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Intensive lactation among women with
recent gestational diabetes significantly
alters the early postpartum circulating lipid
profile: the SWIFT study
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Abstract

Background: Women with a history of gestational diabetes mellitus (GDM) have a 7-fold higher risk of developing
type 2 diabetes (T2D). It is estimated that 20-50% of women with GDM history will progress to T2D within 10 years
after delivery. Intensive lactation could be negatively associated with this risk, but the mechanisms behind a
protective effect remain unknown.

Methods: In this study, we utilized a prospective GDM cohort of 1010 women without T2D at 6-9 weeks
postpartum (study baseline) and tested for T2D onset up to 8 years post-baseline (n=980). Targeted metabolic
profiling was performed on fasting plasma samples collected at both baseline

and follow-up (1-2 years post-baseline) during research exams in a subset of 350 women (216 intensive
breastfeeding, IBF vs. 134 intensive formula feeding or mixed feeding, IFF/Mixed). The relationship between
lactation intensity and circulating metabolites at both baseline and follow-up were evaluated to discover underlying
metabolic responses of lactation and to explore the link between these metabolites and T2D risk.

Results: We observed that lactation intensity was strongly associated with decreased glycerolipids (TAGs/DAGs) and
increased phospholipids/sphingolipids at baseline. This lipid profile suggested decreased lipogenesis caused by a
shift away from the glycerolipid metabolism pathway towards the phospholipid/sphingolipid metabolism pathway
as a component of the mechanism underlying the benefits of lactation. Longitudinal analysis demonstrated that
this favorable lipid profile was transient and diminished at 1-2 years postpartum, coinciding with the cessation of
lactation. Importantly, when stratifying these 350 women by future T2D status during the follow-up (171 future T2D
vs. 179 no T2D), we discovered that lactation induced robust lipid changes only in women who did not develop
incident T2D. Subsequently, we identified a cluster of metabolites that strongly associated with future T2D risk from
which we developed a predictive metabolic signature with a discriminating power (AUC) of 0.78, superior to
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common clinical variables (i.e, fasting glucose, AUC 0.56 or 2-h glucose, AUC 0.62).

Conclusions: In this study, we show that intensive lactation significantly alters the circulating lipid profile at early
postpartum and that women who do not respond metabolically to lactation are more likely to develop T2D. We
also discovered a 10-analyte metabolic signature capable of predicting future onset of T2D in IBF women. Our
findings provide novel insight into how lactation affects maternal metabolism and its link to future diabetes onset.

Trial registration: ClinicalTrials.gov NCT01967030.

Keywords: Lactation, Lipid metabolism, Gestational diabetes mellitus, Type 2 diabetes risk

Background

It is recommended by the World Health Organization
(WHO) that mothers should exclusively breastfeed in-
fants for the first 6 months following delivery for optimal
maternal and infant health outcomes [1]. Despite this,
breastfeeding rates remain well below 50% in infants
younger than 6 months in most countries, irrespective of
total income [2]. This may result from inability to
breastfeed, lack of an extended period for paid maternity
leave, inadequate information and social support, par-
ticularly in women with high pre-pregnancy obesity, pro-
fessional career demands, and older or younger maternal
age [1, 3]. This is concerning as lactation is a postpartum
behavior associated with several beneficial effects includ-
ing reduced infant morbidity and mortality, preventing
breast and ovarian cancer in mothers, as well as having a
negative association with their risk of developing future
diabetes and other cardiovascular diseases in mid to later
life [2, 4-9].

In prospective studies of lactation and incident type 2
diabetes (T2D), 5 or more months of lactation was asso-
ciated with up to 50% reduction in the relative risk of fu-
ture T2D [7, 8]. A meta-analysis of 206,204 women
reported that breastfeeding for 12 months or longer was
associated with a relative risk reduction of only about
30% for incident T2D (pooled odds ratio 0.70; 95% CI,
0.62-0.78; p < 0.001) [10]. Other large epidemiologic
studies followed women starting at older ages and re-
ported much weaker protective effects of lactation on fu-
ture T2D (3-15% lower relative risk for each year of
lactation) [11-13]; however, these studies were limited
by self-report of diabetes and inability to account for
GDM history, potentially biasing estimates towards the
null.

