development of the
outbreak under different scenarios. A too early release
of NPIs risks to abandon the current level of contain-
ment and to initiate a new wave of viral spreading [9].
A too long application of NPIs carries the risk of collat-
eral damage and imposes a strong economic burden [5].
In view of the achieved reproduction number in Germany
and its federal states by April 2020, a partial release of
NPIs was decided, including partial school re-openings
and resumption of catering and hotel business under cer-
tain restrictions, includingmask obligations in public. The
effects of such re-openings are hard to predict and require
careful monitoring of local factors governing the infec-
tion dynamics and their implications for forecasting the
immediate future development of the pandemic.
Whereas existing data-based simple algorithms (e.g.,

[10]) stand useful for estimating the time-varying repro-
duction number of an ongoing outbreak for many infec-
tious diseases (e.g., measles, H1N1 swine flu, polio) using
symptom onset data and less parameters (e.g., serial
interval only), they, in general, are designed consider-
ing detection of all cases and are not suitable when the
proportion of detected cases may change over time. Fur-
thermore, the absence of reliable symptom onset data
and heterogeneity of an effective infectious period among
asymptomatic, pre-symptomatic, and symptomatic indi-
viduals demand for an alternative method to estimate the
time-varying reproduction number by adjusting for such
specific features of COVID-19. We have developed an
ordinary differential equation (ODE)-based compartmen-
tal model specific for COVID-19 transmission dynamics
and disease progression, and used it for quantitative eval-
uation of the time-varying reproduction number under
the influence of NPIs in Germany and its federal states.
In addition, our contribution retrospectively infers the
usage of the healthcare system in Germany and offers
short-term predictions based on current developments
in terms of infections, number of non-critical hospital
beds, and critical/intensive care units (ICUs) needed to
treat patients with severe disease progression, as well as
fatalities. This analysis provides additional information
on when and how strongly to react to potential infection
waves in order to avoid unacceptably high mortality and
morbidity as well as excessive demands on the healthcare
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system. As a state-specific estimation of the reproduc-
tion numbers and a prospective estimation of the outbreak
need to be up-to-date for the purpose of closely monitor-
ing effects of policy changes, we provide daily updates of
our analysis results online [11].

Methods
The implemented SECIR (Susceptible-Exposed-Carrier-
Infected-Recovered) model is a deterministic ODE model
adapted to the specific properties of SARS-CoV-2 viral
infections. It distinguishes healthy individuals without
immune memory of COVID-19 (S), infected individ-
uals without symptoms but not yet infectious (E),
infected individuals without symptoms who are infec-
tious (pre-symptomatic (CI) and asymptomatic (CR) car-
riers), infected symptomatic individuals who are not yet
detected (I), and detected (IH ,R) and undetected (IX)
symptomatic patients. Further, compartments for hos-
pitalization in non-critical (HU ,R,S) and critical/intensive
care units (UD,R) were introduced to monitor the load on
the healthcare system. Detected patients recover from dif-
ferent states of the disease (RZ) or die (D). Undetected
individuals who went through the infection and recov-
ered are also taken into account (RX). The quantities are
defined, and the model is summarized in Fig. 1 with
parameters in Table 1. The model equations read

dS
dt

=−R1(t)
(γ (CI + CR) + χ IX + ωI + β(IH + IR))

N
S
(1)

dE
dt

=R1(t)
(γ(CI+CR)+χ IX+ωI + β(IH + IR))

N
S − R2E

(2)
dCI
dt

= (1 − α)R2E − R3CI (3)

dCR
dt

= αR2E − R9CR (4)

dI
dt

= μR3CI − R11I (5)

dIH
dt

= ρ(t)R11I − R6IH (6)

dIR
dt

= (1 − ρ(t))R11I − R12IR (7)

dIX
dt

= (1 − μ)R3CI − R4IX (8)

dHU
dt

= ϑR6IH − R7HU (9)

dHR
dt

= (1 − ϑ)R6IH − R5HR (10)

dHS
dt

= R8UR − R5HS (11)

dUD
dt

= δR7HU − R10UD (12)

dUR
dt

= (1 − δ)R7HU − R8UR (13)

dRZ
dt

= R12IR + R5HR + R5HS (14)

dRX
dt

= R9CR + R4IX (15)

dD
dt

= R10UD (16)

The rates R2,...,12 denote the inverse time of transition
between the respective states and can be estimated from
literature. Parameter R1 is fitted to the course of reported
case numbers in a sliding time window and therefore is
a time-varying parameter. Greek letters α, μ, ρ, ϑ , and
δ denote fractions of individuals with a particular fate
while other Greek letters, viz., γ , χ , ω, and β , reflect
the intensity of interaction of corresponding infectious
compartments with the susceptible population. The over-
all case fatality ratio (CFR = ρϑδ) has a time-varying
component modeled with a logistic function

CFR(t) = H − (H − L)

(
1

1 + e−k(t−t0)

