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Abstract

Background: Epidemiological and clinical studies have suggested comorbidity between amyotrophic lateral
sclerosis (ALS) and autoimmune disorders. However, little is known about their shared genetic architecture.

Methods: To examine the relation between ALS and 10 autoimmune diseases, including asthma, celiac disease
(CeD), Crohn’s disease (CD), inflammatory bowel disease (IBD), multiple sclerosis (MS), psoriasis, rheumatoid arthritis
(RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), and ulcerative colitis (UC), and identify shared risk
loci, we first estimated the genetic correlation using summary statistics from genome-wide association studies, and
then analyzed the genetic enrichment leveraging the conditional false discovery rate statistical method.

Results: We identified a significant positive genetic correlation between ALS and CeD, MS, RA, and SLE, as well as a
significant negative genetic correlation between ALS and IBD, UC, and CD. Robust genetic enrichment was
observed between ALS and CeD and MS, and moderate enrichment was found between ALS and UC and T1D.
Thirteen shared genetic loci were identified, among which five were suggestively significant in another ALS GWAS,
namely rs3828599 (GPX3), rs3849943 (C9orf72), rs7154847 (G2E3), rs6571361 (SCFD1), and rs9903355 (GGNBP2). By
integrating cis-expression quantitative trait loci analyses in Braineac and GTEx, we further identified GGNBP2, ATXN3,
and SLC9A8 as novel ALS risk genes. Functional enrichment analysis indicated that the shared risk genes were
involved in four pathways including membrane trafficking, vesicle-mediated transport, ER to Golgi anterograde
transport, and transport to the Golgi and subsequent modification.

Conclusions: Our findings demonstrate a specific genetic correlation between ALS and autoimmune diseases and
identify shared risk loci, including three novel ALS risk genes. These results provide a better understanding for the
pleiotropy of ALS and have implications for future therapeutic trials.
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Background
Amyotrophic lateral sclerosis (ALS) is a devastating neu-
rodegenerative disorder, characterized by the death of
motor neurons as well as paralysis of voluntary muscles
[1]. The majority of ALS patients die within 3~5 years
after diagnosis, mostly due to respiratory failure [2]. The
pathological mechanisms underlying ALS are multifarious
and complex, with a sophisticated interaction between
genetic and environmental factors [3]. To date, no effect-
ive therapies for ALS have been found, and approved
drugs only improved survival to a limited extent [4].
Therefore, exploring the pathogenesis of ALS and devel-
oping novel therapeutic strategies are necessary and
urgent.
Currently, compelling evidence implicates that dysreg-

ulated immunities are associated with ALS [5]. It has
been established that neuroinflammation is overactivated
in ALS, accompanied by microglia transformation, astro-
cyte proliferation, perivascular infiltration of monocytes
and T cells, and dysregulated immune-related genes [6–
9]. Typical hallmarks of autoimmunity occurring in the
pathogenesis of ALS have also been reported, such as
the presence of circulating immune complexes and the
evidence of higher frequency of specific histocompatibil-
ity types [10]. Moreover, epidemiologic studies presented
that several pre-existing autoimmune disorders are asso-
ciated with an increased risk of ALS [11]. And inter-
mediate alleles of C9orf72, the most common genetic
cause of ALS, were suggested to be associated with sys-
temic autoimmune diseases, indicating the role of
C9orf72 in immunity regulation [12]. Furthermore, mice
harboring loss-of-function mutations in the ortholog of
C9orf72 cause fatal autoimmune diseases [13]. These as-
sociations raise the possibility of shared genetic or envir-
onmental risk factors, or clues to modifiable triggers
that might thereby affect ALS incidence. Therefore, a
systematic study is necessary to decipher whether shared
polygenic risk variants exist between ALS and auto-
immune diseases, and whether specific molecular bio-
logical pathways are involved.
Recently, a novel statistical method to investigate gen-

etic overlapping between polygenic traits using summary
data from genome-wide association studies (GWAS)
have been developed and utilized extensively in several
human traits and diseases [14–16]. By incorporating
GWAS results from multiple disorders and phenotypes,
this method could provide insights into the genetic plei-
otropy (defined as a single gene or variant being associ-
ated with more than one distinct phenotype) and
increased statistical power to discover less significant as-
sociations [14–16]. Applying this approach, we systemat-
ically evaluated the shared genetic risk between ALS and
autoimmune diseases and further conducted functional
enrichment analysis.