GDM is a common disorder that occurs in approxi-
mately 10% of all pregnancies [14—16]. Women who de-
velop GDM have several fold higher risk of developing
T2D during mid to later life compared to non-GDM
women [17, 18]. The Coronary Artery Risk Development
Study in Young Adults (CARDIA), a biracial cohort with
black and white women, found that 6 or more months
of lactation was associated with up to 50% relative re-
duction in the incidence of T2D in the 30-year follow-

up [7]. The Study of Women, Infant Feeding, and Type
2 Diabetes after GDM Pregnancy (SWIFT), a racially
and ethnically diverse cohort, found that increased lacta-
tion intensity and duration for 2 or more months was
associated with a graded 34-57% relative risk reduction
in the 2-year incidence of T2D after GDM pregnancy,
independent of prenatal glucose intolerance and peri-
natal outcomes [8]. Overall, this body of evidence sug-
gested a significant association between intensive
lactation and reduced risk of incident T2D. However,
the mechanisms underlying these observed beneficial ef-
fects of lactation on future diabetes onset remain
unknown.

Lipids play an important role in the pathogenesis of
T2D. It has been demonstrated that elevated circulating
triacylglycerol (TAG) and decreased high-density lipo-
protein (HDL) cholesterol are directly associated with
T2D [19, 20]. Some studies have focused on lipid metab-
olism during lactation and demonstrated that intensive
lactation after a GDM pregnancy was associated with
higher HDL-cholesterol and lower fasting TAGs [21,
22]. Similarly, a longitudinal study showed higher HDL-
cholesterol persisted in women who had lactated for 3
months or longer [23]. In a previous study applying tar-
geted metabolomics, Much et al. found that lactation >
3 months in women with previous GDM pregnancy was
associated with a higher total lysophophatidylcholine/
total phosphatidylcholine ratio at 30 and 120 min during
a 2-h 75-g oral glucose tolerance test (OGTT) within
3.6 years postpartum [24]. They also observed lower
branched-chain amino acid concentrations at 30 min
within 0.7 years postpartum in this group [24]. Despite
these intriguing findings, only a limited number of lipids
(90 glycerophospholipids and 15 sphingolipids) were an-
alyzed, warranting a more comprehensive and in-depth
analysis of lipid metabolism associated with lactation.

Currently, the recommended test to reclassify glucose
tolerance after GDM pregnancy is a 2-h 75-g OGTT
performed at 6 to 12 weeks postpartum followed by test-
ing for diabetes every 1-3years via fasting plasma glu-
cose (FPG) and 2-h OGTT [25]. However, the accuracy
of a 2-h 75-g OGTT for prediction of future T2D is an
unexceptional ~65% [26-28]. A more convenient and


https://clinicaltrials.gov/ct2/show/NCT01967030

Zhang et al. BMC Medicine (2021) 19:241

accurate predictive test is needed to assess glucose toler-
ance and predict future T2D following GDM pregnancy.
Specific metabolites revealed by discovery-based meta-
bolomics in addition to glucose were reported to facili-
tate the early prediction of T2D in the general
population [29]. Therefore, a metabolite-based signature
at early postpartum may contribute to effective predic-
tion of the future onset of T2D.

In the present study, we aim to determine the associ-
ation between intensive lactation and metabolic profiles
in women with recent GDM pregnancy and subse-
quently use selected metabolites to predict future risk of
T2D.

