
RESEARCH ARTICLE Open Access

Optimizing antiviral treatment for seasonal
influenza in the USA: a mathematical
modeling analysis
Matan Yechezkel1†, Martial L. Ndeffo Mbah2,3*† and Dan Yamin1,3,4*†

Abstract

Background: Seasonal influenza remains a major cause of morbidity and mortality in the USA. Despite the US
Centers for Disease Control and Prevention recommendation promoting the early antiviral treatment of high-risk
patients, treatment coverage remains low.

Methods: To evaluate the population-level impact of increasing antiviral treatment timeliness and coverage among
high-risk patients in the USA, we developed an influenza transmission model that incorporates data on infectious
viral load, social contact, and healthcare-seeking behavior. We modeled the reduction in transmissibility in treated
individuals based on their reduced daily viral load. The reduction in hospitalizations following treatment was based
on estimates from clinical trials. We calibrated the model to weekly influenza data from Texas, California,
Connecticut, and Virginia between 2014 and 2019. We considered in the baseline scenario that 2.7–4.8% are treated
within 48 h of symptom onset while an additional 7.3–12.8% are treated after 48 h of symptom onset. We evaluated
the impact of improving the timeliness and uptake of antiviral treatment on influenza cases and hospitalizations.

Results: Model projections suggest that treating high-risk individuals as early as 48 h after symptom onset while
maintaining the current treatment coverage level would avert 2.9–4.5% of all symptomatic cases and 5.5–7.1% of all
hospitalizations. Geographic variability in the effectiveness of earlier treatment arises primarily from variabilities in
vaccination coverage and population demographics. Regardless of these variabilities, we found that when 20% of
the high-risk individuals were treated within 48 h, the reduction in hospitalizations doubled. We found that
treatment of the elderly population (> 65 years old) had the highest impact on reducing hospitalizations, whereas
treating high-risk individuals aged 5–19 years old had the highest impact on reducing transmission. Furthermore,
the population-level benefit per treated individual is enhanced under conditions of high vaccination coverage and
a low attack rate during an influenza season.
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Conclusions: Increased timeliness and coverage of antiviral treatment among high-risk patients have the potential
to substantially reduce the burden of seasonal influenza in the USA, regardless of influenza vaccination coverage
and the severity of the influenza season.

Keywords: Seasonal influenza, Antiviral treatment, Vaccination, Mathematical modeling

Background
Seasonal influenza continues to impose major health
and economic burdens [1, 2]. Although influenza is gen-
erally a self-limiting disease, it can result in severe illness
and death. In particular, influenza imposes a substantial
health burden on young children, the elderly population,
and people with certain health conditions [3, 4]. In the
USA, seasonal influenza results in an estimated 9.3–49.0
million illnesses, 140,000–710,000 hospitalizations, and
12,000–56,000 deaths annually [1, 5].
Vaccination is the mainstay of efforts to reduce the

burden of seasonal influenza. The US Advisory Commit-
tee on Immunization Practices (ACIP) recommends in-
fluenza vaccination for all individuals aged six months
or older. However, the majority of the US population
does not comply with this recommendation, and rates of
vaccination against seasonal influenza remain at approxi-
mately 40% annually [6]. Additionally, due to the rapid
mutation of the virus and an imperfect match between
the circulating strains and those covered by the vaccine,
vaccine efficacy is not perfect and varies widely by sea-
son. For example, the average influenza vaccine effect-
iveness was estimated to be 45% in the USA, with the
annual value ranging between 19 and 60% over the past
decade [7, 8].
Recently, increased severity of influenza, marked by

high outpatient and inpatient visits, has been observed
among patients at high risk for influenza-associated
complications [9, 10]. This group includes children
under two years old, adults over 65 years old, people in
certain racial-ethnic minority groups, pregnant women,
and people with certain medical conditions [11]. This
high-risk population accounts for the bulk of influenza-
associated hospitalizations in the USA. For example,
more than 50% of all influenza-associated hospitaliza-
tions in the USA occur among adults over 65 years old,
and more than 70% of adult inpatients have at least one
underlying medical condition that places them at high
risk for influenza-associated complications [9, 12–14].
The increases in influenza-associated hospitalization

and mortality [10, 15] have raised concerns about vac-
cine uptake and the early treatment of patients at risk of
severe complications [16, 17]. Neuraminidase inhibitors
(NAIs) are a class of antiviral medications recommended
for the pharmacologic treatment of influenza [18]. Early
treatment of influenza patients with NAIs reduces the

duration and intensity of viral shedding, the duration of
symptoms, and disease-associated complications, hospi-
talizations, and mortality [19–22]. Despite the high bur-
den of influenza-induced complications among high-risk
individuals, their rate of treatment for influenza has
remained low [23]. Approximately 40% of high-risk pa-
tients with laboratory-confirmed influenza seek care
within 2 days of symptom onset [23]. Among these pa-
tients, on average, 37% are prescribed an antiviral medi-
cation [23, 24]. The ACIP guidelines recommend
administering antiviral treatment to high-risk patients
with clinically suspected influenza, even when laboratory
confirmation is delayed, when influenza is known to be
circulating in the population [18]. However, current clin-
ical practice is far from adhering to these guidelines.
Antiviral treatment not only provides direct benefits to

