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Abstract

Background: Testing plays a critical role in treatment and prevention responses to the COVID-19 pandemic.
Compared to nucleic acid tests (NATs), antigen-detection rapid diagnostic tests (Ag-RDTs) can be more accessible,
but typically have lower sensitivity and specificity. By quantifying these trade-offs, we aimed to inform decisions
about when an Ag-RDT would offer greater public health value than reliance on NAT.

Methods: Following an expert consultation, we selected two use cases for analysis: rapid identification of people
with COVID-19 amongst patients admitted with respiratory symptoms in a ‘hospital’ setting and early identification
and isolation of people with mildly symptomatic COVID-19 in a ‘community’ setting. Using decision analysis, we
evaluated the health system cost and health impact (deaths averted and infectious days isolated) of an Ag-RDT-led
strategy, compared to a strategy based on NAT and clinical judgement. We adopted a broad range of values for
‘contextual’ parameters relevant to a range of settings, including the availability of NAT and the performance of
clinical judgement. We performed a multivariate sensitivity analysis to all of these parameters.

Results: In a hospital setting, an Ag-RDT-led strategy would avert more deaths than a NAT-based strategy, and at
lower cost per death averted, when the sensitivity of clinical judgement is less than 90%, and when NAT results are
available in time to inform clinical decision-making for less than 85% of patients. The use of an Ag-RDT is robustly
supported in community settings, where it would avert more transmission at lower cost than relying on NAT alone,
under a wide range of assumptions.

Conclusions: Despite their imperfect sensitivity and specificity, Ag-RDTs have the potential to be simultaneously
more impactful, and have a lower cost per death and infectious person-days averted, than current approaches to
COVID-19 diagnostic testing.
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Background
Virological testing is a critical part of the global response
to SARS-CoV-2 [1–3]. Early diagnosis allows infectious
cases to be isolated in a timely manner, thus minimising
opportunities for transmission. Amongst those at risk of
severe outcomes of the disease, early diagnosis and initi-
ation of appropriate therapy can substantially improve
outcomes and avert mortality [4–7]. Nucleic acid tests
(NATs) have been widely implemented in well-
resourced settings since the outset of the pandemic and
have the benefit of high sensitivity and specificity for
current or recent infection. However, these tests are
challenging to implement at scale, particularly in
resource-poor settings: they are costly and require good
specimen transport systems, laboratory infrastructure,
and highly trained technicians. Delays of a week or more
in obtaining results after collecting specimens are there-
fore common [8–10], and in such cases, a NAT result
adds little value to decisions around isolation or clinical
management.
The emergence of antigen-detection rapid diagnostic

tests (Ag-RDTs) may help to address some of these chal-
lenges. The World Health Organization (WHO) have re-
cently published Target Product Profiles for such tests
[11], which detect SARS-CoV-2 proteins (antigens) to
diagnose active infection. Ag-RDTs can be conducted
relatively easily, at low cost, and within minutes, at the
point of care without need for a laboratory. However, they
have lower sensitivity and specificity and may miss SARS-
CoV-2 in specimens with lower quantities of virus. For ex-
ample, available Ag-RDTs were estimated to have less
than 80% sensitivity for COVID-19, compared with > 90%
for NAT [12]. We therefore sought to quantify these
trade-offs between Ag-RDT-based testing and NAT-based
testing in the context of resource-limited settings.

Methods
Overview
Our primary objective was to identify scenarios in which
an Ag-RDT might offer greater individual and public
health value at lower cost than reliance on NAT, across
a variety of resource-limited settings. To accomplish
this, we first defined key use cases and plausible ranges
for parameter values, in consultation with a group of ex-
perts deeply involved in their country’s response to
COVID-19. To identify principles that might generalise
across countries, these experts were drawn from a range
of different country settings; the ranges in parameter
values also served to incorporate variation across these
settings. (As described below, a key aim of our analysis
was to analyse the most important sources of variation.)
We then constructed decision trees that included both
costs to the health system (e.g. treatment and manage-
ment of hospitalised cases) and relevant health outcomes

(deaths and infectious person-days averted). Finally, we
simulated overall costs and outcomes under a wide array
of parameter values and compared testing strategies
using Ag-RDTs, with those using NAT where available.
We also constructed a user-friendly online tool that en-
ables public health practitioners to examine model out-
puts for input parameter values relevant to their own
settings [13].

Model scenarios and structure
We denote an ‘Ag-RDT-led strategy’ as any testing strat-
egy in which an Ag-RDT is the first diagnostic test
performed (with the potential for follow-up NAT confirm-
ation). As an illustrative example, we focused on an Ag-
RDT with sensitivity and specificity of 80% and 98% re-
spectively, relative to NAT, and costing 5 US$ per test,
consistent with recent WHO interim guidance and
antigen-detection tests authorised for emergency use by
the United States Food and Drug Administration (FDA)
[14, 15]. We compared the impact of using an Ag-RDT-
led strategy to that of a ‘NAT-based strategy’ in which
NAT was the only virological test performed, with reliance
on clinical judgement where sufficiently rapid NAT results
were not available (see Fig. 1 for a summary of the diag-
nostic strategies modelled). To inform relevant use case
scenarios, we consulted experts from India, South Africa,
Nigeria, and Brazil to elicit expert opinion on the ways in
which Ag-RDTs could offer value in their own country
settings (Additional file 1: Text S1). Based on this input,
we selected two use case scenarios, as listed in Table 1: (i)
a ‘hospital setting’, where the test is used to support infec-
tion control and treatment decisions amongst patients be-
ing admitted to hospital with respiratory symptoms and
(ii) a ‘community’ setting, where the test is used in decen-
tralised community clinics to identify cases of COVID-19
who should self-isolate. Although Ag-RDTs could also be
considered for use in identifying asymptomatic infections,
both of these focal scenarios involved testing of only
symptomatic individuals.
For both use cases we constructed decision trees (Fig.