Methods

Design of SWIFT cohort

The Study of Women, Infant Feeding, and Type 2 Dia-
betes after GDM Pregnancy (SWIFT) is a prospective,
longitudinal clinical research study that enrolled 1035
racially and ethnically diverse (Non-Hispanic white, 23%;
Hispanic, 31%; Asian, 36%; Black, 8%; other, 2%) women
(aged 20-45years) with GDM (via 3-h 100-g OGTTs,
based on Carpenter-Coustan’s criteria [30]) who deliv-
ered a singleton, live-born infant at or after 35 weeks of
gestation at KPNC hospitals from September 2008 to
December 2011. This clinical trial can be located at
ClinicalTrials.gov with identifier NCT01967030. Details
of study design and setting, study sample size, inclusion/
exclusion criteria, study procedures, assessment of the
main exposure, and other detailed information on data
collection methodologies have been described elsewhere
[31]. Briefly, participants were recruited from 13 KPNC
medical centers/office facilities and pregnant women
with a diagnosis of GDM were identified from electronic
medical records and added into the study recruitment
tracking system on a weekly basis. After pre-screening
for eligibility by trained research staff, potential partici-
pants were invited to participate in the research study,
and those interested were scheduled for an in-person re-
search examination at 6-9weeks postpartum (study
baseline). At baseline, the 1035 participants were admin-
istered a 2-h 75-g OGTT to classify glucose tolerance
status and measure plasma glucose and insulin. Add-
itionally, lactation intensity and duration were evaluated,
and other assessments were conducted under research
protocols. Three in-person examinations were addition-
ally performed annually for up to 2years post-baseline,
at which 2-h 75-g OGTTs and research assessments
were performed. At each exam, plasma samples (fasting
and 2-h timepoint) were collected during the 2-h 75-g
OGTT to reclassify glucose tolerance. New diagnoses of
T2D since baseline were also obtained electronically
from medical records up to 8 years post-baseline. T2D
was diagnosed via the ADA criteria [32].
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Frequency and amount of breastmilk feeding (includ-
ing expressed breast milk bottle feeding) and formula
feeding for each woman were assessed by trained re-
search staff via telephone calls, mailed feeding diaries,
questionnaires during in-person visits, and mailed
monthly surveys from birth to 12 months post-delivery
as previously described [33]. Based on this information,
breastfeeding behavior measurements within each
month were operationalized as breastfeeding intensity
and duration ratio (quantitative methodology), which
was calculated as the number of breast milk feeds (on
average in 24 h) divided by the total number of all liquid
feeds (on average in 24 h) during the past 7 days to yield
a score with a range from 0 to 1 as described by Piper
et al. [34]. A score of “1” represents exclusive breastfeed-
ing and a score of “0” represents exclusive formula feed-
ing, with fractional scores representing levels of lactation
intensity. We then constructed a summary score (LIR)
for the baseline measures by adding the intensity ra-
tios from delivery to 2 months postpartum to obtain a
lactation score at study baseline, ranging from 0 to 2.
We set a 2-month LIR score of 1.45 as the cut-off
value to categorize the women into intensive breast-
feeding (IBF) or intensive formula/mixed feeding (IFF/
Mixed) groups. Women with LIR score > 1.45 were
defined as IBF, whereas women with LIR score < 1.45
were considered as IFF/Mixed. These two groups re-
flect different levels of lactation intensity during the
first 2 months. The 1.45 cut-off value was achieved
by 70-100% of feedings being breastmilk for each
month. At least 27% of women in this category had
exclusively breastfed for 2months, and at least 96%
had breastfed at 80% for 2 months.

Fasting plasma samples obtained from 2-h 75-g
OGTTs at baseline and at follow-up exams were proc-
essed, aliquoted and stored in -70°C freezers. The ali-
quoted plasma samples were then transported from the
study sites to the KPNC Regional Laboratory and then
further to the Division of Research (DOR) for storage at
-70°C. Upon arrival at the DOR research clinic, cryo-
genic vials were scanned into the SWIFT biospecimen
database.

Targeted metabolomic profiling and data pre-processing

The metabolomics data was obtained from our recently
published paper where the details of metabolomics ana-
lysis were described [75]. Metabolomic profiling was ap-
plied on fasting plasma samples from 350 participants
(216 IBF vs. 134 IFF/Mixed) at baseline and 303 partici-
pants (188 IBF vs. 115 IFF/Mixed) at follow-up (not all
participants delivered follow-up samples). In this study,
the AbsoluteIDQ p180 kit (Biocrates Life Sciences, Inns-
bruck, Austria), which quantifies broad metabolite
spectrum and reflects diverse physiological processes,
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was applied to measure a total of 188 metabolites ac-
cording to the manufacturer’s instructions using mass
spectrometry-based techniques. These 188 analytes in-
cluded 21 amino acids (AA), 40 acylcarnitine (AC), 21
biogenic amines (BA), 1 monosaccharide, 90 glyceropho-
spholipids, and 15 SMs. For the data pre-processing, me-
tabolites with missing values >40% were excluded from
the study, which reduced the total number of metabo-
lites from 188 to 141 at baseline and from 188 to 145 at
follow-up. The remaining missing values were imputed
with half of the limit of detection (LOD) value of each
metabolite. The value of each metabolite was normalized
within the total value of each sample, followed by log-
transformation and mean-centric scaling; distribution of
data was then checked. Afterwards, dataset qualities for
further bioinformatic analysis were examined for poten-
tial confounding factors and the existence of class separ-
ation between two groups by performing PCA and PLS-
DA along with empirical Bayes estimation (1000 random
permutations in this situation). A robust separation be-
tween two groups was confirmed by empirical p value <
0.05. The data pre-processing was performed on the on-
line platform MetaboAnalyst 4.0 (https://www.
metaboanalyst.ca/home.xhtml) [35].