)
, (17)

where t corresponds to the day of the year starting from
January 1, 2020, and H = 0.139, L = 0.007, k = 0.145,
and t0 = 87.3 (these values are for μ = 0.2) are obtained
from fitting the curve for cumulative deaths to obtain a
time-dependent case fatality rate (CFR), which changed
over the course of the epidemic in Germany. This is
due to changing testing frequencies [37] and the shift-
ing age structure of the infected over time [38], which we
assume to predominantly reflect in a time-varying rate of
hospitalization (ρ(t)).
The time-dependent ρ(t) is effectively incorporating the

time-varying age distribution of the infected people in
the course of the epidemic. An explicit representation of
the age distribution [39] was not favored in view of many
unknown parameters. Note that hospitalization occurs
from a quarantined compartment in the model, thereby
having relatively less influence on the Rt values. Hence,
ρ(t) as resulted from CFR(t) in the country level was
retained for estimating federal state-specific time-varying
reproduction numbers. The demographic differences may
be more important for the analysis of smaller districts;
however, case numbers in smaller districts might not be
sufficient for a proper discrimination of age groups.

Parameterization
The model parameters are critical for the overall behav-
ior of the model and for the quality of the predictions
derived from it. For the sake of robustness of the results,
we followed two different strategies on how to deter-
mine the model parameters. The development for time-
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Fig. 1 The scheme of the SECIR model, which distinguishes susceptible (S) individuals without immune memory of CoV, exposed (E) who already
carry the virus but are not yet infectious to others, carriers (CI,R) who carry the virus and are infectious to others but do not show symptoms, infected
(I, IH,R,X ) who carry the virus with symptoms and are infectious to others, hospitalized (HU,R,S) who experience a severe development of the disease,
patients transferred to intensive care unit (UR,D), dead (D), and recovered (RZ,X ) who acquired immune memory and cannot be infected again.
Recovery happens from each of the states CR , IX , IR , HR , UR . See Table 1 for parameter values

varying reproduction numbers in Germany (Fig. 3a) was
presented with the parameter sets derived from both
strategies.
The first strategy was to derive the estimated values (see

Table 1) of the model parameters for Germany based on
the available literature (e.g., [26]). Some disease-specific
quantities such as the incubation period and infectious
period are considered to be independent of a specific
country. Uncertainty in the values of the parameters was
invoked either using a percentage variation (20% unless
otherwise specified) around their estimated mean values
or by sampling from an estimated range (e.g., ϑ and δ)
(see Table 1 for details). The resulting ranges were subse-
quently used to determine the distribution of Rt values.
In the second approach, we keptmodel parameters open

in a broader range (see Additional file 1: Table 1 [27, 30,
31]) and fitted them to the cases reported in different
regions of Italy until March 18, 2020, in a single stretch
using our model assuming that the dynamics in this initial
phase of the outbreak are not affected by the overwhelmed
healthcare system. We optimized the model parameters
to result in minimized error over this whole period. As
the lockdown was announced on March 9, 2020, in Italy,
an additional duration of 9 days (i.e., the sum of the incu-
bation period of 5.2 days and a period of 3.7 days until
clinical visit) was considered. Available data for cumu-
lative infected, hospitalized, ICU, and deaths were fitted
for Italy and for the regions where the first registered
case was on February 28, 2020, or prior [40]. The diver-
sity of resulting parameter values for the different regions
in Italy (Fig. 2a) was used to derive a second range of

the parameters to determine the distribution of Rt values
(Fig. 3).

Basic (R0) and time-varying (Rt) reproduction number
The basic reproduction number R0 is defined as the
expected number of secondary cases produced by a sin-
gle infection in a completely susceptible population [44]. It
can be calculated from the parameters of a compartmen-
tal model [45–48] after fitting themodel to data for a given
time period during the epidemic. While R0 provides valu-
able information on the viral dissemination dynamics in
the absence of immunity and awareness of the epidemic,
the dynamics of the epidemic over time will be heavily
influenced by development of immunity in the popula-
tion [49], policy changes to minimize infection risk [50],
and individual behavior in response to public awareness
of a disease [51]. Hence, a practically more useful quantity
during an outbreak is the time-dependent reproduction
number Rt describing the expected number of secondary
cases per index case at a given time of the epidemic. This
quantity has to be derived from incidence data over time
and reflects the multifactorial impact of NPIs, behavior
changes, seasonal effects, etc. on the dynamics of viral
spread.
In epidemic models with multiple compartments, R0

can be derived with the next generation matrix method
[47]. The compartments with infected individuals are
divided into two contributions with respect to their
dynamics: new infections entering the compartments and
transfer of infected into and out of the compartment to
other compartments. The Jacobian matrices of these two
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Table 1 Parameter sets of the SECIR model: determination of the mean values (and ranges where applicable, e.g., ϑ , δ) for
literature-based parameter set was based on the interpretation of the values given in the references and is discussed in the supporting
information (see Parameter description [12–20]). The Italy-based parameter set was determined by fitting the data for different regions
of Italy and providing minimum and maximum over the analyzed regions. While α and R7 were indeed kept fixed for Italy, other
parameter ranges are the result of the fitting itself. Results are shown up to three decimal points

Parameter(s) References Parameter set from
literature

Parameter set from
fitting Italy data

Mean Variation Min Max

R1 Varied, fitted (see the “Methods” section)

