Au Yeung et al. BMC Medicine (2021) 19:72
https://doi.org/10.1186/512916-021-01944-3

BMC Medicine

®

Check for
updates

Evaluation of glycemic traits in
susceptibility to COVID-19 risk: a Mendelian
randomization study

Shiu Lun Au Yeung', Jie V Zhao' and C Mary Schooling'~

Abstract

Background: Observational studies suggest poorer glycemic traits and type 2 diabetes associated with coronavirus
disease 2019 (COVID-19) risk although these findings could be confounded by socioeconomic position. We
conducted a two-sample Mendelian randomization to clarify their role in COVID-19 risk and specific COVID-19
phenotypes (hospitalized and severe cases).

Method: We identified genetic instruments for fasting glucose (n =133,010), 2 h glucose (n =42,854), glycated
hemoglobin (n = 123,665), and type 2 diabetes (74,124 cases and 824,006 controls) from genome wide association
studies and applied them to COVID-19 Host Genetics Initiative summary statistics (17,965 COVID-19 cases and 1,370,
547 population controls). We used inverse variance weighting to obtain the causal estimates of glycemic traits and
genetic predisposition to type 2 diabetes in COVID-19 risk. Sensitivity analyses included MR-Egger and weighted
median method.

Results: We found genetic predisposition to type 2 diabetes was not associated with any COVID-19 phenotype (OR:
1.00 per unit increase in log odds of having diabetes, 95%Cl 0.97 to 1.04 for overall COVID-19; OR: 1.02, 95%Cl| 0.95
to 1.09 for hospitalized COVID-19; and OR: 1.00, 95%Cl 0.93 to 1.08 for severe COVID-19). There were no strong
evidence for an association of glycemic traits in COVID-19 phenotypes, apart from a potential inverse association for
fasting glucose albeit with wide confidence interval.

Conclusion: We provide some genetic evidence that poorer glycemic traits and predisposition to type 2 diabetes
unlikely increase the risk of COVID-19. Although our study did not indicate glycemic traits increase severity of
COVID-19, additional studies are needed to verify our findings.
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Background

Coronavirus disease 19 (COVID-19) has become a major
global health threat. While randomized controlled trials
have been quickly conducted to identify possible treat-
ments for COVID-19 [1], other observational studies
focus on factors related to increased susceptibility to
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COVID-19 risk or its severity. Hyperglycemia and type 2
diabetes diagnosis have been associated with increased
risk of COVID-19 or with complications in previous ob-
servational studies [2—5]. However, it is unclear whether
these associations indicate causal targets of intervention
due to the possibility of confounding and bias. Further-
more, these observational studies primarily used patient
data, and hence, it is unclear whether the observed asso-
ciations apply to non-hospitalized cases, i.e., less severe
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and likely asymptomatic cases which may account for
the majority of the COVID-19 cases [6].

The use of Mendelian randomization studies helps cir-
cumvent the limitations of previous observational studies
due to its resistance to confounding by the use of gen-
etic variants randomly allocated at conception to proxy
exposures [7]. A recent Mendelian randomization study
suggested a role of diabetes in increased ACE2 lung ex-
pression, the receptor for SARS-CoV-2 [8], and hence
an increased risk of COVID-19. However, an association
with a “surrogate endpoint”, i.e.,, ACE2 expression, does
not always indicate a causal effect on the outcome, here
COVID-19. To address the causal role of glycemic traits
and type 2 diabetes in COVID-19, we conducted a Men-
delian randomization study using summary statistics
from relevant genome wide association studies (GWAS)
of glycemic traits, type 2 diabetes, and COVID-19 [9-
13]. We also included subtypes of COVID-19 pheno-
types, including hospitalized cases and severe cases, as
previous studies also used these more severe COVID-19
phenotypes as outcomes.

Methods

This is a 2 sample Mendelian randomization study
which used summary statistics from relevant GWAS [7].
There are three assumptions. First, the genetic instru-
ments predict the exposure. Second, the genetic instru-
ments are independent of confounders of the exposure-
outcome relation; this assumption has been demon-
strated empirically in previous studies [14]. Third, the
genetic instruments’ effect on the outcome, if any, is
only via its relation with the exposure, here glycemic
traits and type 2 diabetes.