Methods
GWAS summary statistics
We investigated the genetic links between ALS [17] and
10 autoimmune disorders including asthma [18], mul-
tiple sclerosis (MS) [19], psoriasis [20], rheumatoid arth-
ritis (RA) [21], systemic lupus erythematosus (SLE) [22],
type 1 diabetes (T1D) [23], celiac disease (CeD) [24], in-
flammatory bowel disease (IBD) [25], Crohn’s disease
(CD) [25], and ulcerative colitis (UC) [25] based on
GWAS summary statistics. Details of the summary data
for all GWAS were shown in Additional file 1: Table S1.
The study design including the collection of samples,
quality control procedures, and imputation methods
have been described in each publication. To confirm the
findings in the discovery phase, we further assessed the
P values of the identified pleiotropic single-nucleotide
polymorphisms (SNP) in another ALS GWAS [26]. The
relevant institutional review boards or ethics committees
approved the research protocol of each GWAS, and all
human participants gave written informed consent.

Statistical analyses
Genetic correlation
We estimated the genetic correlation between ALS and
each autoimmune disorder using GNOVA [27]. GNOVA
estimates genetic covariance with summary data of the
genetic variants shared between two GWAS, and then
calculates the genetic correlation based on genetic co-
variance and variant-based heritability. We ran GNOVA
on SNPs in both diseases together with reference data
derived from the 1000 Genomes Project European popu-
lation using default parameters. We did not correct for
sample overlap when running GNOVA, since no infor-
mation was available to evaluate the extent of sample
overlap between different GWAS. Additionally, consid-
ering that different genomic regions disproportionately
contributed to the genome-wide correlation, we further
quantified the correlation between ALS and each auto-
immune disorder in small regions in the genome using
ρ-HESS with default parameters [28].

Genomic control
Due to population stratification or cryptic relatedness or
overcorrection of test statistics [29], the empirical null
distribution in GWAS is sometimes inflated or deflated.
To correct for such bias, we applied a genomic control
method leveraging intergenic SNPs to adjust the sum-
mary statistics for each GWAS respectively (Add-
itional file 2) [29–34]. Then, we pruned the SNPs by
removing SNPs in linkage disequilibrium (LD) (r2 > 0.2
within 250 kb) based on 1000 Genomes Project LD
structure using plink –clump functionality [34].
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Pleiotropic enrichment plots
To assess the pleiotropic enrichment, we plotted condi-
tional quantile-quantile plots for ALS by creating subsets
of SNPs based on their association with each auto-
immune disorder. To further quantitatively assess the
level of enrichment, we constructed fold-enrichment
plots of nominal -log10(P) values of ALS for all SNPs
and subsets of SNPs determined by the significance of
their association with each autoimmune disease (Add-
itional file 2) [14–16].

Identification of risk loci
To identify risk loci associated with ALS conditional on
each autoimmune disease, we computed the conditional
false discovery rate (FDR) statistics using the conditional
FDR approach (Additional file 2) [14–16]. To reduce
false positives, a significance threshold of FDR < 0.01
was utilized. Furthermore, to identify shared risk loci as-
sociated with ALS and each autoimmune disease, we
computed the conjunctional FDR statistics (Additional
file 2) [32, 35, 36]. A significance threshold of FDR <
0.05 was utilized, corresponding to five false positives
per 100 reported associations. A stricter threshold was
chosen for the conditional statistics since its possibility
of false positive was greater. Then, we built the condi-
tional and conjunctional Manhattan plots to illustrate
the identified risk loci between ALS and each auto-
immune disease (Additional file 2) [14–16]. The anno-
tated gene for each significant locus by ANNOVAR was
listed in the plots [33]. For intergenic variants spanning
more than 1 gene, the significant variant in each gene
will be listed. We used the R implementation of the con-
ditional FDR method available from github.com/
KehaoWu/GWAScFDR.