R2 [8, 21, 22]
1

3.2
20%-around mean 0.219 0.406

R3 1/R3 = 5.2 – 1/R2 ; mean incubation period is 5.2 days [8]

R4 [23–25]
1

7
20%-around mean 0.100 0.186

R5 [26, 27]
1

8
20%-around mean 0.088 0.088

R6 1/R6 = X – 1/R11; X = 4.25 (literature [28]), 5 (Italy fitting); time to hospitalization since symptom is X days

R7 [27, 28]
1

4.25
20%-around mean 1 1

R8 [26]
1

9
20%-around mean 0.144 0.144

R9
1

R9
= 1

R3
+

(
0.5 × 1

R4

)

R10 [28, 29]
1

7.43
20%-around mean 0.082 0.113

R11
1

R11
= 3.7 days [30]; fixed

R12
1

R12
= 1

R4
− 1

R11

α [31, 32] NA Fixed to 0.22 except
Additional file 1:
Figure S4

0.425 0.425

β Assumed NA 0.05–0.25 0.050 0.050

ρ Varied, fitted (see the “Methods” section)

ϑ [33, 34] NA 0.42–0.53 0.157 0.311

δ [33, 34] NA 0.42–0.53 0.300 0.900

μ Varied (see the “Methods” section); calculations from Italy data (see Additional file 1: Additional details of Italy fitting [35, 36]) yield in an
average (drawn from the analyzed regions) μ = 0.13 with α = 0.425 [31]

γ ;χ ;ω Assumed; fixed to 1

quantities F and V describe the generation of new infec-
tions and the transfer across compartments, respectively
[52, 53]. The elements Gij of G = FV−1 are related to the
expected number of secondary infections in compartment
i caused by a single infected individual of compartment j.
The reproduction number R0 for the present model is

given by the dominant eigenvalue of G, i.e.:

R0=R1
S0
N0

[
γ (1 − α)

R3
+ γα

R9
+ χ (1 − α) (1 − μ)

R4
+ μω (1 − α)

R11

+βμ (1 − α) (1 − ρ)

R12
+ βμρ (1 − α)

R6

] (18)

where N0 is the total population and S0 is the susceptible
population, both at the start of the outbreak.
For our analysis, we use reported cases (IH + IR) in the

first 4 days and impose the adjusted number of corre-
sponding detectable infected cases (Ni/[ (1− α)μ], where
Ni represents the number of reported cases at day i,
i = 1, 2, 3, 4), as exposed individuals consecutively at an
earlier time point given by the sum of one incubation
period and the duration until clinical registration follow-
ing symptom onset (1/R2 + 1/R3 + 1/R11 = 8.9 days).
This assumption takes into account that the symptom
onset from the first exposed individuals has not happened
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Fig. 2 a Variability of parameters fitted to the number of reported, hospitalized, ICU, and dead cases in different regions of Italy. Table 1 recollects
the parameter ranges. Note that the resulting ranges of R1 and ρ are not used for fitting case data of Germany. They are varied to optimize the
model dynamics to case data in Germany (see the “Methods” section). b Scheme of the shifting time window and repeated fitting to the time
course of the reported case data (shown for a window size of 7 days)

before the minimum duration of serial interval (around
4 days), and thus, the first reported cases shall repre-
sent independent sources of the virus rather than being
the result of transmissions. Given the initial conditions
and using the parameter sets in Table 1, the transmis-
sion parameter R1, which mostly contains information on
the contact frequency and probability of transmission per
contact and, thus, best reflects the individual behavior
in the population with respect to social distancing and
other measures to minimize the infection risk, is used to
optimize the fit of the model dynamics to the observed
case data.
In order to assess the impact of political measures

and changes in the population response along with other
dynamic but unrecognized variables (such as seasonality)
onto the development of the time-varying reproduction
number Rt , the cumulative number of registered cases is
used. The cumulative registered case number is compared
to the sum of infected individuals and all subsequent states
in the model, i.e., with IH + IR + HU + HR + HS + UR +
UD + D + RZ . A time window of a width of 10 days is
defined starting at the day of the first reported case (i) con-
sidering the time-difference between viral exposure and
clinical registration of a case (which is around 9 days as
per the model parameters) and (ii) assuming a delay of
1 day between the announcement of a new measure and
changed personal behavior, the combination of which we
use to define our default window size. For a window size of
WS (our defaultWS = 10 days), Rt shown on a particular
date Dt depicts the reproduction number observed over a
period from D(t−WS) to Dt . This allows to determine R(t0)
in the first 10 days and to define the initial conditions for
the first sliding time window (Fig. 2b). Then, in repeat-
ing cycles, the best R(tk) (with k = 1...N) for each time
window at the starting time tk of the kth time window is
determined by

R(tk)=R1(tk)
S(tk)
N(tk)

[
γ (1 − α)

R3
+ γα

R9
+ χ (1 − α) (1 − μ)

R4

+ μω (1 − α)

R11
+ βμ (1 − α)

(
1 − ρ(tk)

)
R12

+βμρ(tk) (1 − α)