1; Additional file 2: Text S2) that represent the diagnos-
tic use of the Ag-RDT, actions taken in response to the
test results (or lack of results), and resulting outcomes.
For simplicity and transparency, this model does not in-
corporate transmission dynamics but approximates epi-
demiological benefits based on the incremental change
in the number of days that infectious individuals spend
out of isolation; the magnitude of downstream impact
would depend on factors, such as the rate of epidemic
growth and the contact patterns of symptomatic versus
pre- or asymptomatic cases, that are not specified in our
model. Our focus is therefore on the direct benefits that
would accrue to patients receiving the test and, by
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extension, their immediate contacts (see right-hand col-
umn of Table 1).
Model parameters, listed in Table 2, represent the con-

textual factors to be examined (including plausible
ranges for each), with the aim of identifying those factors
that are most influential for the value of an Ag-RDT-led
testing strategy relative to NAT-based testing. Our ex-
pert consultation highlighted that no standard guidance
for whether or how Ag-RDTs should be used in con-
junction with NAT existed at the time (e.g. whether
NAT should be used to confirm an Ag-RDT negative re-
sult). Thus, we also defined and modelled three different
options for the adjunctive use of NAT in an Ag-RDT-
led algorithm: (i) no confirmation of Ag-RDT results, (ii)
NAT confirmation of Ag-RDT negative results, or (iii)
NAT confirmation of Ag-RDT positive results). Due to
the lower sensitivity of Ag-RDT compared to NAT,

confirmation of Ag-RDT negative results with NAT re-
duces the probability of false negatives, whereas confirm-
ation of Ag-RDT positive results reduces the probability
of false positives. The latter is especially important in
settings with a low prevalence of COVID-19, where even
small shortfalls in specificity can lead to substantial
numbers of false positive diagnoses [32].
For the hospital setting, we assumed that all patients

are isolated while awaiting NAT results (whether in the
NAT-based strategy or while awaiting NAT confirm-
ation in an Ag-RDT-led strategy). In the supporting in-
formation we also present a sensitivity analysis of the
alternative scenario where patients are not isolated while
awaiting test results. By contrast, in the community set-
ting we assumed that individuals are not isolated while
awaiting any NAT result, as this policy was considered
infeasible due to the comparatively low prevalence of

Fig. 1 Schematic illustration of the decision tree approach. As described in the main text, our analysis focuses on the direct benefit to patients
being tested in different settings. *In the hospital setting, we assumed that all patients were provided with supportive care (e.g. oxygen support)
regardless of test results, as such care would be provided based on symptoms and not aetiology. However, we modelled the use of the test in
guiding decisions about whom to isolate and to treat with dexamethasone. Treatment did not apply to the community setting. Costs and
deaths/infectious days averted were accumulated along each branch of the diagram as appropriate (for example, counting the cost of interim
isolation along any branch labelled ‘Yes’ following ‘Isolate whilst awaiting result?’)
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COVID-19 in this population, and the unnecessary ex-
pense and disruption this would entail to most tested in-
dividuals and their families.
Although NAT specificity is near 100% for current or

recent infection [17], not all NAT-positive cases are ne-
cessarily infectious, given the potential to detect unviable
viral genetic material after the infection has resolved
[17–19] and for severe symptoms to develop near the
end of the infectious period [33]. By contrast, Ag-RDTs
may detect only acute, but not recently cleared, infection
[34, 35]. These distinctions have significance for the
intended purpose of the test: where the purpose is to
guide clinical decisions for treatment, knowing the aeti-
ology of severe symptoms is important, regardless of
viral antigenic load. On the other hand, where the pur-
pose is early identification of infectious cases, detecting
recently cleared infection can detract from the utility of
a test. We captured these elements of both NATs and
Ag-RDTs by distinguishing ‘acute’ from ‘recent’ infection
and assuming that (i) only acute infection is infectious,
(ii) NAT is able to detect both acute and recent infection
with equal sensitivity and (iii) an Ag-RDT is able to de-
tect only acute infection [34]. We accommodated wide
uncertainty in the proportion of patients with acute in-
fection in both the hospital and community settings;
considering that viral load is highest just before symp-
tom onset, and that the average COVID-19 patient is
hospitalised 3 to 10 days after symptom onset [36], it is
possible that a certain proportion of patients are no lon-
ger infectious by the time they are hospitalised. As dis-
cussed below, although these are useful simplifications
for the purpose of the current analysis, these categorisa-
tions conceal potentially important complexities relating
to temporal and between-individual variation in viral
load, infectivity, and detectability by a given test. In the
present analysis, we incorporated a parameter for the
proportion of those with COVID-19, amongst the popu-
lation being tested, that are still in the acute phase at the
point of testing, allowing this parameter to occupy a
wide range of values between 50% and 100%, acknow-
ledging the existing uncertainty (See Table 2).