Functional evaluation of shared risk loci
To assess whether the shared risk loci modify gene ex-
pression, we evaluated cis-expression quantitative trait
loci (eQTL) in Braineac, a publicly available dataset of
normal control brains for investigating the genes and
SNPs associated with neurological disorders [37]. We
analyzed eQTL for the mean P value derived across
these brain regions: the cerebellum, frontal cortex,
hippocampus, medulla, occipital cortex, putamen, sub-
stantia nigra, temporal cortex, thalamus, and white mat-
ter. To minimize false positives, a P value below 1.0E−04
was considered as significant after Bonferroni correction.
Meanwhile, we also analyzed cis-eQTL in whole blood,
skeletal muscle, and 13 brain tissues (amygdala, anterior
cingulate cortex (BA24), caudate basal ganglia, cerebellar
hemisphere, cerebellum, cortex, frontal cortex (BA9),
hippocampus, hypothalamus, nucleus accumbens basal
ganglia, putamen basal ganglia, spinal cord cervical,
and substantia nigra) from GTEx v7 [38]. Cis-eQTLs as

pre-computed by GTEx were downloaded directly from
the GTEx portal (http://gtexportal.org/). We applied a
nominal P value cutoff of 1E−06 to identify significant
cis-eQTLs, which approximates a false discovery thresh-
old of 0.05.
To identify enrichments in gene ontologic features as-

sociated with ALS and autoimmune disorders, we used
ConsensusPathDB [39] for functional interaction ana-
lysis. The shared risk genes identified with the conjunc-
tional FDR method and eQTL analyses were utilized
with default parameters and background gene sets. Bio-
logical, cellular, and molecular gene ontologic terms
were analyzed. Genes in the HLA region were excluded
due to the complex LD patterns.

Results
Genetic correlation
We identified a significant positive genetic correlation
between ALS and CeD, MS, RA, and SLE, as well as a
significant negative genetic correlation between ALS and
IBD, UC, and CD (Additional file 1: Table S2). To serve
as comparison, we also explored the correlation between
Parkinson’s disease (PD) [40], Alzheimer’s disease (AD)
[41], and autoimmune diseases using GNOVA with the
same pipeline. As a result, significant correlation was
only identified between PD and RA after the Bonferroni
correction (Additional file 1: Table S2). These results
suggested the considerable genetic links between ALS
and autoimmune disorders. Furthermore, we searched
for genomic regions that disproportionately contributed
to the genetic correlation. No regions with significant
correlation were identified after Bonferroni correction,
while regions with nominally significant correlation were
found between ALS and MS, IBD, SLE, CD, UC, and RA
(Additional file 1: Figure S1).

Estimation of pleiotropic enrichment
In the stratified quantile-quantile plots for ALS condi-
tional on association P values with each autoimmune
disease, successive enrichment was found for CeD and
MS, and moderate enrichment was found for UC and
T1D (Fig. 1), indicating that the proportion of non-null
SNPs in ALS increased with higher levels of association
with these diseases. In contrast, minimal or no enrich-
ment was found for the other diseases. In the fold-
enrichment plots, we could observe over 300-fold en-
richment conditional on CeD, approximately 22-fold en-
richment on MS, 9-fold enrichment on UC, and 5-fold
enrichment on T1D for progressively stringent P value
thresholds, while minimal enrichment on the other dis-
eases, suggesting a selective genetic overlap between
ALS and autoimmune disorders (Fig. 2).
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Fig. 1 Enrichment plots. Conditional quantile-quantile plots of nominal versus empirical -log10(P) of ALS as a function of significance of association
with autoimmune diseases. Dashed lines indicate the null hypothesis. The figure is suggested to be viewed online for higher resolution