R6

]
(19)

where ρ(tk) denotes the average value of the time-varying
hospitalization rate in the kth time window. A new set
of initial conditions is defined a day later, including the
reduced fraction of susceptible individuals S(tk)/N(tk),
with S(tk) and N(tk) the values of susceptible and total
population at the starting time tk of the kth time window.
Note that fatal cases reduce the total population. R1(tk) is
determined by fitting to the data in this time window. In
cycles, the time window is shifted 1 day later. The series of
Rt values for each of the sliding time windows at time tk is
reported at the final date of the time window.
For the prospective study, the state of the model at

the last time of Rt evaluation is kept and used as initial
condition for the model.
To assess the impact of different scenarios, a set of con-

stant reproduction numbers (R) was imposed based on
the history of the epidemic tomimic release, maintenance,
or intensification of NPIs (see the “Results” section). The
cumulative number of infected individuals and the num-
ber of occupied ICUs, hospital beds, and deaths are
reported. More observables are found at [11].
The distribution of observables and Rt values is gener-

ated by reiteration of the analysis under varying model
parameters randomly drawn from a uniform distribution
within the range provided in Table 1. The box plots in the
figures showmedian, 25 and 75 percentiles, andminimum
and maximum values from these analyses.
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Fig. 3 Data for Germany were fitted to the cumulative number of reported cases in a sliding time window with a size of 10 days. Parameters from
Table 1 were used and the transmission rate R1 was fitted (see the “Methods” section). a Time-varying reproduction number Rt resulting from the fit.
The parameter sets were randomly sampled within the ranges in Table 1, and upon refitting, this induced a variability of reported Rt values. The box
plot shows the median, 25 and 75 percentiles, and the minimum and the maximum values. Both used parameter sets (literature-based with μ = 0.2
and derived from Italy-fit) are compared to the Rt values calculated with the publicly available code from Imperial College (black curve) with a serial
interval of 6.5 days having standard deviation of 0.62 days as used in [7]. b The median of fitting results in a with literature-based parameters is
shown for the cumulative number of reported cases and compared with data from [41–43]; own calculation and design. c Same analysis based on
the literature-based parameter set together with the timing of installing and releasing NPIs in Germany for μ = 1, μ = 0.5, μ = 0.2, and
time-varying μ (evaluated on the basis of mobility and testing data, see Additional file 1: Figure S1-S2). Only the median value is reported. d The
same analysis as in a for federal states with μ = 0.2. Results (only the median values) for Berlin, Brandenburg, Baden-Würtemberg, Bavaria, and
North Rhine-Westphalia are shown for April 2020–August 2020. e The same analysis as in a was repeated for each federal state in Germany
separately with μ = 0.2 (see Additional file 1: Figure S3). Here, the Rt distribution resulted from the median Rt values past 1 week observed in each
federal state of Germany is shown as box plot (see a). Federal states are sorted by median values of their Rt distribution. The horizontal line shows
Rt = 1. a–e Each data point is a result of 100 randomly sampled parameter sets for a fixed α = 0.22
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Results
Based on the classical models of infection epidemics [52],
we developed a mathematical model particularly adapted
to the specificities of the COVID-19 outbreak (SECIR
model, Fig. 1). For the evaluation of effects of NPIs and
behavioral changes on viral spreading, a time-varying
reproduction number Rt has to be estimated [10]. We
opted for a shifting time window of 10 days (in Fig. 2b,
a scheme with a window of 7 days is shown) in each
of which Rt is determined, and developed an automa-
tized algorithm for the fast analysis of the current Rt (see
the “Methods” section, Eq. 19). Importantly, each time
window is not analyzed independently but includes the
history of the epidemic by starting from the saved state of
the simulation at the beginning of each time window.
The cumulative reported cases are reproduced by the

model in each time window, giving rise to a time evolution
of the reproduction number Rt (Fig. 3a, b). The large initial
value at February 28, 2020, results from a sudden increase
of independent first reported infections, possibly related
to people coming back from holiday. This leads to an over-
shoot of the Rt value in a strength depending on the size
of the time window used for analysis (not shown). The
initial estimates for Rt are not reliable because importa-
tion is the major contributor to the detected cases instead
of local transmission events. Whereas the choice of the
serial interval determines the Rt estimation (median val-
ues shown with black line) obtained from the EpiEstim
package [7, 54], the Rt distribution resulting from our
model is governed by literature-informed model parame-
ters (blue curve) and detection ratio of the infected cases.
Using parameters derived from fitting data from Italy
yields similar results (magenta curve) (see Fig. 3a).
The nationwide NPIs imposed in Germany included

the recommendation for cancelation of large events on
March 10, 2020, followed by recommendation of self-
isolation issued on March 12, 2020 [55]. A series of NPIs
were implemented subsequently in close spacing, viz.,
restriction on individual movement, nationwide closure of
schools and leisure-related venues onMarch 16, 2020, and
extensive contact restrictions on March 22, 2020 [56, 57]
(see Fig. 3c). The Apple mobility trend [58] observed in
Germany until March 22, 2020, revealed an altered higher
drift since the 7th week of the year (2020) showing a peak
on February 22, 2020, and a subsequent declining trend
(Additional file 1: Figure S1 [58, 59]). This was followed by
a rapid decline inmobility sinceMarch 8, 2020 (Additional
file 1: Figure S1). As the new cases registered were exposed
9 days earlier, the decline in the reproduction number
until March 19–March 21, 2020, observed in the model
is unlikely due to NPIs but can be attributed to behav-
ioral changes. Although mobility in Germany showed an
upward trend following March 22, 2020, despite exten-
sive contact restrictions (Additional file 1: Figure S1), the