Quantifying relative value
In the hospital setting, we assumed that the test would
guide decisions about whom to isolate and whom to
treat with dexamethasone [37] and moreover that all pa-
tients (regardless of test result) would receive supportive
care such as oxygen support. We assumed a baseline of
no COVID-19-specific intervention (i.e. supportive care,
but with no NAT or Ag-RDT testing strategy, nor treat-
ment with dexamethasone). We assumed that hospita-
lised COVID-19 patients have a case fatality rate
between 20 and 30% [7] without treatment, and that
dexamethasone reduces this by 7–25% (Table 2), con-
sistent with recent study results for corticosteroid treat-
ment of COVID-19 [7]. We assume a 10-day treatment
course of dexamethasone [7]. We thus denoted ‘deaths
averted’ as the reduction in deaths that would be
achieved by a given testing strategy, relative to no
intervention.
Similarly, as a simple proxy for the impact of a test on

transmission in both hospital and community settings,
we first assumed a uniform distribution for the number
of infectious days remaining per patient amongst pa-
tients presenting with acute infection (Table 2). We then
recorded the number of patient days of acute infection
that were not spent in isolation, whether because of
missed diagnosis or (in the case of NAT) delayed diag-
nosis without isolation, while awaiting a test result. We
denoted ‘infectious person-days averted’ as the reduction
that would be achieved by a given testing strategy, rela-
tive to no-intervention baseline. For the community set-
ting, we estimated the impact of a test only in terms of
infectious person-days averted, as it is likely that most
individuals receiving a test in a community setting suffer
from mild COVID-19.
We also estimated the cost to the health system of the

different interventions. For the hospital setting, we esti-
mated the cost of testing, treatment and isolation. For
the community setting, we estimated only the cost of
testing.
Using the model illustrated in Fig. 1, we estimated the

impact (deaths or infectious person-days averted) and

Table 1 The use cases included in the present analysis

Use case
scenario

Description Assumed
prevalence
(%)

Purpose of testing

Hospital
setting

Testing amongst all patients being hospitalised with
respiratory symptoms

25 To identify patients with COVID-19 who should be housed in iso-
lation wards (reducing infection risk in hospital)
Amongst admissions with severe symptoms, to identify those with
COVID-19 who might benefit from anti-inflammatory treatment
(to reduce deaths)

Community
setting

Decentralised, community-level facility available to
all individuals with symptoms who want to be
tested for COVID-19

5 To identify COVID-19 amongst people with mild COVID-consistent
symptoms. Positive test results would trigger isolation and contact
tracing, to minimise opportunities for transmission.

We performed sensitivity analysis on the assumed prevalence, varying the hospital setting prevalence between 10 and 30% and community setting prevalence
between 1 and 10%. Results are presented Additional file 7: Fig.S4
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cost of each testing strategy. We stratified Ag-RDT-led
strategies by the adjunctive role of NAT in confirmation
of a test result (i.e. whether to confirm Ag-RDT-
negatives, Ag-RDT-positives, or not at all). For NAT-
based strategies, we assumed that only a proportion of
eligible individuals receive a NAT result (assuming a
broad range of 10–100%), with the remainder managed
through clinical judgement alone. For each use case, we
sampled all parameters from the uncertainty ranges in
Table 2 using Latin Hypercube Sampling. For each

sampled set of parameters, we calculated both incre-
mental costs and the incremental primary outcome
(deaths averted or infectious person-days that were
isolated) under an Ag-RDT-led strategy or a NAT-
based strategy, relative to no intervention (that is, a
scenario of no testing, nor clinical management of
COVID-19). To quantify uncertainty, we calculated
uncertainty intervals (UIs) as 2.5th and 97.5th percen-
tiles over 10,000 samples and reported median values
as point estimates.

Table 2 Contextual parameters and their uncertainty ranges

Parameter Value References

Hospital
setting

Community
setting

Epidemiology

Prevalence of current or recent SARS-CoV-2 infection (%) * 25 5 Assumption

Proportion amongst those tested who are in acute phase 0.5–1.00 0.5–1.00 Assumption

Of those in acute phase, number of infectious days remaining (days) 5–15 5–15 [16]

Case fatality rate amongst hospitalised COVID-19 patients 0.20–0.30 N/A [7]

Case fatality reduction amongst COVID-19 patients on dexamethasone (1—risk ratio) 0.07–0.25 N/A [7]

NAT performance

NAT sensitivity (for current or recent SARS-CoV-2) 0.85–0.95 0.85–0.95 [17–23]

NAT specificity 0.99–1 0.99–1 [17–20]

NAT availability (proportion able to access NAT test) 0.1–1 0.1–1 Assumption

Cost per NAT test ($) 20–70 20–70

NAT turnaround time (days) 1–10 5–15 [10], Expert
consultation

Confirm Ag-RDT negative results with NAT Y/N Y/N

Confirm Ag-RDT positive results with NAT ** Y/N Y/N

Isolate and initiate treatment (if indicated) whilst awaiting NAT result Y N

Ag-RDT performance (assumed fixed)

Ag-RDT sensitivity for current infection, relative to NAT (%, assumed only amongst
acute cases)*

0.80 0.80 [14, 15]

Ag-RDT specificity, relative to NAT (%)* 0.98 0.98 [14, 15]

Cost per Ag-RDT test ($) 5 5 [14]

Clinical judgement and management

Sensitivity of clinical judgement in absence of NAT 0.45–0.99 0.45–0.99 [24–27]

Specificity of clinical judgement in absence of NAT 0.20–0.70 0.20–0.50 [24–27]

Proportion of hospitalised patients with a negative COVID-19 test result (true and false
negatives) that are initiated onto dexamethasone

0.05–0.15 N/A Assumption

Duration of isolation (days) 10 10 [16]

Duration of dexamethasone treatment (days) 10 N/A [7]

Cost of isolation per day ($) 50–350 N/A [28–30]

Cost of dexamethasone per day ($) 0.13–3.5 N/A [31]