treated patients by reducing their risk of influenza-
induced hospitalization and/or mortality but may also
provide indirect protection to noninfected individuals by
reducing their risk of infection. This indirect benefit is
achieved by decreasing the contribution of treated pa-
tients to disease transmission by reducing their viral
shedding and the duration of infectiousness. Household-
based trials have shown that the early treatment of in-
fected individuals with NAIs may reduce their contribu-
tion to disease transmission by 50–80% [25, 26].
Transmission models can be used to evaluate the indir-

ect effect of interventions that arise from reduced trans-
mission [27–31]. Specifically, models incorporating
antiviral treatments showed that antiviral treatment in
pandemic settings could avert substantial numbers of
cases and hospitalizations [32, 33]. The logarithm of the
infectious viral load is correlated with the transmissibility
of several respiratory viruses, including influenza [34–36].
Thus, several transmission models that explicitly consider
the daily viral load showed accurate projections of viral in-
fections [34, 37–39]. Specifically, the unique viral load
shedding pattern of influenza, which typically peaks
around the day of symptom onset [40], suggests that anti-
viral treatment provided shortly after symptom onset can
have a substantial effect on transmission.
To evaluate the population-level impacts of increased

antiviral treatment coverage and timeliness of influenza
treatment among high-risk individuals during influenza
seasons in four states, namely, California, Connecticut,
Texas, and Virginia, we developed a data-driven
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influenza transmission model that incorporates data on
infectious viral load, social contact, healthcare-seeking
behavior, time to seek healthcare, and antiviral treat-
ment. Our model enables us to explicitly explore the ef-
fectiveness of antiviral treatment throughout the course
of the disease. Our work emphasizes the importance of
investing more effort by health officials to increase the
early administration and coverage of antiviral treatment
among infected high-risk individuals.

Methods
Model overview
We developed a dynamic model of influenza infection pro-
gression and transmission in Texas, California, Connecti-
cut, and Virginia. Our model is a modified susceptible-
infected-recovered compartmental framework [27], where
by the population is stratified into health-related compart-
ments, and transitions between the compartments occur
over time (Fig. 1a). Transitions between the compartments
are governed by a series of difference equations (Add-
itional file 1: Model overview, equations 2) [1, 5, 7, 8, 20,
23, 24, 27, 34–37, 41–76]. To model age-dependent trans-
mission, we stratified the population into five age groups:
0–4 years, 5–19 years, 20–49 years, 50–64 years, and ≥
65 years. We also distinguished between high-risk and low-
risk individuals within each age group based on the ACIP
case definition [18]. Altogether, our model includes (5 ×
2 = 10) ten subgroups based on age and risk.
At the beginning of each season, susceptible individ-

uals from age group j are in the Sj compartment. In the
model, susceptible individuals may interact with infec-
tious individuals and become either asymptomatically or
symptomatically infected [72, 73], at which point they
can transmit the disease to others until they recover.
Upon infection, individuals transition into the iτ = 0, aτ = 0

compartments, representing the first day of their symp-
tomatic or asymptomatic infection, respectively. Consist-
ent with previous models [34, 37–39], we explicitly
tracked the day of infection τ such that the daily trans-
missibility was based on the daily viral load [41, 42].
Upon recovery, individuals transition to a Rj compart-
ment, at which point they are fully protected for the re-
mainder of the season. This assumption is supported by
prospective studies demonstrating that reinfection
within the same season is rare [51, 52] (Fig. 1).

Force of infection
The rate at which infectious individuals transmit the virus
depends on (1) age-specific contact rates (Additional file 1:
Table S1) between an infected individual and his or her
contacts, (2) age-specific susceptibility to infection, and (3)
infectiousness of the infected individual based on her/his
daily viral loads and the time in the season (Additional file
1: Figure S1; Additional file 1 for details).

We parameterized the age-specific contact rates be-
tween an infected individual in age group e and their con-
tact in age group j, Ce, j using data from an extensive
survey of daily contacts (Additional file 1: Table S1) [34,
59]. These contact data exhibit frequent mixing between
similar age groups, moderate mixing between children
and adults in their thirties, and infrequent mixing between
other groups. Age-specific susceptibility to infection βj
was calibrated using data on the weekly numbers of cases
of influenza (see the “Model calibration” section).
The logarithm of the infectious viral load positively