reproduction number went downwards until mid-April
2020 achieving a value near unity as of April 6, 2020,
in between and after a period of fluctuations, attained a
minimum on May 4, 2020. In addition to demonstrating
protective awareness among individuals, this illustrates
that the NPIs imposed appear to have had a strong effect
on the dynamics of the COVID-19 epidemic (see Fig. 3c).
NPIs were released in Germany on April 20, 2020, for

the first time. Shops were opened, and a few days later,
wearing masks became compulsory. The Rt value reacted
with a delay of 15–19 days (Fig. 3c). On the 19th day fol-
lowing the first release, it increased by roughly 0.38, con-
tinued to be in a range of 0.66–0.75, and then decreased
again by 0.15 (numbers mentioned for μ = 0.2), pre-
sumably in response to the imposed masks. The second
release of measures was widely implemented on May 11,
2020, and involved a cautious re-opening of child care
and schools as well as restaurants. However, all of those
were opened with imposed social distancing. Again, 19
days later, the Rt values increased to 0.82 as of May 30,
2020. Following a short span of slight fall in the repro-
duction numbers, this remained in a range of 0.80–0.88
around June 12, 2020, for Germany (Fig. 3c). This observa-
tion illustrates the sensitivity of the viral spreading to NPIs
as well as the possibility to partially release NPIs without
losing control of the epidemic, provided the population
keeps social distancing and hygienemeasures in place, and
avoids inter-personal contacts [60].
While there was a large diversity of epidemic onset and

intermediate developments particular to individual fed-
eral states, the overall tendency converged to values below
Rt = 1 around the first week of April 2020 (see Addi-
tional file 1: Figure S3 [41–43]). The coherent reduction
of the reproduction number after nationwide implemen-
tation of several NPIs together with further measures
specifically applied in different federal states speaks for
the efficiency of the measures and the responsiveness of
the population to the NPIs. Re-opening and a contin-
uously increasing trend in mobility induced resurgence
of COVID-19 outbreaks in multiple federal states, such
as North Rhine-Westphalia, Berlin, Brandenburg, Saxony,
and Saxony-Anhalt around the second half of May and
the first half of June 2020 (Fig. 3d and Additional file 1:
Figure S3). This resulted in a sharp rise in reproduction
numbers ranging from 2 to 2.8 in these aforementioned
states around the 3rd week of June. It is also reflected in
the reproduction numbers of whole Germany around that
time, reaching a peak on June 20, 2020. The Rt values in
Germany remained more than unity during June 17, 2020,
to June 27, 2020, before maintaining around 0.63–0.82
until July 13, 2020, due to reimposed regional regulations
in several federal states. Since then, it had increased and
remained mostly in the range of 1.22–1.56 prior to dis-
playing a downward trend since the last week of August.
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Such variations can be understood as an overall impact
resulting from alterations in Rt development in indivi-
dual federal states (see Additional file 1: Figure S3). One
interesting observation, however, is some level of correla-
tion between a couple of federal states with regard to the
evolution of their reproduction numbers, e.g., (i) Berlin
and Brandenburg and (ii) Baden-Würtemberg and Bavaria
(Fig. 3d). We note that Berlin is encircled by Brandenburg
whereas Baden-Würtemberg and Bavaria are neighboring
federal states located at similar geographical altitude with
Alps in their southern part. Such a correlation suggests
that resurgence of outbreak in one region may act like a
reservoir of new infections in adjacent regions.
Next, the Rt distribution resulting from the median val-

ues obtained in the last week in the different federal states
is compared and ranked in Fig. 3e. As of August 31, 2020,
most of the federal states andGermany as a country exhib-
ited a weekly median of Rt around 1 or higher. Bavaria
and Baden-Würtemberg which were hit early on by the
COVID-19 outbreak as well as Bremen resurfaced with
consistently higher reproduction numbers during the last
3 weeks of August 2020 (see Additional file 1: Figure S3).
In contrast, North Rhine-Westphalia which had a sig-
nificant case load during early weeks in the pandemic
and also exhibited local outbreaks and super-spreading
events around May–June [61] was relatively doing bet-
ter in controlling the outbreak by the end of August 2020
(Fig. 3e). Among other federal states which encountered
a substantial sharp increase in Rt at some point after re-
opening (see Additional file 1: Figure S3), Mecklenburg-
Western Pomerania, Berlin, Saxony-Anhalt, Brandenburg,
and Hamburg showed a median Rt less than or around
1 whereas Saxony displayed a median Rt higher than 1
for the week ending on August 31, 2020 (Fig. 3e and
Additional file 1: Figure S3).
The number of unregistered cases is not well known