Ranges define limits on uniform distributions, chosen to capture plausible parameter ranges that may apply across a variety of low- and middle-income settings.
As described in the main text, the main analysis is a systematic uncertainty analysis, structured to identify which of these uniform distributions is most influential
for model outcomes. *We performed sensitivity analyses on these fixed parameters, with results presented in the supporting information. We varied prevalence in
the hospital setting between 10 and 30% and in the community setting between 1 and 10% (Additional file 7: Fig.S4). We varied Ag-RDT sensitivity and specificity
between 75-95% and 98–100%, respectively, relative to NAT (Additional file 8: Fig.S5). **We exclude any parameter draws involving NAT confirmation of both Ag-
RDT negative and Ag-RDT positive results.
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To compare testing strategies, we first estimated the
cost per death averted (in the hospital setting), and the
cost per infectious person-day isolated (in both hospital
and community settings) under NAT-based and Ag-
RDT-led strategies. However, we did not aim to deter-
mine whether or not an Ag-RDT would be cost-
effective, given the uncertainties surrounding appropri-
ate willingness-to-pay thresholds for emergency out-
break response [38]. Instead, we compared the two
strategies (Ag-RDT vs NAT) using a simple approach of
plotting their relative impact against their relative cost
for each sampled set of parameters (see Additional file 3:
Fig.S1 for a schematic illustration of the approach). It is
important to note that this approach is distinct from a
conventional cost-effectiveness plane, as the axes are
shown on a relative, rather than a nominal, scale. In the
example of deaths, we denoted ARDT as the deaths
averted by Ag-RDT-led testing, relative to no interven-
tion, and likewise for ANAT. Similarly, we calculated the
incremental cost CRDT of an Ag-RDT-led strategy rela-
tive to no intervention, and likewise for CNAT. We then
plotted the relative impact (ARDT/ANAT) against the rela-
tive incremental cost (CRDT/CNAT).
We defined an Ag-RDT as being ‘favourable’ relative to

NAT, wherever its use resulted simultaneously in more
deaths averted than NAT (i.e. ARDT >ANAT), and a lower
incurred cost per death averted than NAT (i.e. CRDT/
ARDT <CNAT/ANAT). We defined an Ag-RDT as being
‘non-favourable’ otherwise. We performed corresponding
calculations for the outcome of infectious person-days
successfully isolated. Our focus in the following analysis is
on identifying which circumstances would lead to an Ag-
RDT being ‘favourable’ relative to NAT.
Where simulation outputs were equivocal on the

favourability of Ag-RDTs, i.e. straddling favourable and
non-favourable regions, we evaluated the correlation be-
tween each parameter and relevant model outputs using
partial rank correlation coefficients (PRCC), to identify
those parameters that were most influential on the pro-
portion of a simulation falling in a favourable region. In
brief, PRCC is an efficient approach to global sensitivity
analysis that quantifies the strength of association be-
tween any given parameter and model output, while
simultaneously taking account of variation in all other
parameters (for more details on its implementation, see
refs [39, 40]). In particular, where simulation outputs
straddled the vertical dashed line shown in Additional
file 3: Fig.S1, we evaluated correlations against the rela-
tive impact of Ag-RDT-led vs NAT-based testing strat-
egies. Where simulations straddled the diagonal line in
the upper-right quadrant, we evaluated correlations
against the relative cost-per-unit impact (i.e. per death
averted or per infectious person-day isolated). Overall, in
this way, we sought to identify the contextual conditions

under which an Ag-RDT-led strategy would, and would
not, be favoured over NAT.

Additional sensitivity analysis
Finally, we analysed sensitivity to model assumptions not
covered by the analyses above. As a focal model output
for this sensitivity analysis, we chose the proportion of
simulations that were favourable, under a given use case
and a given scenario for the adjunctive use of Ag-RDT
and NAT. First, while the main analysis adopted fixed
values for sensitivity and specificity of an Ag-RDT, sensi-
tivity analyses examined how the proportion favourable
would vary if Ag-RDT sensitivity ranged from 75 to 95%
and if Ag-RDT specificity ranged from 98 to 100%. Sec-
ond, we examined how the proportion favourable would
vary if prevalence of COVID-19 ranged from 10 to 30% in
the hospital setting and 1–10% in the community setting.
Finally, for simplicity in the main analysis of the commu-
nity setting, we assumed perfect adherence to isolation
after a positive test result and no self-isolation amongst
those testing negative. We relaxed these assumptions in
the sensitivity analysis and assumed that non-compliance
with self-isolation reduced the infectious days averted by a
proportion p, while those not required to isolate (i.e.,
those with false-negative test results, and those awaiting
NAT confirmation of an initial Ag-RDT result in the com-
munity) nevertheless self-isolated to a degree that reduced
transmission by a factor q. We examined how the propor-
tion favourable varied as either p or q ranged from 0 to
50%.

Role of the funding source
This work was funded by the Foundation for Innovative
New Diagnostics (FIND), through a grant from WHO.
Authors JS and SS are employees of FIND. Otherwise,
neither FIND nor WHO had no role in the study design,
analysis, or interpretation.