correlates with the transmissibility of several respiratory
viruses, including influenza [34–37, 58]. The viral load
depends on (1) the day of infection, (2) the risk group of
the infected individual (i.e., high-risk/low-risk), (3) the
type of infection (symptomatic/asymptomatic), and (4)
the day on which the individual received antiviral treat-
ment. We evaluated the viral load, detailed in Additional
file 1: Datasets and parameters, by explicitly accounting
for these four components based on recent prospective
studies (using real-time RT-PCR) that observed young
children and adults over the course of their influenza in-
fection with and without treatment [41, 42]. These stud-
ies suggest that the viral load in infected individuals
peaks on approximately the day of symptom onset.
Moreover, untreated infected individuals at high risk ex-
hibited the most viral shedding, while asymptomatic in-
dividuals had the least viral shedding. Based on the
reduction in the viral shedding, we considered 23.2% (CI
10.4–34.3%) reduction in transmissibility for individuals
at high risk who are treated within 0–48 h of symptom
onset. Likewise, individuals treated within 48–72 from
symptoms onset had 21.1% (CI 9.3–32.2%) [37, 41].
In the USA, influenza incidence is seasonal, with a peak

typically occurring in the winter. However, the driver of
this seasonality remains uncertain [53]. Thus, we included
general seasonal variation in the susceptibility rate of the

model as TðtÞ ¼ ð1þ cos½2πðt − ϕÞ
365 �Þ, where ϕ is a seasonal

offset. This formulation was previously shown to capture
the seasonal variation in the incidence of respiratory dis-
eases in the USA [34, 54, 77]. Altogether, the force of in-
fection for age group j, λj(t), is given by:

λ jðtÞ ¼ β j � TðtÞ � ð
X5

e¼1

Ce; jð
Xφ

τ¼0

X

k∈fH;Lg
VLτk;S

� iτe;kðt − 1Þ þ
Xφ

τ¼0

X

k∈fH;Lg
VLτk;A � aτe;kðt − 1ÞÞÞ;

where βj is the susceptibility rate for an individual in age
group j and VLτk;S is the logarithm of the viral load in
symptomatic individuals on the day of infection τ in risk
group k ∈ {H, L} (i.e., high- and low-risk). VLτk;A is the
logarithm of the viral load in asymptomatic individuals
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on the day of infection τ in risk group k. The numbers
of symptomatic and asymptomatic infected individuals
are represented by iτj;k ; aτj;k . Likewise, we incorporated

the effect of antiviral treatment. A detailed description is
presented in Additional file 1: Force of Infection.
We chose Texas, California, Connecticut, and Virginia

because they reflect the large variability in the USA in
terms of population size, climatic factors, geographic loca-
tion, sociodemographic characteristics, and vaccination

coverage. Specifically, Texas and California are the most
populated states, with 28,995,881 and 39,512,223 resi-
dents, respectively, while Virginia and Connecticut have
smaller populations, with 8,535,519 and 3,565,287 resi-
dents, respectively [78]. The median ages of the residents
of Texas and California are 35.0 and 37.0, respectively. In
Virginia and Connecticut, the population is relatively
older, with median ages of 38.6 and 41.1, respectively [79,
80]. The vaccination coverage levels in Virginia and

A

B C

D E

Fig. 1 Structure and fit of the model. a Compartmental diagram of the transmission model. Susceptible individuals S move, following exposure,
to the symptomatic or asymptomatic compartment, iτ = 0, aτ = 0, representing the first day of infection. The model explicitly tracks the day of
infection τ such that the daily transmissibility is based on the daily viral load [41, 42]. Upon recovery, individuals transition to an R compartment,
at which point they are fully protected for the remainder of the season. We also incorporated five age groups into the model, namely, 0–4, 5–19,
20–49, 50–64, > 65 years, and two risk groups within each age group, namely, high-risk and low-risk. Age and risk stratifications are not displayed
to increase clarity in the diagram (Additional file 1). b, d Time series of recorded weekly symptomatic influenza cases and model fit to California
and Texas (the model fit to Connecticut and Virginia is provided in Additional file 1, Figure S2). c, e Data and model fit to the age distribution
among influenza cases
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Connecticut are above the national average, while those in
California and Texas are below the national average [69].
Thus, these four states are arguably adequately representa-
tive of the USA.

Hospitalizations
Hospitalization was not modeled explicitly. However, the
number of hospitalizations in each age and risk group
was computed by multiplying the number of symptom-
atic infected individuals by the rate of hospitalization
given influenza infection (Table 1). These age- and risk-
specific rates were obtained from epidemiological studies
[60–62] (see Additional file 1: Fixed parameters).
High-risk individuals receiving antiviral treatment have

a lower rate of hospitalization than nontreated high-risk
patients. The age-specific reduction in hospitalization
rate among treated high-risk individuals was obtained
from previous retrospective and prospective studies
(Table 1) [64, 65].

Baseline vaccination and treatment
For each year, we parameterized vaccination coverage
from state-specific influenza vaccine coverage data for
different age groups, as observed from 2013 to 2018
(Additional file 1: Table S2) [69]. We estimated vaccine
efficacy using the Centers for Disease Control and Pre-
vention (CDC) estimates for influenza vaccine efficacy
between 2013 and 2018 [7].
The proportion of individuals at high risk receiving

antiviral drugs and the timing of antiviral administra-
tion after symptom onset were obtained from large-
scale studies among US patients [24] (Table 1; Add-
itional file 1: Fixed parameters). These data were used
to inform our baseline treatment scenario for each
state.