in Germany. In the model, (1 − α)μ captures the regis-
tered fraction of the infected cases (Fig. 1). In order to
demonstrate the importance of the number of undetected
cases for the interpretation of the results, we compared
the results for μ = 1, μ = 0.5, μ = 0.2, and a qualita-
tive time-varying μt informed by the mobility and testing
data (see Additional file 1: Figure S1-S2 [32, 41–43, 62,
63]) for a fixed proportion of purely asymptomatic as
well as unregistered individuals, i.e., α (α = 0.22 unless
otherwise specified). For time-invariant detection ratios
[(1 − α)μ], it turns out that the Rt value derived from
a model with more symptomatic unregistered cases (i.e.,
a lower μ) is slightly enhanced but remains in the same
range, the impact being more prominent during initial
weeks (Fig. 3c). Temporal evolution of Rt for a realis-
tic time-varying detection ratio captures the sensitivity
towards NPIs better and clearly shows the timeline of
induced changes in Rt due to phased re-opening with a

similar delay (Fig. 3c, green curve). A consistent rise in
μt prior to June 2020 resulted in lower Rt values from
April 2020 onward. Following a peak detection of infected
cases around the end of May 2020, μt fell due to a
lower number of tests per confirmed case compared to
the increased mobility (see Additional file 1: Figure S1),
causing higher Rt values since June 2020. The resulting
reproduction numbers are not significantly sensitive to
changes in α (see Additional file 1: Figure S4). In our
model, the infectious period of individuals who remain
asymptomatic throughout is assumed to be shorter than
the overall infectious period (including pre-symptomatic
stage) of the symptomatic people. This results in a slightly
lower reproduction number as we increase α.
The model can be used to estimate the dynamics of the

load for the healthcare system. Based on the resulting fit-
ting of cumulative detected cases (Fig. 3b) and cumulative
deaths (Fig. 4a, see the “Methods” section), we investi-
gated the extent of hospitalization during the epidemic
(Fig. 4 and Additional file 1: Figure S5). The number of
deaths and new daily reported cases well captured the
trend in the data. The highest number (median) of esti-
mated daily reported cases was 5727 (Fig. 4b). The esti-
mated peak (median) for healthcare usage showed 10,690
occupied hospital beds (all types of non-critical care units)
on March 28, 2020, and 4938 ICU beds (all types of criti-
cal care units) on April 4, 2020 (Fig. 4c, d). These numbers
stayed within the capacities of the German healthcare sys-
tem [64]. The sensitivity of this result to changes in the
model parameters is shown for our retrospective analysis
in Additional file 1: Figure S6.
We next investigated different prospective scenarios

from the final date of the data fitting phase by retaining the
state information of the model. We used the hospitaliza-
tion rate estimated as on August 31, 2020 (ρ(tlatest)), and
plugged this into Eq. 19 while imposing different repro-
duction numbers (R) for the whole period of prospective
analysis. ρ(tlatest) primarily depends on the affected age
groups and the extent of an effective testing-quarantine
strategy (Fig. 5a). Starting from the last state of the model
for Germany, thus, including the complex distribution of
individuals onto the different compartments of the model
at this time, the simulation was first continued for 28 days
with the mean of median Rt values observed during the
last week of August 2020, i.e., with R = 1.03 (base sce-
nario). It provides a stable situation without a significant
resurgence of cases in short time (Fig. 5b–f, black). The
median Rt value observed over a period fromMay 5, 2020
(as the first re-opening started to show its first impact
from this date), until August 31, 2020, which resulted in R
= 0.91, contained the epidemic but was not able to stop it
in a short time (Fig. 5b–f, magenta).
A release of NPIs to a degree that induces Rt to be the

maximum value estimated during May 5, 2020, to August
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Fig. 4 Time evolution of variables during epidemic. The distribution of simulated values for the last date of sliding time window is shown for a
cumulative number of deaths and b registered daily new cases (median is shown), c number of hospitalized cases currently treated (census) in
non-critical hospital beds, and d number of cases currently treated (census) in all types of critical care units (ICUs in the model). Note that the daily
reported cases are calculated by subtracting the estimated cumulative number of registered cases in two consecutive dates from the sliding time
windows ending at each date. The data for analysis were taken from [41–43]; own calculation and design

31, 2020, i.e., R = 1.84, causes a resurgence of around 7000
daily new reported cases at the end of the 4th prospective
week but does not cause a significant burden to healthcare
in near future (Fig. 5b–f, green). Provided this reproduc-
tion number was kept for 1 year, around 19,500 critical
care beds and around 40,000 non-critical care beds would
be occupied at peak causing an overwhelmed healthcare
system in comparison to around 9600 free ICUs onAugust
31, 2020, as per [64]. This scenario may lead to total of
80,000 deaths (see Additional file 1: Figure S7).
A relatively pessimistic prospective scenario reflecting a

complete release of NPIs and the absence of any protec-
tive behavioral measure was modeled with the median Rt
observed on March 21, 2020, i.e., with R = 4.33. This leads
to a major immunization of the population and results in
a drastic increase in healthcare usage (e.g., ≈ 7000 occu-
pied critical care beds) and cumulative deaths (≈ 1900
higher than the base scenario) within 4 weeks (Fig. 5, red).
Consequently, in the long run, it leads to an overwhelmed
healthcare system (see Additional file 1: Figure S7).
An important question is how long NPIs would have to

be kept in place until all new cases can be controlled by
public health departments. Assuming 300 detected cases

per day to be manageable, we calculated the time needed
to achieve this number of daily new cases given different
levels of the reproduction number (Fig. 6). Given the lat-
est reproduction number of August 31, 2020, in Germany
(Fig. 6a), this number could be achieved within 2 months
for registered cases, and 5 months for the infectious cases
if Rt remains at the same level throughout (Fig. 6). The
detection ratio ((1 − α)μ) influences this time as can be
seen for different values of μ (α = 0.22 fixed). Although
the duration to reach 300 new registered cases is compa-
rable for μ = 1 and μ = 0.2, the infectious population
significantly increases with larger fractions of undetected
infections (Fig. 6, black versus red).