Results
As context to the primary analysis that follows, Add-
itional file 4: Table S1 illustrates that both NAT-based
and Ag-RDT-based algorithms were more costly, but led
to better health outcomes, than a scenario of no interven-
tion. For example, a NAT-based algorithm in a hospital
setting would cost $150,000 (95% uncertainty intervals
(UI) 38,000–490,000) per death averted within the patient
population, while an Ag-RDT-led algorithm, involving
NAT confirmation of Ag-RDT-negatives, would cost
$140,000 (36,000–440,000). Likewise, in a community set-
ting, a NAT-based algorithm was estimated to cost $84
(11–670) per infectious person-day isolated, versus $12
(8–23) for an Ag-RDT-only algorithm (without NAT
confirmation).
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Hospital setting
Figure 2 shows plots of relative incremental cost against
relative impact in terms of deaths averted, comparing
the Ag-RDT-led to the NAT-based strategy in a hospital
setting, with an assumed 25% prevalence of acute or re-
cent COVID-19 amongst those being tested. For deaths
averted, when an Ag-RDT was used in conjunction with
NAT to confirm Ag-RDT-negative results (red points),
such a strategy had greater impact, and at lower cost per
death averted, than a NAT-based strategy (‘favourable
region’) in 96% of all simulations. By contrast, Ag-RDT-
led strategies that involved either no NAT confirmation,
or only confirmation of RDT-positive cases (respectively

yellow and blue points), resulted in too many missed
cases to exceed the impact of NAT-based strategies in
more than 92 and 96% of simulations, respectively. For
settings in which NAT was used to confirm Ag-RDT-
negative results, Fig. 2b illustrates the relationship of
each model parameter to the proportion of parameter
samples that resulted in a ‘favourable’ simulation. In par-
ticular, the availability of NAT, sensitivity of clinical
judgement amongst those unable to access NAT, and
proportion of cases tested during the acute phase were
highly influential. Figure 2c shows the most influential
parameters (NAT availability and clinical judgement) in
greater detail, with points in grey showing where an Ag-

Fig. 2 Relative value of Ag-RDT vs NAT testing, for averting deaths in a hospital setting. a Scatter plots for the relative impact of Ag-RDT vs NAT
(horizontal axis) vs the relative cost of the two strategies (vertical axis). Each dot represents a single simulation with parameter values drawn from the
ranges in Table 2. The grey-shaded area shows the region where an Ag-RDT-led strategy was ‘favourable’ over a NAT-only strategy, meaning that it
averted more deaths, and at a lower cost per death averted (Additional file 3: Fig.S1). Colours of points indicate the adjunctive, confirmatory role of
NAT in an Ag-RDT-led strategy (see in-figure legend). Of the red points, 96% fell in the favourable region. b Sensitivity analysis on the red points in a,
to assess when these points fell above, or below, the diagonal dotted reference line. PRCC denotes ‘partial rank correlation coefficient’, against the cost
per death averted. The longest bars indicate the most influential parameters; positive values indicate parameters that increased the favourability of the
algorithm with increasingly positive values, and conversely for negative PRCCs. For example, when NAT was used to confirm negative results, the
favourability of an Ag-RDT-led strategy was improved in settings having lower clinical sensitivity and a higher proportion of acute infection. c The joint
role of the two most influential parameters in b. Grey and black points show parameter combinations where an Ag-RDT was favourable, and non-
favourable, respectively, relative to NAT. Red lines show 90% sensitivity of clinical judgement (vertical line), and 85% NAT availability (horizontal line). In
the lower left quadrant of these lines, an Ag-RDT was favourable over NAT in 99% of simulations. In these results, it is assumed that patients were
placed in isolation (where indicated) while awaiting a NAT result: Additional file 5: Fig.S2 in the supporting information shows results in the alternative
scenario where they were not isolated, pending NAT results
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RDT was favourable. Broadly, the figure illustrates that
an Ag-RDT would be favourable in settings of low NAT
availability and low sensitivity of clinical judgement: in
indicative terms, as long as sensitivity of clinical judge-
ment was < 90%, and NAT was available to < 85% of pa-
tients, 99% of simulations were favourable.
Figure 3 shows similar results for the outcome of in-

fectious person-days isolated in a hospital setting. Im-
portantly, Fig. 3a illustrates the potential for the sole use
of Ag-RDT (without NAT confirmation) to offer higher
impact, at lower cost, than a NAT-based scenario (yel-
low points, 27% of which were in the favourable region).
Figure 3c shows a bivariate sensitivity analysis of the two
most influential model parameters, demonstrating that
an Ag-RDT-only strategy was likely to be favourable in
terms of averting infection as long as the sensitivity of
clinical judgement in the absence of NAT was < 80%
and the availability of NAT was < 65%. Under these con-
ditions, the proportion of simulations that were
favourable was 66%.
These results assume that all patients were placed in iso-

lation while awaiting NAT results. Additional file 5: Fig.S2
and Additional file 6: Fig.S3 show corresponding results
when assuming no isolation pending NAT results, illus-
trating that the results are essentially unchanged for
deaths averted (Additional file 5: Fig.S2). For infectious pa-
tient days isolated, a practice of isolating patients pending
NAT results mitigated the drawbacks of multi-day NAT
turnaround times: a decision not to isolate pending results
therefore reduced the impact of a NAT-based strategy,
thus making an Ag-RDT-only strategy more favourable in
comparison. Additional file 6: Fig.S3 illustrates that, in
such a scenario, 93% of simulations placed the Ag-RDT
strategy in the favourable region.

Community setting
Finally, Fig. 4 shows results for the community setting
scenario. Key assumptions, compared to the hospital
scenario, include the sole priority is to avert infection,
because mortality risk in the individuals being evaluated
is low; lower prevalence of SARS-CoV-2 amongst those
being tested (5%); and we assumed individuals are not
placed in isolation while awaiting NAT results, because
of the infeasibility of doing so. Similarly to Fig. 3, con-
firming Ag-RDT-negative cases with NAT was highly
likely to avert more potential transmission than NAT
alone, and at lower cost per infectious day averted (red
points, favourable in 80% of simulations). It was also
possible for the sole use of Ag-RDT to be more impact-
ful than NAT while costing less (yellow points,
favourable in 98% of simulations). Figure 4b illustrates
the key drivers that increased the relative impact of Ag-
RDT-only vs NAT-based strategies. These were a higher
proportion of individuals that were still in their acute

(infectious) phase while being tested, a higher availability
of NAT, a higher cost per NAT test, and a longer NAT
turnaround time.