Model calibration
To empirically estimate unknown epidemiological pa-
rameters, we calibrated our model to the data on the
weekly numbers of cases of influenza (confirmed by viral
isolation, antigen detection, or PCR) [75]. These data
were collected by the National Respiratory and Enteric
Virus Surveillance System of the CDC and state health
departments from four different states in the USA from
2014 to 2019.
To obtain the numbers of influenza cases, we multi-

plied the number of weekly influenza-like illness (ILI)
cases by the weekly proportion of specimens positive for
influenza. To account for the unreported cases in each
age group, we scaled up the number of cases such that
the mean attack rate between 2014 and 2019 matched
large-scale estimates from a meta-analysis conducted in
the USA [5]. Although several studies have attempted to
estimate state-level annual influenza attack rates in the

USA [1, 5, 76], the state-level rates remain unknown.
Therefore, we used the national attack rate to scale up
state-specific numbers of influenza cases. Altogether, the
yearly attack rate varied considerably between years and
states, ranging from 2.8–15.0% in Texas, 4.5–12.0% in
California, 5–11.7% in Connecticut, and 4.0–12.3% in
Virginia.
Due to the uncertainty related to the actual incidence

of influenza, we calibrated our model parameters for
each state using different settings reflecting the lowest,
average, and highest attack rates across influenza
seasons.

Interventions
We evaluated two interventions for increasing the
number of high-risk patients seeking care and being
treated within the first 2 days. In the first interven-
tion, we increased the number of individuals who
were treated within the first two days after symptom
onset by assuming that a proportion of those who re-
ceived treatment after this infection period would re-
ceive treatment within the first two days after
symptom onset. In the second intervention, we in-
creased the total number of infected high-risk individ-
uals who received treatment while assuming that they
all received treatment within the first 2 days after
symptom onset. We evaluated the population- and
individual-level benefits of these interventions in
terms of infections and hospitalizations averted during
a single influenza season.

Sensitivity analyses
We conducted sensitivity analyses to examine the ro-
bustness of our results. In the first analysis, we inves-
tigated the impact of effective vaccination coverage
on the effectiveness of antiviral treatment. Effective
vaccination coverage is defined as the product of vac-
cine efficacy times vaccine coverage and represents
the level of vaccine-induced immunity in the popula-
tion. In the second analysis, we conducted a two-way
sensitivity analysis to investigate the joint impact of
changing both the attack rate and the effective vac-
cination coverage. There is a high variability in the
literature concerning the effectiveness of early anti-
viral treatment in reducing hospitalizations [20, 64–
68]. Thus, we also conducted a sensitivity analysis
that considered two main aspects: (1) changes in
transmissibility that arise from uncertainty related to
the effect of the reduction in the viral load following
treatment and (2) uncertainty of the effectiveness of
treatment with regard to preventing hospitalizations.
Uncertainty regarding the daily reduction in viral load
was based on estimates from a clinical trial [42]. We
considered the effectiveness of early treatment to
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Table 1 Model parameters

Parameter Values in the
baseline scenario

Ranges tested in the
sensitivity analysis1

Justifications

Percentage of individuals at high risk

Age group, years:

0–4 5.0% [1]

5–19 10.6%

20–49 14.9%

50–64 33.0%

≥ 65 51.2%

Percentage of individuals at high risk who receive treatment within 48 h after symptom onset

Age group, years:

0–4 4.3% 4.3–100.0% [1, 23, 24]

5–19 2.7% 2.7–100.0%

20–49 4.8% 4.8–100.0%

50–64 3.7% 3.7–100.0%

≥ 65 3.1% 3.1–100.0%

Percentage of individuals at high risk who receive treatment more
than 48 h after symptom onset

[24]

Age group, years:

0–4 11.6%

5–19 7.3%

20–49 12.8%

50–64 9.9%

≥ 65 8.4%

Percentage reduction in transmissibility from individuals who are
treated within 0–48 h2

23.2% 10.4–34.3% [37, 41]

Percentage reduction in transmissibility from individuals who are
treated within 48–72 h2

21.1% 9.3–32.2% [37, 41]

Effectiveness of administering antiviral treatment within0–72 h in reducing hospitalizations2

≤ 19 years 75.0% Uniform (11,81) [20, 64–68]

> 19 years 59.0% Uniform (11,89)

Case: hospitalization ratio

Age group, years:

0–4 143.4:1 [81]

5–19 364.7:1

20–49 178.2:1

50–64 94.3:1

≥ 65 11.0:1

High-risk: low-risk hospitalization ratio

Age group, years:

0–4 10.7:1 [61, 62]

5–19 8.0:1

20–49 8.0:1

50–64 6.8:1

≥ 65 3.0:1

Susceptibility rate
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range between 11 and 89% in adults and 11 and 81%
in children (Table 1).