Targeted lipidomic profiling and data pre-processing

The lipidomics data was obtained from our recently
published paper where the details of lipidomics ana-
lysis were described [36]. Baseline fasting plasma sam-
ples obtained from 350 women (216 IBF vs. 134 IFF/
Mixed) were subjected to targeted-lipid profiling per-
formed by Metabolon, Inc. (Morrisville, NC) based on
gas chromatography—mass spectrometry and liquid
chromatography—mass spectrometry techniques. The
targeted lipidomic profiling allowed the measurements
of 1008 lipid species from 15 classes as well as 296
fatty acids. The 1008 lipid species include 26 CE, 26
FFA, 26 MAG, 59 DAG, and 493 TAG from the neu-
tral lipid group; 26 LPC, 26 LPE, 140 PC, 216 PE,
and 28 PI from the phospholipid group; 12 CER, 13
DCER, 12 HCER, 12 LCER, and 12 SM from the
sphingolipid group. For the data pre-processing, lipids
with >5% missing values were excluded at baseline,
leaving 818 out of 1008 lipid species for the bioinfor-
matic analysis. Other data pre-processing including
missing value imputation, data normalization, and
transformation, PCA and PLS-DA analyses were per-
formed as stated above.

Cross-sectional analyses at baseline and follow-up:
differential expression analysis

At baseline, we selected 350 women (216 IBF vs. 134
IFF/Mixed) for the cross-sectional analysis using both
lipidomics and metabolomics data. At follow-up, 303 of
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the 350 women (188 IBF vs. 115 IFF/Mixed) were used
for the cross-sectional analysis using metabolomics data.
As this is a secondary analysis of previous case-control
data [36, 75], the data cannot be treated as a cohort in
which the original case-control design is ignored. We
took the nested case-control study design into consider-
ation and performed secondary data analysis using a
weighted regression model [37, 38] to detect differen-
tially expressed metabolites/lipids between IBF and IFF/
Mixed women at baseline and follow-up. The sampling
probability was calculated for each individual in the
case-control study. Sampling weights are calculated as
the inverse of the sampling probability. Individual lipids/
analytes along with calculated weights were subjected to
generalized linear models (GLMs) and Type III ANOVA
tests were performed. As pre-pregnancy BMI was signifi-
cantly different (p = 0.02, Table 1) between the two
groups, these models were adjusted for pre-pregnancy
BMI. Afterwards, false discovery rate (FDR) was calcu-
lated using Benjamini-Hochberg method for multiple
comparison. Metabolites and lipid species with FDR
value < 0.05 were considered to be significantly differen-
tially expressed between IBF and IFF/Mixed. Lipid spe-
cies were further grouped and analyzed according to the
number of carbon atoms, the number of double bonds,
and fatty acid composition. The 350 women were then
stratified based on the onset of future T2D; 171 women
progressed to T2D during the follow-up whereas 179
women did not. In the future T2D subgroup, 98 women
were IBF and 73 women were IFF/Mixed. In the no T2D
subgroup, 118 women were IBF and 61 women were
IFF/Mixed. We also stratified our analytic samples based
on the status of glucose tolerance at baseline according
to the 2-h 75-g OGTT results and found that 180
women had IFG or IGT, whereas 170 women exhibited
NGT. In the IFG/IGT subgroup, 98 women were IBF
and 82 women were IFF/Mixed. In the NGT subgroup,
118 women were IBF and 52 women were IFF/Mixed.
Differential lipids between IBF and IFF/Mixed in each
subgroup (Future T2D, No T2D, IFG/IGT, NGT) were
identified as stated above. A cut-off of FDR < 0.05 was
used for significance. The analyses were performed in
open-source software RStudio (Version 1.2.5033).