Additional sensitivity analysis
Additional file 7: Fig.S4, Additional file 8: Fig.S5 and
Additional file 9: Fig.S6 show additional sensitivity ana-
lyses for both hospital and community settings, under al-
ternative model assumptions. For example, the
proportion of simulations being favourable for Ag-RDT
remained stable with respect to alternative assumptions
for the prevalence of COVID in the population being
tested and under different algorithms, in both hospital
and community settings (Additional file 7: Fig.S4). In-
creasing Ag-RDT sensitivity increased the favourability
of all three Ag-RDT algorithms in the hospital setting
(Additional file 8: Fig.S5A, B.), but had only modest ef-
fect on the community setting (Additional file 8:
Fig.S5C). Increasing Ag-RDT specificity had similarly
modest impact on an algorithm’s favourability in all set-
tings (Additional file 8: Fig.S5D-F). Additional file 9:
Fig.S6 shows analysis under alternative assumptions for
self-isolating behaviour in the community setting.
Diminishing compliance with requirements to self-
isolate tended to reduce the favourability of an Ag-RDT-
only strategy (i.e. with no NAT confirmation), but had
the opposite effect on the favourability of a strategy to
confirm Ag-RDT-positives. In both cases, the proportion
favourable varied by less than 10 percentage points over
the parameter range examined here. Similar sensitivity
was observed for model assumptions relating to volun-
tary self-isolation, when not required to do so (Add-
itional file 9: Fig.S6B).

Discussion
The emergence of antigen-detection rapid diagnostic
tests for SARS-CoV-2 has raised important questions
about trade-offs between accessibility and performance;
to inform country-level decisions about the use of these
tests, there is a need for more evidence on how to navi-
gate such trade-offs. Recent models and commentaries
have highlighted the potential utility of high-frequency,
low-sensitivity testing of asymptomatic individuals [41],
and the current analysis demonstrates that under certain
circumstances, a less-sensitive but more-accessible test
may be preferable for diagnosis of symptomatic COVID-
19 as well. Rather than aiming to specify parameter
values with precision, our approach instead embraces
parameter uncertainty, by modelling a broad range of
scenarios or contextual factors. This approach partly re-
flects the uncertainty in model parameters, but also their
anticipated variability across different country settings
and as local epidemics change over time. By structuring
our approach in this fashion, we sought to identify the
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contextual factors that are most important in deciding
the value of an Ag-RDT.
Our results suggest that the value of an Ag-RDT-led

strategy is strongly supported for evaluating symptomatic
individuals in community settings, being highly likely to
be simultaneously less costly and more impactful than
relying on NAT and clinical judgement (Fig. 4). In hospital
settings, the favourability of Ag-RDT may be subject to
certain qualifications. For example, in averting deaths, an
Ag-RDT, supported by NAT to confirm Ag-RDT-negative

results, is likely to be favourable (averting more deaths, at
less cost per death averted) to NAT and clinical judge-
ment alone, in settings where NAT is available for less
than 85% of patients and sensitivity of clinical judgement
(in the absence of NAT) is less than 90% (Fig. 2). How-
ever, although confirmation of a negative Ag-RDT result
with NAT averts more deaths for a given cost than NAT
only, this algorithm is still more costly than a NAT-only
algorithm and may therefore raise challenges of affordabil-
ity in settings with limited resources.

Fig. 3 Relative value of Ag-RDT vs NAT testing, for averting infections in a hospital setting. a Scatter plots for the relative impact of Ag-RDT vs
NAT (horizontal axis) vs the relative cost of the two strategies (vertical axis). Of the yellow points (no NAT confirmation of Ag-RDT results), 27% fell
in the favourable region shaded in grey. Details as in Fig. 2a and Additional file 3: Fig.S1. b Sensitivity analysis for model parameters on the
yellow points in a. The interpretation of PRCC is explained in further detail in the caption of Fig. 2. c concentrates on the two most influential
parameters in this case, NAT availability and sensitivity of clinical judgement. As in Fig. 2c, grey and black points show parameter regimes where
an Ag-RDT was, respectively, favourable and unfavourable, relative to NAT. Red lines show 80% sensitivity of clinical judgement (vertical line) and
65% NAT availability (horizontal line). In the lower left quadrant of these lines, an Ag-RDT was favourable over NAT in 66% of simulations. In these
results, it was assumed that patients were placed in isolation while awaiting a NAT result: Additional file 6: Fig.S3 in the supporting information
shows results in the alternative scenario where they were not isolated
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We note that in the community setting in particular,
any reliance on NAT-based testing would face substantial
challenges in practice. For example, in most settings, it is
unlikely that individuals would be adequately isolated
while awaiting NAT results, given the large number of un-
necessary isolations, and associated burden on patients
and families, that such a strategy would incur. Moreover,
it will also typically be infeasible to offer timely NAT to all
individuals with potential COVID-19 symptoms, given the
attendant financial, human resource and supply con-
straints. In this setting, our analysis shows how an afford-
able, rapid test, even one with lower performance than
NAT, can achieve greater impact overall, and at lower
cost, than a strategy that relies on NAT instead.
Notably in both hospital and community scenarios,