Fig. 2 Fold-enrichment plots of nominal -log10(P) of ALS as a function of significance of association with autoimmune diseases. The figure is
suggested to be viewed online for higher resolution
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ALS-associated loci identified with conditional FDR
To discover genetic variants associated with ALS conditional
on each autoimmune disease, we performed the conditional
FDR statistical analysis. A total of 32 risk loci were identified
with conditional FDR < 0.01 (Additional file 1: Table S3, Fig.
S2), including 23 novel loci which were not significant (P <
5.0E−08) in the original ALS GWAS. Among these 32 loci,
11 were suggestively significant (P < 1.0E−05) in the replica-
tion GWAS, namely rs3828599 (GPX3), rs10463311 (TNIP1),
rs17070492 (LOC101927815), rs9969832 (MOB3B),
rs2484319 (C9orf72), rs12308116 (C12orf56), rs447614
(G2E3), rs1950882 (SCFD1), rs35714695 (SARM1),
rs2285642 (GGNBP2), and rs12608932 (UNC13A) (Add-
itional file 1: Table S3). Among these replicated genes,
GPX3, TNIP1, MOB3B, C9orf72, SCFD1, SARM1, and
UNC13A have been described as risk genes for ALS by earl-
ier GWAS, while the others were novel risk genes, including
C12orf56, G2E3, TRIP11, and GGNBP2.

Risk loci shared between ALS and autoimmune diseases
To identify shared loci between ALS and autoimmune
diseases, we further calculated the conjunctional FDR
statistics. A total of 13 shared risk loci were identified
with conjunctional FDR < 0.05 (Table 1, Fig. 3, Add-
itional file 1: Figure S3). Among the 13 loci, 5 were sug-
gestively significant (P < 1.0E−05) in the replication ALS
GWAS, namely rs3828599 (GPX3), rs3849943 (C9orf72),
rs7154847 (G2E3), rs6571361 (SCFD1), and rs9903355
(GGNBP2). Among the 5 genes, G2E3 and GGNBP2
were newly discovered risk genes for ALS (Table 1). No
shared genetic loci were found between ALS and
asthma, psoriasis, RA, and SLE, which was consistent
with the stratified QQ plots and fold-enrichment plots
with no apparent enrichment observed.

Functional interpretation of shared risk loci
To determine the functional effects of these shared risk
loci, we evaluated cis-eQTL in Braineac and GTEx. As a
result, the pleiotropic risk loci affect the expression of
GGNBP2, ATXN3, and SLC9A8 in tissues from both
Braineac and GTEx. In addition, the pleiotropic risk loci
affect the expression of DCTN4 and TEK in brain re-
gions from Braineac (Table 2), and TRIP11, NOD2,
SCFD1, C9orf72, DENND6B, PLXNB2, PPP6R2,
DHRS11, MYO19, ZNHIT3, and TMEM116 in tissues
from GTEx (Additional file 1: Table S4).
To determine the biological pathways represented by

shared risk genes and the genes identified with cis-eQTL
analyses, we conducted pathway over-representation
analysis. Four pathways were enriched, namely ER to
Golgi anterograde transport (P = 5.70E−03), membrane
trafficking (P = 1.02E−03), transport to the Golgi and
subsequent modification (P = 8.47E−03), and vesicle-
mediated transport (P = 1.29E−03). Additionally, 6 GO
sets were identified (Additional file 1: Table S5).