Model simulations
To determine the population-level and the per person
treated benefit of increasing the coverage and timeliness
of antiviral treatment, we simulated five influenza sea-
sons with the implementation of the interventions. We
evaluated the cases and hospitalizations averted for a
range of values of effective vaccination coverage, attack
rate, and early treatment coverage. We define early treat-
ment if antiviral treatment is administered within 48 h.
We compared the baseline scenario with the reduction
in influenza cases and hospitalizations achieved both per
person treated and overall across all periods of
implementation.

Results
The transmission model was calibrated to the age-
stratified weekly incidence data for 2014–2015 to
2018–2019 influenza seasons in four states across the
USA (Fig. 1; Additional file 1: Figure S2). The model
explicitly accounted for changes in transmissibility
with disease progression and antiviral treatment tim-
ing. The model captured the weekly influenza trends
and the age distribution of infected individuals (Fig.
1b–e; Additional file 1: Figure S2). For example, in
the 2014–2015 influenza season, the calibrated model
accurately showed that influenza infections peaked in
week 14 in Texas, week 17 in California, week 19 in
Connecticut and week 20 in Virginia (Fig. 1; Add-
itional file 1: Figure S2). Moreover, the age distribu-
tions of symptomatic influenza cases were consistent
with the empirical data in all states (Fig. 1; Additional
file 1: Figure S2).
We simulated five influenza seasons and projected

the numbers of symptomatic cases and influenza-
induced hospitalizations that would have been averted
by early treatment. Specifically, we evaluated the
population-level benefit of increasing the proportion
of high-risk individuals who initiated treatment within
48 h of symptom onset without increasing the base-
line number of treated individuals (Fig. 2; Table 2;

Additional file 1: Figure S3). We found that keeping
the same number of treatments while providing treat-
ment earlier could substantially decrease transmission,
thereby reducing both influenza symptomatic cases
and hospitalizations. If all patients were treated within
48 h of symptom onset, it would avert an additional
65,201 (36,977–84,458 range based on effective vac-
cination coverage) symptomatic cases and 513 (253–
822) hospitalizations annually in Texas, 90,847 (49,
702–121,703) cases and 764 (374–1243) hospitaliza-
tions in California, 7012 (2599–11,923) symptomatic
cases and 59 (20–123) hospitalizations in Connecticut,
and 18,229 (6990–28,306) symptomatic cases and 143
(49–279) hospitalizations in Virginia (Fig. 2; Table 2;
Additional file 1: Figure S3). These results correspond
to a 2.9% (2.1–3.7%) reduction in total symptomatic
cases and a 5.5% (4.7–6.2%) reduction in total hospi-
talizations compared to Texas’s baseline scenario. In
California, they correspond to 3.2% (2.4–3.8%) and
5.8% (5.0–6.4) reductions in total symptomatic cases
and hospitalizations, respectively.
We also evaluated the benefit of increasing antiviral

treatment coverage among high-risk individuals. In-
creasing early treatment coverage among individuals
at high risk conferred a substantial benefit in terms
of averting both cases and hospitalizations (Fig. 3;
Table 2; Additional file 1: Figure S4). For example, if
20% of high-risk individuals infected with influenza
were treated within 48 h of symptom onset, it would
avert, on average, 116,833 symptomatic influenza
cases annually in Texas, 160,451 symptomatic cases in
California, 12,543 symptomatic cases in Connecticut,
and 32,561 symptomatic cases in Virginia. In addition
to averting symptomatic cases, this increase in treat-
ment coverage would avert, on average, 1021 hospital-
izations annually in Texas, 1506 hospitalizations in
California, 115 hospitalizations in Connecticut, and
279 hospitalizations in Virginia.
Given that the benefit of treatment depends on the

underlying effective vaccination coverage within the
population, we also examined how variations in ef-
fective vaccination coverage would affect the benefit
of treating high-risk individuals. We found that

Table 1 Model parameters (Continued)

Parameter Values in the
baseline scenario

Ranges tested in the
sensitivity analysis1

Justifications

Age group, years:

0–4 0.0026–0.0036 Additional file 1: Calibrated
parameters

5–49 0.0014–0.0016

50–64 0.0028–0.0032

≥ 65 0.0020–0.0022
1 Figures 2, 3, 4 and in uncertainty Table 3
2 Treatment provided following 72 h is considered to have no effect in reducing both hospitalizations and transmission
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increasing effective vaccination coverage would de-
crease both the influenza burden and the population
level benefit of treatment (Fig. 3). Nevertheless, for a
20% increase in influenza effective vaccination cover-
age among all age groups, our results suggest that the
benefit of treatment remains substantial (Fig. 3). For
example, treating 20% of infected high-risk individuals
within 48 h of symptom onset would avert 65,688
symptomatic cases and 494 hospitalizations in Texas
(Fig. 3a, c). In California, it would avert 87,138 symp-
tomatic cases and 725 hospitalizations (Fig. 3b, d). In
Connecticut, it would avert 4611 symptomatic cases
and 38 hospitalizations, and in Virginia, it would
avert 12,372 symptomatic cases and 95 hospitaliza-
tions (Table 2; Additional file 1: Figure S4).
To estimate the benefits of a policy that targets spe-