the key determining factors for the value of an Ag-RDT
(namely, the availability of NAT, sensitivity of clinical
judgement, and proportion of cases tested during the
acute phase) all relate to the ability of the existing sys-
tem to detect cases of SARS-CoV-2. These findings
highlight the potential value of implementation studies
to gather data on these factors when making program-
matic decisions for the introduction and implementation
of new Ag-RDTs in any given setting. Overall, this work
serves broadly to illustrate an analytical framework that
could be readily adjusted to local realities in different

settings. A simple, user-friendly web-based tool is avail-
able, to perform the simulations shown here, but also to
allow these simulations to be extended to alternative,
user-specified parameter ranges [13].
Certain limitations of scope bear mention. Our focus

in this work is on identifying the circumstances in which
an Ag-RDT might be most valuable, given a pre-
specified performance profile. Recent guidance published
by WHO addresses target product profiles for Ag-RDTs:
that is, how a test should best be optimised in terms of
accuracy, cost and ease-of-use, for specified use cases
[11]. For simplicity, our approach treats transmission-
related impact of testing as being directly proportional
to the number of days for which testing results in isola-
tion of an infectious person, without considering vari-
ation between individuals or over time in the degree of
infectivity or the strictness of isolation. Similarly, our as-
sessment of mortality outcomes does not account for
the potential of a test to indirectly reduce incidence and
mortality by interrupting transmission. Further work
using dynamic models of SARS-CoV-2 transmission
would be valuable in addressing this gap. In addition,
while our results are based on a broad sensitivity ana-
lysis, it should be noted that these same results may de-
pend on the range of parameters that we have assumed,
and indeed these ranges may vary across different

Fig. 4 Relative value of Ag-RDT vs NAT testing in a community setting. We assumed that in a community setting, the focus is on averting infection, and that
any severe cases of respiratory disease are more likely to present in hospital settings (Fig. 3). Hence, in this setting, we focused on infectious person-days
averted; we also assumed that individuals awaiting NAT results were not isolated during this time, owing to the infeasibility of doing so in this setting. a Scatter
plot of the relative impact of Ag-RDT vs NAT (horizontal axis) vs the relative cost of Ag-RDT vs NAT (vertical axis). Dashed reference lines are as explained in Fig.
2 and in Additional file 3: Fig.S1. Of the yellow points (no NAT confirmation of Ag-RDT results), 98% fell in the favourable region shaded in grey; of the red
points (confirm Ag-RDT negatives with a NAT), 80% fell in the favourable region. b Subgroup sensitivity analysis of the yellow points in a. Interpretation of
PRCCs are as explained in Fig. 2 caption. Because the vast majority (98%) of simulations show Ag-RDT was favourable to NAT in this scenario, we did not
conduct additional bivariate sensitivity analyses as for Figs. 2c and 3c
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settings. Our user-friendly tool allows users to adapt
some of these ranges to specific settings. Amongst other
limitations, we have adopted several simplifications, per-
haps most importantly assuming a dichotomy between
‘acute’ and ‘recent’ infection and the detectability of each
by NAT or Ag-RDT. This assumption ignores poten-
tially important complexities, including how infectivity
varies over the clinical course; the stage in the clinical
course at which individuals are likely to be tested; and
the implications of changing viral/antigen/RNA load
over the clinical course, for the ability of a given test to
detect infection [18, 42–45]. Previous modelling studies
have incorporated some combinations of these factors
[3, 41], but longitudinal data on all of these factors will
be critical in refining these and other modelling ap-
proaches, to account fully for their potential
interactions.

Conclusions
Given the immediate importance of virological testing
for the control of SARS-CoV-2, it is important for deci-
sions about testing strategy to be guided by the available
evidence. Our results show how, in certain clinical con-
ditions, the use of Ag-RDTs could achieve equal or
greater impact, and at lower cost, than relying on NAT
alone. While the accuracy of diagnostic tools is import-
ant, other considerations are also critical: as control ef-
forts increasingly shift from blanket lockdowns towards
intensive testing and early identification, the speed, af-
fordability, and ease-of-use of diagnostic tools are likely
to play an increasingly key role in the response to SARS-
CoV-2. Our findings illustrate where such rapid and af-
fordable tests are likely to improve outcomes, in a more
cost-efficient way than reliance on NAT and clinical
judgement alone.
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Additional file 1: Text S1. Expert consultation.

Additional file 2: Text S2. Model equations.

Additional file 3: Figure S1. Schematic illustration for visualising the
value of an Ag-RDT-led strategy, relative to a scenario involving NAT and
clinical judgement. Although the figure involves deaths averted, the same
structure applies for averting infectious person-days. For a given set of
parameters drawn from the parameter ranges shown in Table 2, we simu-
lated the cost and impact of a given Ag-RDT-led strategy, and of a NAT-
based testing strategy, both relative to a no-intervention scenario. This
outcome was then represented in the figure by plotting the relative
deaths averted by Ag-RDT vs NAT (horizontal axis) against the relative

cost of the two strategies (vertical axis). Thus, for example, in the lower
right quadrant, an Ag-RDT-led strategy would cost less, but have more
impact, than NAT. The diagonal dashed line shows an important thresh-
old: for points below this line, an Ag-RDT-led strategy would cost less per
death averted than NAT, and vice versa. Overall, therefore, the shaded
area shows the region in which an Ag-RDT would simultaneously cost
less per death averted, and avert more deaths overall, than NAT. We de-
note this area as the ‘favourable region’ for an Ag-RDT, and elsewhere as
‘non-favourable’: in our current analysis we aim to identify the circum-
stances under which an Ag-RDT, of a given performance and cost, would
occupy this region.

Additional file 4: Table S1. Summary of cost per death or infectious
person-day averted of results presented in the main text.