Discussion
In the current study, we investigated the pleiotropy be-
tween ALS and autoimmune disorders using summary
statistics from large GWAS and the conditional FDR
statistical method. We identified significant genetic en-
richment for ALS as a function of CeD and MS and
moderate enrichment of UC and T1D. Besides, we iden-
tified 13 significant shared loci, with 5 validated in the
replication ALS GWAS, and 3 were annotated as related
to gene expression in tissues from both Braineac and
GTEx. These results clarified the shared genetic archi-
tecture between ALS and autoimmune diseases, sug-
gested that ALS pathogenesis might be mediated by the

Table 1 Shared risk loci between ALS and autoimmune disorders

SNP Genomic position (GRCh37) Closest gene FDR value Associated phenotype Original ALS P value Replication ALS P value

rs3828599 5:150401796 GPX3 0.002 CeD 8.08E−08 1.22E−07

rs6456785 6:27390399 ZNF184 0.030 T1D 1.23E−04 4.47E−03

rs3849943 9:27543382 C9orf72 0.037 T1D 3.77E−30 2.73E−23

rs61880881 11:22270782 ANO5 0.015 MS 2.73E−06 n.a.

rs848132 12:111989979 ATXN2 0.031 T1D 1.12E−04 2.14E−02

rs7154847 14:31059969 G2E3 0.027 IBD 4.46E−07 1.98E−06

rs6571361 14:31183168 SCFD1 0.035 IBD 2.54E−07 1.12E−06

rs10138217 14:92497990 TRIP11 0.022 MS 1.07E−06 5.26E−05

rs978220 14:92558135 ATXN3 0.039 MS 1.66E−06 2.24E−05

rs2076756 16:50756881 NOD2 2.44E−04 CD 1.28E−04 n.a.

rs9903355 17:34937221 GGNBP2 0.022 MS 2.14E−06 1.01E−06

rs56185963 20:48514826 SLC9A8 0.024 MS 8.96E−06 4.53E−04

rs68069258 22:50748930 DENND6B 0.026 MS 6.00E−06 n.a.

SNP single-nucleotide polymorphism, A1 effect allele, FDR false discovery rate, n.a. not available, CeD celiac disease, MS multiple sclerosis, T1D type 1 diabetes, IBD
inflammatory bowel disease, CD Crohn’s disease
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dysfunctioning of the immune system, and provided a
better understanding for the pleiotropy of ALS.
Neurodegenerative disorders are complex diseases

characterized by loss of neurons and axons in the central
nervous system. Recently, there is increasing recognition
that inflammation and immune response play important
roles in the pathogenesis of neurodegeneration [42]. Ac-
tivated microglia, which is a key regulator of brain in-
flammation, is also an important cause for neuronal loss
in models of neurodegenerative diseases [43]. Previous
studies have investigated pleiotropy between AD, PD

and autoimmune diseases [15, 16], and identified shared
risk genes. However, the pleiotropy between ALS and
autoimmune disorders is still not clear. Our results sup-
ported the hypothesis of shared genetic risk between
ALS and autoimmune diseases and supplemented
current knowledge for the correlation between neurode-
generation and autoimmunity.
We observed a substantial genetic enrichment between

CeD and ALS. CeD is an autoimmune disorder that oc-
curs in genetically predisposed individuals who develop
an immune reaction to gluten [44]. Meanwhile, gluten
sensitivity has also been shown to induce neurologic
manifestations [45]. For example, a recent case-control
designed study suggested that ALS might be associated
with autoimmunity and gluten sensitivity [44]. However,
such links still need to be confirmed further, as subse-
quent studies reported inconsistent results [46]. We also
identified a shared risk gene GPX3, which could have
functional relevance to both diseases. GPX3 is an anti-
oxidant molecule functionally related to SOD1 [47], the
first causative gene for ALS. In a mass spectrometric
screen of sera of SOD1H46R rats compared to wild-type
controls, GPX3 expression was increased by 1.3 fold in
the pre-symptomatic stage, while decreased by 0.74 fold

Fig. 3 Conjunctional Manhattan plots showing shared genetic loci between ALS and each autoimmune disease. The red horizontal line represents the
significant threshold (conjunctional FDR < 0.05)