Discussion
The estimated fraction of the immunized population that
we calculate as the ratio of recovered to initial susceptible
population assuming some form of long-lasting immunity
of infected survivors stands at the range of 0.3–3% (0.3%
with μ = 1, 1.7% with μ = 0.2, and 2.8% for our esti-
mated time-varying μt ; all with α = 0.22 [32]) at the end
of August 2020. Hence, the German population seems far
from achieving herd immunity and a renewed outbreak or
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Fig. 5 Starting from the final state in Fig. 3a, a value for the transmission rate R1 was introduced based on the Rt history of the pandemic and the
latest hospitalization rate (as on August 31, 2020) estimated from fitting the cumulative deaths (see the “Methods” section). Results are shown for the
mean of median Rt values observed during the last week of August 2020, i.e., R = 1.03 (black); the maximum Rt values estimated during May 5, 2020,
to August 31, 2020, i.e., R = 1.84 (green); the median Rt value observed over a period from May 5, 2020, until August 31, 2020, i.e., R = 0.91 (magenta);
and the median Rt value observed on March 21, 2020, i.e., R = 4.33. May 5, 2020, was chosen as the first re-opening started to show its first impact
from this date (see the “Results” section). α = 0.22 and μ = 0.2 were kept fixed. The simulations were continued for 28 days from this last time point.
Box plots show the 25 and 75 percentile as well as the minimum and maximum values corresponding to 100 simulations for literature-informed
parameter variation (see Table 1). a A scheme for our projections. b Cumulative reported cases. c Cumulative deaths. d Hospitalized patients in
non-critical care beds (census on specific days). e Occupied critical/intensive care units (census on specific days). f Daily new reported cases. All
simulation results except c are presented on log-scale. Case data before the prospective analysis are taken from [41–43]; own calculation and design
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Fig. 6 Starting from the last state of the model in Fig. 3a for Germany, the duration needed to achieve as few as 300 a new reported cases per day
and b new infectious cases per day (outflow from exposed compartment, see Fig. 1) in whole Germany was estimated in a prospective analysis with
different imposed fixed values of reproduction number R. For each setting, the results were shown for μ = 1 (black) and μ = 0.2 (red) to assess the
impact of detection ratio ((1− α)μ) of the infected cases. α = 0.22 and latest hospitalization rate was used. Box plots show the 75 and 25 percentile
as well as the minimum and maximum values corresponding to 100 simulations for literature-informed parameter variation (see Table 1)

a second wave is extremely likely in the absence of NPIs or
continued behavioral changes to prevent a viral infection.
While continuation of the epidemic with Rt values close
to unity would avoid a large number of COVID-19 infec-
tions and deaths, it may lead to a major economic burden
[5], induce unemployment and related collateral damages,
and increase risks of suicide in certain individuals due
to lasting social distancing [65] and could pose a strong
load on the healthcare system due to a delayed/neglected
treatment of other diseases [66].
As expected, intensifying contact restriction measures

accelerates reaching a low number of daily new cases
whereas an increase in Rt values delays the reduction of
the daily new cases. In view of the non-linearity of the
delay with larger reproduction numbers, one may spec-
ulate that it might be more advantageous in terms of
health and economy to maintain a lower Rt value less
than unity through NPIs, social distancing, and protective
social culture in order to quickly achieve a controllable
and traceable low number of daily new cases [67]. A com-
plete elimination of the virus, as it appears in the model,
is hard to achieve in reality because of open borders to
European neighbors and unknown viral properties which
might allow it to reappear under particular conditions. A
combined strategy of rapid identification and isolation of
infection as well as efficiently traced contact clusters also
worked well in Japan [68]. We showed that a large number
of undetected cases increase the delay in reaching a target
number of daily new cases. While seroprevalence studies
suggest undetected cases substantially less than 10-fold of
the detected cases in the studied communities [32, 69],
the overall true number of undetected cases in Germany
is still not known.