Longitudinal analysis of metabolites from baseline to
follow-up

Metabolomics data from 303 samples (188 IBF and 115
IFF/Mixed) collected both at baseline and follow-up
were included in the longitudinal analysis. Metabolites
with missing values >40% at either baseline or follow-up
were excluded at both time points, leaving 130 analytes
for further analysis. Data normalization and transform-
ation was performed as stated above. Batch effects be-
tween baseline and follow-up were corrected by using
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Table 1 Clinical characteristics of women with GDM in the SWIFT cohort

IBF (n = 216) IFF/Mixed (n = 134) P value
Prenatal characteristics
Age, years, mean (SD) 34.1 (4.7) 336 (5.1) 038
Pre-pregnancy BMI, kg/m?, mean (SD) 322 (638) 34.1 (86) 0.02
Race, n (%) 035
Non-Hispanic white 35 (16.2%) 23 (17.1%)
Asian 68 (31.5%) 38 (28.4%)
Non-Hispanic black 18 (8.3%) 19 (14.2%)
Hispanic 93 (43.1%) 52 (38.8%)
Others 2 (0.9%) 2 (1.5%)
Z-score sum of 3-h 100-g OGTT during pregnancy, mean (SD) 0.5 (3.0) 06 (2.7) 0.81
Treatment for GDM, n (%) 0.88
Diet 124 (57.4%) 78 (58.2%)
Oral medications/insulin 92 (42.6%) 56 (41.8%)
Baseline characteristics at 6-9 weeks postpartum (study baseline)
2-h 75-g OGTT
FPG, mmol/l, mean (SD) 96.3 (94) 1004 (9.9) <0.001
2 h-PG, mmol/l, Mean (SD) 1186 (31.0) 1227 (29.2) 0.22
Fasting insulin, pmol/l, median (IQR) 213 (15.2-314) 29.5 (19.6-41.1) <0.001
HOMA-IR, median (IQR) 50 (35-77) 7.5 (4.7-10.6) <0.001
HOMA-B, median (IQR) 2389 (172.1-354.6) 282.0 (202.0-380.2) 0.006
Status of glucose tolerance, n (%) 0.004
NGT 118 (54.6%) 52 (38.8%)
IFG/IGT 98 (45.4%) 82 (61.2%)
2-month LIR score, Median (IQR) 1.98 (1.86-2.0) 0.53 (0.25-1.06) <0.001
No T2D 2-month LIR score 1.98 (1.88-2.0) 0.50 (0.25-1.0) <0.001
Future incident T2D 2-month LIR score 1.98 (1.81-2.0) 0.55 (0.23-1.06) <0.001
Follow-up characteristics
Future T2D status up to 8 years post-baseline, n (%) 0.098
Future T2D 98 (45.4%) 73 (54.5%)
No T2D 118 (54.6%) 61 (45.5%)
Person-time of follow-up, months, mean (SD) 534 (32.2) 530 (33.6) 092

Data are presented as mean (SD) for continuous variables that are approximately normally distributed. Data are presented as median (IQR) for continuous
variables with asymmetrical distributions. Chi-square test was used for categorical variables (n, %), t-test was used for continuous variables (mean, SD), and Mann-
Whitney U test was used for continuous variables (median, IQR). IBF, intensive breastfeeding; IFF/Mixed, intensive formula feeding or mixed feeding; BMI, body
mass index; OGTT, oral glucose tolerance test; GDM, gestational diabetes mellitus; FPG, fasting plasma glucose; 2 h-PG, 2-h postload plasma glucose; HOMA-IR,
homeostatic model assessment for insulin resistance; HOMA-B, homeostatic model assessment for beta cell function; NGT, normal glucose tolerance; IFG, impaired
fasting glucose; IGT, impaired glucose tolerance; LIR, lactation intensity/duration ratio; 72D, type 2 diabetes

the same internal control in these two batches. To fur-
ther assess the difference in dynamic change of each me-
tabolite between the IBF group and IFF/Mixed group, a
mixed effect model was fitted for each metabolite and
Type III ANOVA tests were carried out in SPSS Statis-
tics (Version 26, IBM, Armonk, NY). In the mixed effect
model, group (IBF or IFF/Mixed), time (baseline or
follow-up), and their interactions were included as fixed
effects, whereas patient ID was included as a random ef-
fect. Total lactation duration was adjusted during the
longitudinal analysis. Next, p values were corrected by
using Benjamini-Hochberg method, and a cut-off of
FDR value < 0.05 was considered for significance.