Table 2 eQTL revealing functional effects of shared risk SNPs in
human brain tissue

Genomic
position
(GRCh37)

SNP Closest
gene

eQTL

Gene P value

17:34937221 rs9903355 GGNBP2 GGNBP2 8.40E−12

14:92544808 rs11849927 ATXN3 ATXN3 5.80E−07

20:48586760 rs73274724 SLC9A8 SLC9A8 7.70E−07

5:150402940 rs8177426 GPX3 DCTN4 3.10E−05

9:27516640 rs774351 MOB3B TEK 3.90E−05

eQTL expression quantitative trait loci, SNP single-nucleotide polymorphism
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in the end stage of the disease [48]. Meanwhile, GPX3
activity was reduced in CeD patients (P < 0.001) in a re-
cent pilot study, suggesting its potential role in the
pathogenesis of CeD [49]. In contrast, minimal enrich-
ment was observed between ALS and CD, which has
partially shared genetic basis and pathogenesis with CeD
[50]. However, the strongest signal rs2076756 (NOD2) in
the conjunctional Manhattan plot was identified between
ALS and CD. NOD2 is a member of the pattern-
recognition receptor family and can recognize muramyl
dipeptide in cytomembrane to activate the NF-κB path-
way and stimulate inflammatory factor response [51].
Recently, NOD2 was identified as a potent autophagy in-
ducer as well, suggesting its potential role in neurode-
generation [52]. In addition, moderate enrichment was
observed between ALS and UC, and G2E3-SCFD1 was
identified as shared risk genes between ALS and IBD.
These results together suggested a potential link be-
tween ALS and chronic inflammation of the gastrointes-
tinal tract, though such link was not consistently
detected based on current results. Further explorations
are warranted to elucidate the correlation.
We also observed genetic enrichment between ALS

and MS. Both ALS and MS are complex neurological
disorders with sophisticated interactions of environmen-
tal toxicity and genetic predisposition [53]. By far, the
origin of MS and ALS is still unknown, but the progres-
sive central axonal degeneration is seen in both MS and
ALS. And there is evidence suggesting shared cellular
mechanisms affecting the disease progression, particu-
larly glial responses in the two disorders [54]. One ex-
planation would be that the two conditions share some
common genes which predispose to both MS and ALS.
Here, we identified six shared risk genes including
TRIP11, ATXN3, GGNBP2, SLC9A8, DENND6B, and
ANO5 (Table 1). The six shared genes were enriched in
two significant cellular components, namely organelle
subcompartment (GO:0031984, P = 0.0008) and endo-
membrane system (GO:0012505, P = 0.0032) based on
results from ConsensusPathDB. Therefore, the mem-
brane system may implicate the overlapping factors re-
lated to MS and ALS, and the shared genes might be
responsible for the link.
Association between ALS and diabetes has been observed

in epidemiological studies [55, 56]. Recently, a causal protect-
ive role of type 2 diabetes on ALS was noticed in the Euro-
pean population [57]. In contrast, the association between
T1D and ALS was still less understood, and T1D might in-
crease the risk for ALS based on a recent retrospective
population-based study [11, 56], though such results were
still awaiting further replications [58]. In our study, we ob-
served enrichment between ALS and T1D, and identified
three shared risk genes C9orf72, ZNF184, and ATXN2. Re-
peat expansions in C9orf72 is a frequent cause of ALS, and