The predictive power of the model was analyzed by
comparing a forecast of cumulative new reported cases for
1 or 2 weeks based on the Rt value in the past week with
the corresponding cumulative increase observed in reality
(Additional file 1: Figure S8). Regional outbreaks cause a
sudden rise in Rt values globally, such that in this case, the
prediction on the country level overestimates cumulative
new cases in the upcoming days. One intriguing finding
is the tendency of underestimating the cumulative new
reported cases on a scale of a couple of weeks prior to a
positive overshoot in prediction error (see Additional file
1: Figure S8). It can be inferred as upcoming structural
increase in Rt estimations (see Rt values in June 2020, Fig.
3c). Apart from the periods of sudden rise in Rt values,
the model prediction works well on a scale of a couple of
weeks. Model predictions work assuming a time-invariant
detection ratio in the upcoming days, which, in reality, is
unlikely the case for all weeks. This would result in an
overestimation when the detection ratio falls or an under-
estimation when the detection ratio rises. Due to having
a lower chance of missing an infection induced death in
the data and a longer delay to death following viral expo-
sure, the prediction for the death toll is excellent up to 5
weeks (e.g., < 0.5% error while continuing the projection
based on the fitting until August 31, 2020). It illustrates
the usefulness of the model in determining the burden on
the healthcare system in the near future at least on a scale
of a month.
Long-term prediction for any pandemic, especially a

new one, is challenging due to several less known or
unpredictable factors which may impact its transmission
dynamics and its effective potency. Examples of these
factors include the impact of accumulation of aerosols



Khailaie and Mitra et al. BMCMedicine           (2021) 19:32 Page 13 of 16

with viable virus in closed rooms [70, 71], extent of
aerosol-mediated transmission and seasonality [72, 73],
alterations of behavioral response, future NPIs, and viral
mutations. In addition, development of efficient rapid
testingmethods, extent of reinfection and inherent immu-
nity, and improvement in clinical management would
determine and modify the future course of the outbreak.
Within these limitations, our model can still guide the
government authorities to prepare better by projecting
the peak of healthcare usage and estimates of population
immunization by the pathogen as well as case fatali-
ties under different circumstances (see Additional file 1:
Figure S7).
The analysis of the individual federal states in Germany

revealed local differences. The federal states appear to wit-
ness different phases of the outbreak, and NPIs exhibit
different kinetics of impact. Therefore, state-specific or
even district/city-specific development of Rt provides a
better sense to the local authorities to plan the future
course of actions to control the epidemic locally, which, if
left uncontrolled, may act like a disease hot spot to initiate
new clusters of infections across the federal states. One
intriguing finding is that a local outbreak results in sharper
changes in Rt while its global impact as observed in the
country level Rt estimates is relatively damped (Fig. 3c, d,
Additional file 1: Figure S3). The full analysis for Rt of all
federal states is available at [11] and clearly emphasizes
local heterogeneity of the epidemic. Prevalence of super-
spreading events, population density, and differences in
social structures can be some of the contributing factors
in driving the outbreak heterogeneously across different
states.
We do not use an age-stratified version of our model

for the presented analysis due to incomplete age-stratified
data, lack of knowledge on how the model parameters
would depend on different age groups, and an undeter-
mined and uneven testing bias across different age groups.
The age-dependence is phenomenologically included in
the model by using a time-dependent hospitalization
rate, which reflects the demography of the infected peo-
ple. With this, our goal to understand the development
of time-varying reproduction number, overall usage of
healthcare facilities, and future course of the outbreak
can still be achieved using an age-independent mean-
field approach. Even though observed case fatality ratios
(and indeed infection fatality rates, too) for older age
groups are much higher than for young adults and chil-
dren in COVID-19 [62], we can still fit the cumula-
tive death curve based on the estimated (informed by
the literature) fraction of the hospitalized COVID-19
patients who are dying thereby enabling us to capture
the time-dependent hospitalization rate eventually result-
ing in a time-dependent overall CFR for the reported
cases.

Conclusions
In this paper, we developed a compartmental model
(SECIR) accounting for the specificities of the recent
COVID-19 outbreak. We reported an adaptive methodo-
logy to estimate the time-varying reproduction number
(Rt) based on the incidence of reported cases. As param-
eterization is essential for the quality of our analysis and
predictions, two reference parameter sets were deter-
mined by thorough analysis of the literature on COVID-19
and an analysis of Italian data. The results discussed are
consistent between both parameter sets. Even though
both parameter sets are not completely independent, this
consistency increases the credibility of the model results.
Implementation of NPIs in close spacing, heterogeneity in
their application, and withdrawal timings across different
federal states as well as cities make it statistically uncer-
tain to disentangle the impact of a particular NPI [7]. Most
importantly, the behavior of the people changes over time,
examples of which include dynamic and heterogeneous
compliance to NPIs and mask usage as well as behav-
ioral exhaustion. Even though the model is constructed
by taking into account the biological characteristics of
the infection transmission dynamics of COVID-19 such
as asymptomatic and pre-symptomatic transmission, and
contribution from undetected mild-symptomatic cases,
the model presented here can be easily translated to any
similar infectious disease with equivalent features while
such a methodology can also be applied to common infec-
tious diseases. In addition, our results can capture the
qualitative aspects of how the infection incidence, patients
admitted in non-critical and critical care units, and deaths
change as days progress during the COVID-19 outbreak.
Furthermore, it can also guide the authorities in assess-
ing how the pandemic would evolve in the near future
and what load on the healthcare facilities to expect under
certain scenarios drawn from the history of the outbreak
itself. We provide a daily updated evaluation of the repro-
duction number suitable to support political decisions on
NPIs in the course of the COVID-19 outbreak and applied
to German federal state data online [11].
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