Pathway analysis and upstream transcription factors
prediction

Lipidomics data from 350 samples at baseline were
used for the pathway analysis and master regulon pre-
diction. Using the KEGG (Kanehisa Laboratories,
Kyoto, Japan) database, the differentially expressed
lipid species, including upregulated and downregu-
lated lipids, were subjected to pathway analysis,
respectively. The KEGG pathway analysis was per-
formed on MetaboAnalyst 4.0. Further, the signifi-
cantly differentially expressed lipid species (FDR <
0.05) between IBF and IFF/Mixed at baseline were
subjected to an online platform MetaBridge (https://
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www.metabridge.org/) to further identify all of the re-
actions in which the lipids participate in and all of
the potential genes that are involved in these reac-
tions [39]. The gene list generated by MetaBridge was
subjected to a computational method called iRegulon
to identify the master regulons of these genes using
cis-regulatory sequence analysis [40]. A mapping of
the network between regulons and their downstream
targeted genes was generated by using Cytoscape
(Cytoscape Consortium, San Diego, CA, USA).

Prediction analysis

Sixty-nine significantly differentially expressed analytes
(FDR < 0.05, Additional file 1: Table S13) between
the future T2D (# = 98) and no T2D (n = 118)
women in the IBF group were subjected to the pre-
diction analysis. To build and evaluate the generated
predictive model, we randomly selected 25 future
T2D and 25 no T2D subjects as the hold-out testing
set. The remaining participants (73 future T2D and
93 no T2D) were used as the training set. During the
prediction analysis, the training set was randomly
down-sampled to 73 future T2D and 73 no T2D in a
case-control balanced set. Then, random forest classi-
fication was used to identify the predictive variables
and generate a prediction model (package randomFor-
est in R). The generated model was further applied
on the hold-out testing set to evaluate the predictive
performance. This process was repeated 100 times
and the top 30 variable importance (VIP) analytes
were recorded at each time (Additional file 1: Figure
S7). Then the top 10 analytes with the highest fre-
quency of appearance in the 100 times’ top VIP lists
were chosen as the final predictive signature to gener-
ate the predictive model (Additional file 1: Figure S7).
Model evaluation in the hold-out testing set was pre-
sented as area under the curve (AUC), accuracy, F1-
score, precision, sensitivity, and specificity. Instead of
presenting the best model, we reported the median
values of the model parameters (AUC, accuracy, F1-
score, precision, sensitivity, and specificity) to avoid
potential bias and overfitting. All prediction analyses
were performed in the RStudio (Version 1.2.5033).

Results

Overview of cohort and study design

In the SWIFT cohort (1035 women in total), women di-
agnosed with diabetes at baseline (n = 21), 2 dropouts,
and 2 ineligible women were excluded from the follow-
up. Of 1010 participants without diabetes at baseline,
959 women attended in-person research exams at 1 and/
or 2 years post-baseline (follow-up), which included 2-h
75-g OGTTs to evaluate glucose tolerance status. Add-
itionally, we supplemented this testing with clinical
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diagnoses of diabetes from Kaiser Permanente Northern
California (KPNC) electronic medical records up to 8
years post-baseline (Fig. 1A).

We selected a subset of 350 women (171 future dia-
betes cases vs. 179 no subsequent diabetes controls)
from the larger SWIFT cohort using a nested case-
control design in which women were matched on age,
prepregnancy BMI, and race/ethnicity as previously de-
scribed [36]. In this current study, these 350 women
were classified as either intensive breastfeeding (IBF, n =
216) or intensive formula or mixed feeding (IFF/Mixed,
n = 134) according to their 2-month lactation intensity/
duration ratio (LIR) score at study baseline. Fasting
plasma samples were collected during the 2-h 75-g
OGTTs performed at baseline and 1-2years post-
baseline to evaluate metabolic changes. Targeted meta-
bolomics and lipidomics were applied on fasting plasma
samples collected at baseline in 350 women (216 IBF vs.
134 IFF/Mixed), and targeted metabolic profiling was
also performed on fasting samples collected at follow-up
in 303 women (188 IBF vs. 115 IFF/Mixed) (Fig. 1B). We
then applied bioinformatics analysis to identify lactation
intensity-associated metabolites/pathways and generate a
predictive signature for future T2D risk (Fig. 1B).