Exposure GWAS—glycemic traits and type 2 diabetes

We extracted genetic instruments, i.e., single nucleotide
polymorphism (SNP), for glycemic traits from MAGIC
GWAS summary statistics, one of the largest genetic
consortia on glycemic traits where these GWAS were
conducted among people without diabetes. We restricted
the sample to people of European descent, and selected
instruments strongly (p value <5 x 10®) and independ-
ently (not in linkage disequilibrium (LD, * < 0.001 based
on European population reference panel) associated with
the phenotypes. Specifically, instruments for fasting glu-
cose were obtained from a GWAS of up to 133,010 par-
ticipants [10]. Instruments for 2 h glucose were obtained
from a GWAS of up to 42,854 participants [10]. Instru-
ments for glycated hemoglobin (HbAlc) were obtained
from a GWAS of 123,665 participants of European an-
cestry [13], out of the original GWAS comprised of 159,
940 participants of mixed ancestries, as previously [15].
Mean age in these GWAS was around 50 years, with
similar proportion of men and women. These GWAS
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adjusted for age and sex, study-specific covariates, and
used genomic control.

Instruments for type 2 diabetes were obtained from
the DIAMANTE consortium (p value <5 x 10~ % and not
in LD (r* <0.001)), one of the largest GWAS consortia
on type 2 diabetes [12], which comprised 898,130 partic-
ipants (74,124 cases and 824,006 controls) of European
descent [12]. Type 2 diabetes was defined in multiple
ways, such as fasting glucose (>7.0 mmol/L), previous
diagnosis of type 2 diabetes, case ascertainment from
electronic health records, and use of anti-diabetic medi-
cation. The mean age of cases was around 55 years. The
GWAS had similar proportions of men and women. The
GWAS adjusted for study-specific covariates and con-
trolled for population stratification with genomic control
to reduce confounding by ethnicity.

Additional file 1: Table S1 shows the list of genetic in-
struments used in this study. We calculated the variance
of the exposures explained by each instrument using
established equations for continuous and binary expo-
sures [16, 17], as shown in Additional file 1: Table S1.

Outcome GWAS—COVID-19 phenotypes

We extracted summary statistics of all three COVID-19
phenotypes from the most recent data freeze at the time of
analyses (Round 4, October 2020) in COVID-19 Host
Genetics Initiative (www.covid19hg.org), accessed on No-
vember 3, 2020 [11], using rs number or position (Genome
Reference Consortium Human Build 37). The COVID-19
Host Genetics Initiative is an initiative comprised of sev-
eral epidemiologic studies of various designs, such as UK
Biobank, deCODE, and FinnGen but we excluded
23andMe study given data from this study were not in-
cluded in the summary statistics. These phenotypes in-
cluded any COVID-19 cases, hospitalized COVID-19
cases, and severe COVID cases. In brief, any COVID-19
was defined as having laboratory-confirmed SARS-CoV-2
infection, confirmed COVID-19 from electronic health re-
cords/doctor diagnosis, or self-reported COVID-19 posi-
tive (17,965 cases and 1,370,547 population controls).
Hospitalized COVID was defined as having hospitalized
laboratory-confirmed =~ SARS-CoV-2  infection  or
hospitalization due to corona-related symptom (7885 cases
and 961,804 population controls without COVID-19).
Very severe respiratory confirmed COVID-19 was defined
as having hospitalized laboratory-confirmed SARS-CoV-2
infection, with respiratory support or death (4336 cases
and 623,902 population controls without COVID-19). The
GWAS was adjusted for sex, age, age®, age*sex, principal
components and study-specific covariates. Additional file
1: Table S2 shows the instruments’ association with
COVID-19 phenotypes. Details of COVID-19 Host Genet-
ics Initiative, such as case ascertainment and contributing
studies can be found in Additional file 1: Tables S3—-S6.
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Exposures
The exposures were HbAlc (%), fasting glucose (mmol/
L), 2h glucose (mmol/L), and predisposition to type 2
diabetes (per unit increase in log odds of having
diabetes).

Outcomes

The primary outcome was any COVID-19 cases. The
secondary outcomes were hospitalized COVID-19 and
severe COVID-19 cases.

Pleiotropic effects

Given a previous Mendelian randomization study sug-
gested a possible role of body mass index (BMI) and
smoking on risk of severe COVID-19, we explored the
association of genetic instruments of glycemic traits and
predisposition to type 2 diabetes in respective genome
wide association studies (GIANT consortium for BMI
and GSCAN for cigarettes smoked per day) [18, 19],
where we considered evidence of pleiotropy if the SNP
association reached genome wide significance (p value <
5x1079).