C9orf72 carriers tend to have autoimmune diseases more fre-
quently, suggesting autoimmune inflammation may be in-
trinsically linked to ALS pathophysiology [59]. Meanwhile, a
recent study found that mutations disrupting the normal
function of C9orf72 cause mice to develop features of auto-
immunity [12]. Thus, C9orf72 might serve as an important
factor related to inflammation and autoimmunity [12].
ZNF184 is in the extended major histocompatibility complex
(MHC) region, which plays a complex but important role in
both neurodegenerative and autoimmune diseases. ATXN2
has been reported to be associated with several autoimmune
diseases like T1D [60], CD [61], and CeD [62] by GWAS.
Meanwhile, high-length repeats of CAG trinucleotide in
ATXN2 was identified as a risk factor for ALS as well [63,
64]. Taken together, genetic correlation exists between ALS
and T1D, and genes such as C9orf72, ZNF184, and ATXN2
might function as potential links between the two diseases.
Compared with CeD, MS, T1D, and UC, we did not

detect enrichment between ALS and RA, psoriasis,
asthma, CD, and SLE. The results were to a large extent
in agreement with a previous epidemiologic study which
investigated whether ALS incidence was higher in people
with prior autoimmune diseases [11]. This study found
that patients with CeD, younger-onset diabetes, MS,
asthma, and SLE were at higher risk of ALS, and the rate
ratio for UC was borderline significant (P = 0.05), and no
significant difference was found for RA, psoriasis and
CD. As for the different results for asthma and SLE be-
tween our study and this epidemiological study, further
explorations were warranted to elucidate their correl-
ation with ALS. Moreover, we noted that both positive
and negative genetic correlations were observed between
ALS and autoimmune disorders (Additional file 1: Table
S2). We identified a significant and positive genetic cor-
relation between ALS and CeD, MS, RA, and SLE, indi-
cating that the direction of effect of risk-increasing and
protective alleles is consistently aligned between ALS
and these autoimmune disorders at genome wide. In
contrast, we found a significant and negative genetic cor-
relation between ALS and IBD, UC, and CD, implying
these diseases may possess divergent biological mecha-
nisms from the other autoimmune disorders. Such re-
sults were in line with previous epidemiological
research, which detected no significant difference in the
incidence rate of ALS among patients with prior UC and
CD compared with controls [11]. Additionally, IBD, in-
cluding UC and CD, was characterized by chronic in-
flammation of the gastrointestinal tract, which fulfilled
some of the criteria required for classification as auto-
immune disorders, while the extent of the involvement
remained to be determined [65]. Taken together, im-
mune and autoimmune mechanisms are complex and
may vary from disease to disease, so a deeper investiga-
tion into the molecular mechanisms involved in these
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diseases is necessary to further understand the
correlation.
Combining cFDR analyses results and eQTL analyses

results from Braineac and GTEx, we identified three risk
genes, namely SLC9A8, ATXN3, and GGNBP2. SLC9A8
is a kind of sodium-hydrogen exchangers (NHEs) that
exchange extracellular Na+ for intracellular H+. Ionic
homeostasis dysregulation has been proposed as the
main trigger of the pathological cascade which brings to
motor-neuron loss [66]. A recent study also observed a
marked increase in the persistent component of the Na+

current from pre-symptomatic SOD1G93A mice [67, 68],
suggesting the potential role of SLC9A8 in ALS etiology.
ATXN3 provides instructions for making an enzyme
called ataxin-3, which is involved in destroying excessive
or damaged proteins. A trinucleotide repeat expansion
in ATXN3 could cause spinocerebellar ataxia type 3, a
neurologic disorder that is characterized by progressive
ataxia. Mutations in ATXN3 affect neurons and other
types of brain cells and alter transcription of multiple
signal transduction pathways including depressed Wnt
and elevated growth factor pathways [69]. Moreover,
GWAS has identified suggestively significant SNPs in
ATXN3 as associated with ALS [17]. These findings sug-
gest the potential involvement of ATXN3 in ALS. Previ-
ous studies have suggested the potential role of
GGNBP2 in ALS through gene-based association
analysis and summary statistics-based Mendelian
randomization (SMR) analysis [26, 70]. Meanwhile, we
noticed that GGNBP2 is an important tumor suppresser
involved in several kinds of cancers [71]. Cancer and
neurodegenerative diseases are like the two sides of a
coin. The pathways that cause neuronal apoptosis, like
mitogen-activated protein kinase (MAPK) signaling, can
cause uncontrolled neuronal growth as well. Epidemio-
logical studies have shown that the overall risk of cancer
was significantly reduced in patients with ALS [72].
Therefore, GGNBP2 might act as potential genetic links
between ALS and cancer.
Using the pleiotropic genes for functional enrichment