Additional file 5: Figure S2. Relative value of Ag-RDT-led vs NAT-based
testing, for averting deaths in a hospital setting. The figure shows the
same results as those presented in Fig. 2 in the main text, but here as-
suming that all patients awaiting a NAT result (whether as part of a NAT-
based strategy or for confirmation of Ag-RDT results) were not isolated
during this time. Results illustrate qualitatively similar findings to those
shown in the main text. In panel (A), in the scenario where Ag-RDT-
negative results were confirmed using NAT (red points), 57% of simula-
tions placed the Ag-RDT-led strategy in the favourable region, below the
diagonal dashed line. Panels (B, C) show additional sensitivity analyses for
these points in particular, as described in Fig. 2. In (C), red lines show
75% NAT availability (vertical line), and 90% sensitivity of clinical judge-
ment (horizontal line). In the lower left quadrant of these lines, an Ag-
RDT was favourable over NAT in 85% of simulations.

Additional file 6: Figure S3. Relative value of Ag-RDT-led vs NAT-based
testing, for averting infections in a hospital setting. The figure shows the
same results as those presented in Fig. 3 in the main text, but here as-
suming that all patients awaiting a NAT result (whether as part of a NAT-
based strategy or for confirmation of Ag-RDT results) were not isolated
during this time. In panel (A), in the scenario where there was no NAT
confirmation of Ag-RDT results (yellow points), 93% of simulations placed
the Ag-RDT-led strategy in the favourable region, to the right of the verti-
cal, dashed line. Panels (B, C) show additional sensitivity analyses for these
points in particular, as described in Fig. 3. In (C), red lines show a NAT
turnaround time of 3 days (vertical line), and a 30% NAT availability (hori-
zontal line). In the upper right quadrant of these lines, an Ag-RDT was
favourable over NAT in 69% of simulations.

Additional file 7: Figure S4. Sensitivity analysis to varying prevalence
of COVID-19 amongst those being tested. As a focal model output, all fig-
ures show the proportion of simulations in which an Ag-RDT was
favourable, with different algorithms labelled by the different line colours.
Panels A and B show the impact of varying prevalence on deaths and in-
fectious days averted, respectively, in a hospital setting. Panel C shows
the impact on infectious days averted in a community setting. Similar to
the analysis presented in the main text, we assumed that all individuals
were isolated whilst waiting for a NAT result in the hospital setting and
that no one isolated whilst awaiting a test result in the community set-
ting. Results illustrate that the proportion favourable remained stable to
these alternative assumptions for prevalence.

Additional file 8: Figure S5. Sensitivity analysis to varying Ag-RDT sen-
sitivity and specificity. As a focal model output, all figures show the pro-
portion of simulations in which an Ag-RDT was favourable, with different
algorithms labelled by the different line colours. Panels A-C show the
sensitivity of Ag-RDT being varied between 75 and 95% across the hos-
pital and community settings, assuming specificity remained fixed at
98%. Panels D-F show the specificity of Ag-RDT being varied between 98
and 100%, assuming sensitivity remained fixed at 80%. Similar to the ana-
lysis presented in the main text, we assumed that all individuals were iso-
lated whilst waiting for a NAT result in the hospital setting and that no
one isolated whilst awaiting a test result in the community setting. Re-
sults illustrate that, in a community setting, increasing Ag-RDT sensitivity
increased the favourability of the “Ag-RDT only” and “confirm Ag-RDT
negative” strategies (panel C). For example, the favourability of an algo-
rithm that confirms an Ag-RDT negative result increased from 79% to
83% when sensitivity increased from 75% to 95%. Increasing sensitivity
had little impact on the “confirm Ag-RDT positive” strategy; since the only
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costs incurred under a community setting was the cost of a test, a NAT-
only strategy was often cheaper and averted more infectious days than
the “confirm Ag-RDT positive” strategy (the cost of testing with an Ag-
RDT and confirming a positive result with a NAT test makes it costly, and
by re-testing a positive result with a NAT, the sensitivity of the algorithm
was lower due to the imperfect sensitivity of NAT). Similar to the hospital
setting, specificity had little impact on an algorithm’s favourability (panel
F).

Additional file 9: Figure S6. Sensitivity analysis to patient behaviour in
relation to self-isolation, in the community setting. As a focal model out-
put, all figures show the proportion of simulations in which an Ag-RDT
was favourable, with different algorithms labelled by the different line
colours. Panel A shows the impact of compliance amongst those re-
quired to self-isolate after a positive final test result. Panel B shows the
impact of test-negative individuals voluntarily self-isolating. This sensitivity
analysis was restricted to the community setting as it is likely that hospi-
tals will enforce compliance to isolation guidelines. Results illustrate that
increasing the proportion of compliance to isolation recommendations
increased the favourability of both “Ag-RDT-only” and “confirm Ag-RDT
negative” strategies, from 86% and 68% of simulations being favourable
with 50% compliance to 98% and 80% with 100% compliance, respect-
ively. The benefit of an Ag-RDT test in rapidly detecting COVID cases, and
hence averting onward transmission, is reduced if these individuals did
not isolate. However, the opposite was seen with the “confirm Ag-RDT
positive” strategy, with the favourability of the algorithm decreasing from
8% to 0% if compliance doubled from 50% to 100%. Generally, this strat-
egy detected fewer COVID cases than a NAT-based strategy, due to the
reduction in overall sensitivity caused by inclusion of NAT confirmation;
thus, increasing the proportion of individuals that did comply had a
greater effect on a NAT-based strategy than the Ag-RDT strategy, hence
increasing the latter’s favourability. Similar results were seen for voluntary
self-isolation (where false negatives voluntarily self-isolate).
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