Statistical analyses

We approximated the F statistics of each instrument to
assess potential weak instrument bias, where higher F
statistics indicated lower risk of weak instrument bias
[20]. We assessed the association of genetically predicted
glycemic traits and predisposition to type 2 diabetes with
COVID-19 phenotypes using inverse variance weighting
with multiplicative random effects. We also reported
heterogeneity of the Wald ratios, i.e., the genetic associ-
ation with the outcome divided by the genetic associ-
ation with the exposure, from the Cochrane Q statistics
and the MR-Egger intercept p value as indicators of po-
tential pleiotropy of the included instruments. We con-
ducted sensitivity analyses using the weighted median
and MR-Egger [21, 22].

Power calculation

We calculated the variance of the exposures explained
by each instrument using an established approximation
for continuous and binary exposures [16, 17], as shown
in Additional file 1: Table S1. We estimated power using
the approximation that the sample size for an MR study
is the sample size for exposure on outcome divided by
the variance of the exposures [23, 24], as shown in Add-
itional file 1: Table S7.

All analyses were performed using R Version 3.6.1 (R
Core Team (2019). R: A language and environment for
statistical computing. R Foundation for Statistical Com-
puting, Vienna, Austria. https://www.R-project.org/) and
the R package (“TwoSampleMR”) [9].
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Ethics approval
This study only used publicly available data and hence
no ethics approval was required.

Results

Up to 34 genetic instruments for HbAlc, 33 instruments
for fasting glucose, 7 instruments for 2h glucose, and
156 instruments for predisposition to type 2 diabetes
were used in this study. All instruments had an F statis-
tic >10, implying weak instrument bias is less likely
(Additional file 1: Table S1). Forty-two (42) SNPs were
associated with BMI and none of the SNPs were associ-
ated with cigarettes smoked per day. Hence, these SNPs
were excluded in the sensitivity analyses.

Figure 1 shows the association of genetically predicted
glycemic traits and genetic predisposition to type 2 dia-
betes on risk of COVID-19. There was no strong evi-
dence for an effect of glycemic traits on COVID-19 risk,
apart from fasting glucose, where higher fasting glucose
appeared to be associated with lower risk of being a
COVID-19 case although the estimates had wide confi-
dence intervals. Higher predisposition to type 2 diabetes
was not associated with COVID-19 risk, with estimates
close to null. The Cochrane Q statistics test and MR-
Egger intercept test where there was no strong evidence
for heterogeneity, apart from HbAlc where there were
signs of horizontal pleiotropy based on the MR-Egger
intercept (p value: 0.004). However, the corresponding
estimates from MR-Egger and weighted median were
not always consistent with the main analyses, but with
wide confidence intervals. Figures 2 and 3 show the as-
sociation of genetically predicted glycemic traits and
genetic predisposition to type 2 diabetes on risk of hos-
pitalized COVID-19 and severe COVID-19, which indi-
cated no strong evidence for an effect of glycemic traits
and predisposition to type 2 diabetes on these more se-
vere COVID-19 phenotypes. There were signs of
pleiotropy in some of the analyses, such as for predispos-
ition to type 2 diabetes (Cochrane Q test p value: 0.004)
related to hospitalized COVID-19 and for HbAlc related
to severe COVID-19 (Cochrane Q test p value: 0.04).

Exclusion of SNPs related to BMI did not change the
conclusion regardless of the COVID-19 phenotypes
(Additional file 1: Figures S1-S3).

Discussion

This Mendelian randomization study provides poten-
tially more credible evidence concerning the role of gly-
cemic traits and predisposition to type 2 diabetes in
COVID-19 risk and provides no strong evidence for a
causal role of hyperglycemia in increasing risk of
COVID-19 or its severity. In particular, the estimates for
genetic predisposition to type 2 diabetes were close to
null. This is consistent with a previous Mendelian
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Outcome Odds ratio [95% CI] Cochrane Q pvall

(# of instruments) Egger intercept p value

HbA1c (%) 1.29[0.95t01.76] 0.082

(34) 0.66[0.39t01.1] 0.004
0.89[0.61t01.3]