cific age groups for early treatment, we evaluated the
effectiveness of age-targeted treatment strategies with
regard to averting influenza cases and influenza-
induced hospitalizations (Fig. 4; Additional file 1: Fig-
ure S5). We found that treatment of the elderly

population (> 65 years old) had the highest impact on
reducing hospitalizations (Fig. 4b, d). This result was
driven mainly by the fact that this age group has the
highest risk for influenza complications, which leads
to a higher rate of hospitalization. The highest impact
on reducing transmission was achieved by targeting
high-risk individuals aged 5–19 years old. For ex-
ample, in Texas, early treatment of the 5- to 19-year-
old age group would avert 2.31 symptomatic cases
per person treated, and early treatment of the > 65-
year-old age group would avert 0.04 hospitalizations
per person treated.
The yearly attack rate of influenza varies considerably

among seasons. Thus, we explored the benefit of treating
high-risk patients under different attack rates and effect-
ive vaccination coverage levels. We found that the lower
the attack rate, the greater the benefit conferred per
treatment (Fig. 5; Additional file 1: Figure S6). Note that
in such a setting, fewer individuals will receive the treat-
ment. Thus, the population-level effectiveness of treat-
ment in decreasing transmission will be lower compared

Fig. 2 Model projection of additional symptomatic influenza cases and hospitalizations averted annually in California and Texas by increasing the
number of high-risk patients who initiate treatment within 48 h of symptoms onset. Here, a proportion of high-risk patients who received antiviral
treatment more than 48 h after symptom onset were assumed to receive treatment earlier. For the sensitivity analysis, we increased and
decreased the effective vaccination coverage by 10% and 20%, respectively. a, c The total number of symptomatic cases averted. b, d The total
number of hospitalizations averted
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to settings with a higher attack rate (Fig. 3). For ex-
ample, in California, in a setting of a 16 effective vaccin-
ation coverage, which is roughly 80% of the baseline
effective vaccination coverage, for a high attack rate (Fig.
5f), 1.0–1.1 symptomatic cases would be averted per per-
son treated, while for a low attack rate (Fig. 5b), 1.8–2.0
symptomatic cases would be averted per person treated
in California.
In all settings considered, the benefit of treatment per

person treated was found to increase with increasing treat-
ment coverage and vaccination coverage until reaching
saturation (Fig. 5). This saturation in the benefit of treat-
ment is driven by increased herd immunity, resulting in a
decrease in the indirect benefit of treatment.
There is high variability regarding the benefit of early

antiviral treatment to prevent hospitalizations. Neverthe-
less, our sensitivity analysis (Table 3) suggested that the
results remain substantial. For example, if all patients
who received treatment more than 48 h after symptom
onset were treated earlier, it would avert 205–718 hospi-
talizations in Texas, corresponding to a 2.4–8.6%

reduction in total hospitalizations compared to the base-
line scenario. Likewise, it would avert 311–1067 hospi-
talizations in California, corresponding to a 2.4–8.9%
decrease compared to total hospitalization in the base-
line scenario. If 20% of high-risk individuals infected
with influenza were treated within 48 h of symptom on-
set, it would avert in Texas a rage of 397–1414 hospitali-
zations corresponding to a 4.5–16.8% reduction in total
hospitalizations. In California, it would avert 596–2083
hospitalizations, corresponding to 4.6–17.1%, of total
hospitalizations, would be averted.

Discussion
Our key finding shows that increasing the timeliness
of the treatment of high-risk patients, even without
increasing the current treatment coverage, is highly
effective at reducing morbidity and mortality associ-
ated with influenza at the population level. The rea-
son behind this finding is that the viral load of
influenza is the highest during the first three days
after symptom onset. Earlier treatment reduces the

Fig. 3 Model projections of symptomatic influenza cases and hospitalizations averted in California and Texas by increasing the portion of treated
high-risk individuals who sought care and received treatment within 48 h of symptom onset. For the sensitivity analysis, we increased and
decreased the effective vaccination coverage by 10% and 20%, respectively. a, c The total number of symptomatic cases averted. b, d The total
number of hospitalizations averted