analysis in ConsensusPathDB, we identified four
enriched pathways, all of which were somehow involved
in the pathogenesis of ALS. Membrane trafficking has
been implicated in virtually every aspect of neuronal
function, particularly neuronal maintenance and degen-
eration [73]. Intracellular membrane trafficking defects
affecting key neuronal functions may be an early deter-
minant of motor neuron loss in ALS [74]. Meanwhile,
the molecular regulation of intracellular and extracellu-
lar vesicle trafficking is an important pathway in ALS
pathogenesis [75], and mutation in the vesicle-trafficking
protein has been implicated to cause late-onset spinal
muscular atrophy and ALS. Fragmentation of the Golgi
apparatus has been detected in motor neurons of ALS

patients and animal models [76], and mutant SOD1 was
shown to inhibit secretory protein transport from the ER
to Golgi apparatus [77].
Combining results from previous publications that es-

timate pleiotropy between AD, PD and autoimmune dis-
eases using the conditional FDR method, we found that
all three neurodegenerative disorders were strongly or
moderately enriched on immune-mediated enteropathy
like CeD, CD, and UC. Gut microbiota has been shown
to play an essential role in IBD and CeD [78], while in
recent years, gut microbiome alterations were found to
be closely related to neurodegeneration as well [79]. The
microbiota-gut-brain axis composed of endocrinological,
immunological, and neural mediators was even proposed
due to its involvement in neurodegenerative diseases
[80]. Our pleiotropic analyses together with previous
studies further emphasized that gut microbiota plays an
important role in the pathogenesis of neurodegenerative
disorders. In addition, differential enrichment was also
observed between autoimmune disorders and AD, PD,
and ALS respectively. The diversity suggested the vari-
ation between the pathogenesis of different neurodegen-
erative disorders.

Strengths and limitations
Using the pleiotropy-based statistical method, we identi-
fied novel significant SNPs associated with ALS and
autoimmune disorders. These SNPs were mostly sug-
gestively significant in the original studies but over-
looked due to the limitation of the current GWAS
sample size. Moreover, the current results have clinical
implications. Since we combined GWAS summary sta-
tistics from different but related diseases, the findings
may increase our understanding of the pathogenetic
mechanisms influenced by pleiotropic loci and facilitate
novel treatment strategies in clinical trials. However, the
GWAS used in the current study were mostly performed
on participants of European ancestry; thus, the findings
of shared genetic architecture might be biased and not
applicable to other populations. Meanwhile, there was a
potential sample overlap between each GWAS. Such
overlap might bring some bias to the statistical analysis,
although the bias will be minimal. Meanwhile, there was
sample overlap between the discovery ALS GWAS and
replication ALS GWAS. To strengthen the validity of
the identified pleiotropic SNPs, we utilized a more strin-
gent significance threshold (P = 1E−05) instead of the
commonly used threshold in replication (P = 0.05). In
addition, the sample size for some diseases like CeD and
SLE was relatively smaller, which might influence the re-
sults to some extent. Besides, although we identified sev-
eral pleiotropic SNPs, how these SNPs or genes involved
in the pathogenesis of ALS and autoimmune diseases
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were still little understood. Further functional explora-
tions will provide better understandings.

Conclusions
By integrating GWAS summary data and the conditional
FDR statistical method, we identified selective pleiotropy
and novel shared loci between ALS and autoimmune dis-
eases. We further identified novel ALS risk genes SLC9A8,
ATXN3, and GGNBP2 by combining eQTL analyses.
These findings could provide novel insights into the
shared genetic background between ALS and autoimmun-
ity and help better understand the etiology of ALS.
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