Fasting glucose (mmol/L) 0.84[0.68t0 1.04] 0363

(33) 0.81[051t01.29] 0.851
0.81[0.6t01.09]

2 hour glucose (mmol/L)  0.92[0.81t0 1.04] 0535

) 0.9[048t01.71] 0.964
0.89 [0.76 t0 1.04]

Type 2 diabetes 1[0.97t01.04] 0473

(156) 0.97[0.91t01.04] 0312

1[0.94101.07]

—— W
- MR-Egger
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r
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Fig. 1 Association of genetically predicted glycemic traits and genetic predisposition to type 2 diabetes on risk of COVID-19 using Mendelian randomization
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randomization study using data from the previous data
freeze (Release 3, June 2020) with smaller sample size
for hospitalized and severe COVID-19 cases [25]. Our
study adds by showing no strong evidence for an associ-
ation of glycemic traits in these COVID-19 phenotypes
using larger case numbers. Furthermore, our study indi-
cated that glycemic traits and predisposition to type 2
diabetes unlikely have a strong role in increasing suscep-
tibility to overall COVID-19, which may be more rele-
vant to the general population given the majority of
COVID-19 cases were not severe [26].

Exploring underlying causes of COVID-19 is import-
ant for efficient allocation of public health resources to
reduce related infections in the population. The recent
OpenSAFELY study, using electronic health records of
more than 17 million people in the UK, showed that
older age, being a male, being obese, lower socio-
economic position, and diabetes were associated with
higher risk of COVID-19 related death [4]. Although

some of these factors may be causal, such as higher body
mass index, some may be only risk factors, such as dia-
betes [25], perhaps because of its association with lower
socio-economic position. Furthermore, some findings
could be a reflection of bias, such as the paradoxically
lower risk of COVID-19 deaths among current smokers,
which was not supported by Mendelian randomization
which showed a detrimental effect of smoking on
COVID-19 [25]. Nevertheless, observational studies pro-
vide insights regarding potential causes of COVID-19
but the findings should be further validated using Men-
delian randomization when more severe cases have ac-
cumulated in the COVID-19 Host Genetics Initiative or
using genetic risk scores in the UK Biobank to maximize
statistical power [27]. It is also possible that glycemic
traits/type 2 diabetes may affect risk of COVID-19 in
specific subgroups, perhaps related to underlying genetic
susceptibility to COVID-19. However, these dimensions
of vulnerability remain to be identified.

Outcome Odds ratio [95% CI] Cochrane Q pvall

(# of instruments) Egger intercept p value

HbA1c (%) 1.21[0.71 0 2.06] 0.071

(34) 055[021t01.45] 0.07
1.08[0.57 t0 2.03]

Fasting glucose (mmol/L) 0.85[0.6to1.2] 0384

(33) 1.07[0.5t023] 0513
0.96[0.59t0 1.57]

2 hour glucose (mmollL)  0.95[0.77 to 1.18] 0.908

U] 0.87[0.31t02.46] 0.865
1.02[0.78 0 1.33]

Type 2 diabetes 1.02[0.95t01.09] 0.004

(156) 0.95[0.83t01.08] 02

1.01[09t01.43]

—— v
e MR-Egger
X WM

0.1

Mendelian randomization

Fig. 2 Association of genetically predicted glycemic traits and genetic predisposition to type 2 diabetes on risk of hospitalized COVID-19 using
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Outcome Odds ratio [95% CI] Cochrane Q pvall

(# of instruments) Egger intercept p value

HbA1c (%) 1.34[0.63t02.85] 0.044

—— W
- MR-Egger
x- WM

(34) 0.82[0.18t0 3.74]
0.87[035t02.47]

0.474

Fasting glucose (mmollL) 0.86 [ 0.54 to 1.35]
(33) 1.12[04t03.14]
0.82[0.4310157]

0.643
0.578

2 hour glucose (mmol/L)  1.11[0.84t0 1.48] 0.904
) 1.96[0.49 t0 7.83] 045
114[0.79t0 1.64]

Type 2 diabetes 1[0.93t01.08] 0341
(156) 0.95[0.82t01.11] 0452
1[0.88t0 1.14]

r
0.1

Mendelian randomization

Fig. 3 Association of genetically predicted glycemic traits and genetic predisposition to type 2 diabetes on risk of severe COVID-19 using
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One of the motivating reasons for this study is that a
previous Mendelian randomization study suggested a
possible role of type 2 diabetes in increased risk of
COVID-19 [8]. However, that study only used ACE2 ex-
pression in the lung as a surrogate outcome, and may
not necessarily translate to an effect on the actual out-
come, ie., SARS-CoV-2 infection. This difference has
been demonstrated by the debates related to ACE inhibi-
tors where concerns were raised over its use given the
possibility of increasing ACE2 expression [28] although
subsequent evidence suggests that ACE inhibitors do
not appear to increase the risk of COVID-19 [29].