Yechezkel et al. BMC Medicine           (2021) 19:54 Page 10 of 16



viral load and thus has a critical nonlinear negative
effect on transmission.
Interventions that could improve the timeliness of

high-risk patients seeking care and their access to
timely antiviral prescriptions and thereby potentially
reduce influenza-associated morbidity and mortality
are urgently needed. These interventions could in-
clude education of high-risk patients, education of
physicians about the benefits of providing early anti-
viral treatment to high-risk patients, and innovative
tools to enhance the early detection of influenza in-
fection, supporting the early initiation of treatment.
These tools include providing phone consultations or
remote electronic visits (virtual visits).
Vaccination remains the main tool for controlling

seasonal influenza. However, vaccine efficacy varies
widely between influenza seasons, and vaccination
coverage remains suboptimal [7, 8]. Our study shows
that the benefit of treating high-risk patients early
and increasing the treatment coverage is substantial,
regardless of vaccine efficacy and coverage.
Counterintuitively, we found that the higher the level

of effective vaccine coverage is, the higher the mar-
ginal benefit of early treatment, which is similar to
the results of other studies [82, 83]. This
phenomenon is driven by the fact that high effective
vaccination coverage results in low disease transmis-
sion, which in turn increases the indirect benefit of
treatment. This finding emphasizes the importance of
antiviral treatment as a complementary effort to
vaccination.
Despite the effectiveness of antivirals at reducing

influenza-related morbidity and mortality, the emer-
gence of drug resistance imposes a critical limitation
on their application. Therefore, the parsimonious use
of antivirals is needed to mitigate the emergence of
antiviral-resistant influenza strains. Studies have sug-
gested that to reduce the risk of antiviral overuse
while maximizing their benefits to mitigate the bur-
den of influenza, low-risk patients should be tested
before treatment with antivirals, and high-risk patients
with clinically diagnosed influenza infection should
receive prompt treatment pending the results of a la-
boratory test [84]. Our study shows that increasing

Fig. 4 Model projections of influenza symptomatic cases and hospitalizations averted per person treated by treating each age group within 48 h
of symptom onset in California and Texas. a, c Number of symptomatic cases averted per person treated for each group stratified by age. b, d
Number of hospitalizations averted per person treated for each group stratified by age
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the timeliness of treatment without increasing the
number of treated individuals would substantially in-
crease the population-level benefit of antiviral treat-
ment. For example, if the proportion of high-risk
patients who receive treatment within the first 48 h of
symptom onset increased from the baseline value of
8.1 to 14.85% (the total number of high-risk patients
who receive treatment: both within and after 48 h), it

could avert an additional 65,201 (36,977–84,458)
symptomatic cases annually in Texas, 90,847 (49,702–
121,703) symptomatic cases in California, 7012
(2599–11,923) symptomatic cases in Connecticut, and
18,229 (6990–28,306) symptomatic cases in Virginia.
The ongoing coronavirus (COVID-19) pandemic has

already put unprecedented strain on the healthcare
systems in many countries. As the disease continues

Fig. 5 The mutual effect of attack rate and effective vaccination coverage level in California and Texas on the number of symptomatic cases
averted per person treated for different treatment coverage values among high-risk individuals with influenza. Infected high-risk individuals
sought care and received treatment within 48 h of symptom onset. a, b Low attack rate settings. c, d Median attack rate settings. e, f High attack
rate settings
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to spread across the world, its impact on national
healthcare systems has yet to be fully comprehended.
In the USA, the possibility of COVID-19 transmission
during the next influenza season is raising substantial
concern about the healthcare system being over-
whelmed by visits from high-risk patients with both
COVID-19 and influenza-related complications. The
specter of this challenging scenario emphasizes the
importance of the results of this study and the urgent
need for increased influenza vaccine coverage and
timely antiviral treatment among high-risk patients in
the USA.
In addition, the current COVID-19 pandemic fur-

ther intensifies the importance of explicitly accounting
for disease progression [85, 86]. Specifically, given
that COVID-19 transmissibility peaks before symptom
onset, a model that accounts for disease progression
can more accurately evaluate the potential effective-
ness of various interventions, including the early iso-
lation of patients to break transmission chains. The
potential impact of COVID-19 on influenza is beyond
the scope of this study, and future studies should in-
vestigate the impact of COVID-19 on influenza treat-
ment, misdiagnosis, and influenza-related
complications.
Our study has several limitations that should be ad-

dressed by future studies. Although several studies have
attempted to estimate the annual attack rate of influenza in
the USA [1, 5, 76], the state-level rates remain unknown.
Therefore, we used the national attack rate to normalize
state-specific influenza cases. Moreover, we used nation-
wide data to estimate the treatment coverage and timeliness
in each state, as state-specific data are not available. Under
these assumptions, our results were qualitatively similar
across all states, with quantitative differences being driven
by state-specific information on population size and demo-
graphics, vaccination coverage, and influenza seasonality.
Transmission depends on the contact patterns of in-

dividuals during the period of infectiousness [34, 87].
We did not consider changes in the contact patterns
due to illness. For example, when ill, one may isolate

oneself from one’s surroundings and thus reduce
transmission. Future models should take the effect of
this change into account. To calibrate the unknown
epidemiological parameters, we used the minimized
squared error method. This is equivalent to maximum
likelihood estimation, assuming a normal distribution
of the error. However, other fitting methods can be
considered by future studies [88].

Conclusions
Increasing the timeliness and coverage of antiviral treat-
ment among high-risk individuals has the potential to
substantially reduce the burden of seasonal influenza in
the USA. Timely treatment not only reduces the risk of
influenza-induced hospitalization for the treated individ-
ual but may also reduce disease transmission. Even with-
out increasing the current treatment coverage,
increasing the timeliness of treatment of high-risk pa-
tients will double the effect of the current treatment
coverage. Public health decision-makers should invest in
continuous efforts to follow the CDC guidelines by treat-
ing influenza patients who are at high risk as soon as
possible.

Supplementary Information
The online version contains supplementary material available at https://doi.
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Additional file 1: Supplementary material for: Optimizing antiviral
treatment for seasonal influenza in the United States: A mathematical
modeling analysis. Table S1. Age-specific rates Ce, j between an infected
individual e and their contact j. Figure. S1. Daily log viral load following
influenza infection for asymptomatic, symptomatic high and low-risk and
treated high risk who got treated on the first three days since symptoms
onset. Initiating antiviral treatment following 72 h after symptom onset:
viral load will mimic symptomatic high-risk infection until three days of
symptom onset. At that point, the viral load will mimic the antiviral treat-
ment curve. Table S2. mean vaccination coverage [69]. Table S3: Fixed
parameters used in the transmission model. Table S4. Calibrated param-
eters. Figure S2. Model fit. Time series of recorded weekly symptomatic
influenza cases and model fit to Texas, California, Connecticut and Vir-
ginia (A, C, E & G). Data and model fit to the age distribution among
symptomatic influenza cases (B, D, F & H). Figure S3. Model projection
of additional symptomatic influenza cases and hospitalizations averted
annually in Texas, California, Connecticut, and Virginia by increasing the

Table 3 Sensitivity analysis of the effectiveness of early antiviral treatment with regard to averting hospitalizations
Outcome Texas California Connecticut Virginia

Model
projection (#)

Proportion2

(%)
Model
projection (#)

Proportion2

(%)
Model
projection (#)

Proportion2

(%)
Model
projection (#)

Proportion2

(%)

Hospitalizations averted annually compared to baseline scenario: 1

Treating early3 while keeping baseline
treatment coverage

205–718 (2.4–8.6) 311–1067 (2.4–8.9) 25–82 (3.0–10.6) 61–199 (2.9–10.1)

Treating 20% of infected individuals
early3

397–1414 (4.5–16.8) 596–2083 (4.6–17.1) 49–157 (5.8–20.3) 116–383 (5.5–19.4)

Sensitivity analysis conducted by testing different values for (1) effectiveness of early antiviral treatment with regard to risk for hospitalizations ranges 11–89% for
adults, 11–81% for children, and (2) reduction in transmissibility from individuals who have treated ranges 10.4–34.3% regardless the age group
1 95% Credible Interval of total hospitalizations averted over 50,000 simulations
2 Percentage reduction in total hospitalizations compared to baseline scenario
3 Treating early refers to administering antiviral treatment within 48 h of symptoms onset

Yechezkel et al. BMC Medicine           (2021) 19:54 Page 13 of 16

https://doi.org/10.1186/s12916-021-01926-5
https://doi.org/10.1186/s12916-021-01926-5


number of high-risk patients who received treatment within 48 h of
symptom onset. Here, a proportion of high-risk patients who received
antiviral treatment more than 48 h after symptom onset was assumed to
receive treatment earlier. For the sensitivity analysis, we increased and de-
creased the effective vaccination coverage by 10% and 20%. (A, C, E & G)
Total number of symptomatic cases averted. (B, D, F & H) Total number
of hospitalizations averted. Figure S4. Model projections of symptomatic
influenza cases and hospitalizations averted in Texas, California, Connecti-
cut, and Virginia by increasing the portion of treated high-risk individuals
who sought care and received treatment within 48 h of symptom onset.
For the sensitivity analysis, we increased and decreased the effective vac-
cination coverage by 10% and 20%. (A, C, E & G) Total number of symp-
tomatic cases averted. (B, D, F & H) Total number of hospitalizations
averted. Figure S5. Model projections of symptomatic influenza cases
and hospitalizations averted per person treated by treating each age
group within 48 h after symptom onset in Texas, California, Connecticut,
and Virginia. (A, C, E & G) The number of symptomatic cases averted per
person treated for each group stratified by age. (B, D, F & H) The number
of hospitalizations averted per person treated for each group stratified by
age. Figure S6. The mutual effect of attack rate and effective vaccination
coverage level in Connecticut and Virginia on the number of symptom-
atic cases averted per person treated for different treatment coverage
values among high-risk individuals with influenza. Infected high-risk indi-
viduals sought care and received treatment within 48 h after symptom
onset. (A, B) Low attack rate settings. (C, D) Median attack rate settings.
(E, F) High attack rate settings.
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