Previous observational studies suggested a possible
link of diabetes in infection risk due to possible impair-
ment on the immune system [30, 31], and hence may be
relevant to COVID-19 susceptibility and its severity [2—
5]. However, the discrepancies between these findings
and our study may be indicative of confounding by obes-
ity, or perhaps by medications such as metformin use
which were potentially related to lower mortality among
those who were admitted to hospital due to COVID-19
[32]. This would warrant further investigations such as
using relevant genetic instruments for these medications
to assess their impact on COVID-19 severity [33].

Although we used Mendelian randomization which is
more resistant to confounding, there are some limita-
tions. Mendelian randomization relies on assumptions
for valid inference [7]. We used genetic instruments ex-
tracted from published GWAS to reduce risk of weak in-
strument bias. There was some evidence for pleiotropy
in our analyses, indicating the inverse variance weighting
analyses may not be valid although the conclusion from
MR-Egger remains unchanged. These SNPs do not ap-
pear to affect infectious disease risk based on PhenoS-
canner, a curated database on genetic effects [34],
although some SNPs were related to immune markers

such as eosinophil and lymphocytes [35] while other
SNPs were related to BMI. Nevertheless, pleiotropic ef-
fects may have partly explained why estimates from sen-
sitivity analyses were not always directionally consistent
for these analyses. Our findings should be verified in fu-
ture studies when larger number of cases accumulated
in the COVID-19 genetic consortium. Mendelian
randomization studies are also vulnerable to selection
bias and this may partly explain the potential “inverse”
association of glucose with COVID phenotypes due to
potential competing risk of survival [36]. In this study,
we assessed genetic predisposition of type 2 diabetes in
COVID-19 phenotypes, and hence, we were not able to
assess the impact of type 2 diabetes diagnosis on
COVID-19 susceptibility as many of the participants in
the COVID-19 GWAS may not have developed type 2
diabetes [37]. As such, the null findings did not directly
rule out the possibility of a role of type 2 diabetes in
COVID-19 susceptibility. However, the inconsistent
findings across glycemic traits and genetic predisposition
to type 2 diabetes may suggest hyperglycemia per se did
not appear to have a role in susceptibility to COVID-19
risk and its severity. There are also challenges regarding
the identification of cases in the course of this COVID-
19 pandemic. For example, some of the controls could
potentially be “cases” which were not identified given
the majority of the cases are asymptomatic or because
they were not being tested because of particular social
distancing policies targeting high risk groups. This mis-
classification would also inevitably bias our estimates to-
wards null [6] although this is a challenge also applicable
to other COVID-19 studies such as estimation of the
case fatality risk [38]. Furthermore, case ascertainment
methods were not the same in different cohorts (Add-
itional file 1: Tables S3—S6) but we were unable to ex-
plore how these differences may influence our findings
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because we only had access to overall summary statistics.
Lastly, our case number for secondary outcomes was not
high and hence we could not rule out the possibility of
smaller effects of glycemic traits/ type 2 diabetes on
COVID-19 risk. For example, regarding HbAlc, the de-
tectable effect size for per change in standard deviation
of HbAlc (~0.6% based on our previous study in UK
Biobank [33]), would be an odds ratio of 1.15 for any
COVID-19 cases, 1.25 for hospitalized COVID-19 cases,
and 1.35 for severe COVID-19 cases).

Conclusions

Our Mendelian randomization study suggested glycemic
traits and type 2 diabetes do not appear to increase the
risk of COVID-19. As such, our study may imply the ob-
served associations of diabetes with COVID-19 may be
at least partly due to people with diabetes being vulner-
able to COVID-19 for structural reasons, such as precar-
ious employment or crowded housing [39]. Our study
also showed that there is no clear evidence of glycemic
traits and type 2 diabetes in increasing the risk of more
severe COVID-19. However, these findings should be
replicated when larger genetic studies become available.
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