Clinical characteristics of participants

Clinical, sociodemographic, and biochemical data in pre-
natal and postpartum periods for the 350 participants
are summarized in Table 1. In the prenatal period, there
were no statistically significant differences in age, race/
ethnicity, prenatal 3-h 100-g OGTT sum of z-scores,
and type of GDM treatment between IBF and IFF/Mixed
groups (p > 0.05). Pre-pregnancy BMI was slightly higher
in IFF/Mixed women compared to IBF women (Mean +
SD: 34.1 + 8.6 vs. 32.2 + 6.8kg/m% p = 0.02). At 6-9
weeks postpartum, the IBF group had lower fasting
plasma glucose (FPG) (p < 0.001), fasting insulin (p <
0.001), HOMA-IR (p < 0.001), and HOMA-f (p = 0.006)
than the IFF/Mixed group. Fewer IBF women had im-
paired glucose tolerance compared to IFF/Mixed women
at baseline (p = 0.004). There was no difference in 2-h
plasma glucose (2h-PG) (p = 0.22) between the two
groups. During the follow-up, there was no significant
difference in the number of women with incident dia-
betes between IBF and IFF/Mixed groups. There was no
significant difference in LIR score between women who
developed future diabetes and those who did not.

Metabolic changes associated with lactation intensity in
cross-sectional (baseline and follow-up) and longitudinal
analyses

At baseline, normality of the metabolomics dataset was
checked (Additional file 1: Figure S1A). Principal com-
ponent analysis (PCA) and partial least squares-
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during 2-h 75-g OGTTs. Baseline analysis included a total of 350 women (216 IBF vs 134 IFF/Mixed) whose stored fasting plasma samples were
collected and were subjected to targeted metabolomics and lipidomics profiling. Follow-up and longitudinal analyses included 303 of the 350
women (188 IBF vs 115 IFF/Mixed) whose fasting plasma samples were subject to targeted metabolomics profiling. Targeted metabolomics
allowed the detection of 188 analytes and targeted lipidomics allowed detection of 1008 lipid species based on liquid chromatography-mass
spectrometry (LC-MS) technique. The generated dataset was then subjected to data pre-processing and bioinformatic analysis

linear model (GLM), and Type III ANOVA was carried
out to evaluate significance. Calculated weights for cases

discriminant analysis (PLS-DA) indicated separability be-
tween the IBF and IFF/Mixed women (Additional file 1:

Figure S1B to S1D). To further identify the differentially
expressed metabolites between IBF and IFF/Mixed
groups, each metabolite was subjected to generalized

(future T2D) and controls (no T2D) were applied in the
model to account for the original nested case-control de-
sign. These models were adjusted for pre-pregnancy
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BMLI. Between IBF and IFF/Mixed groups, 75 metabolites
were identified that were differentially expressed with
statistical significance (FDR < 0.05), including 69 upreg-
ulated analytes and 6 downregulated analytes (Fig. 2A,
Additional file 1: Figure S1E and Table S1). All differen-
tial metabolites with FDR < 0.002 were summarized and
shown in Fig. 2B. Strikingly, the majority of differentially
expressed metabolites were clustered in the phospho-
lipids and sphingolipids and were higher in IBF women
compared to IFF/Mixed women (Fig. 2B).

At follow-up, the IBF group and IFF/Mixed group
could not be distinguished in PLS-DA analysis (p =
0.859) (Additional file 1: Figure S1F to S1G), and only 3
metabolites (Histidine, Citrulline and total-DMA) were
found to be differentially expressed between the two
groups (Additional file 1: Table S2). Further, all signifi-
cantly differentially expressed analytes that we identified
at baseline or follow-up were compared in Fig. 2C. Most
differentially regulated analytes maintained their trends
at follow-up. However, these analytes did not show sig-
nificant differences at follow-up, suggesting the effects of
lactation intensity during concurrent lactation on metab-
olites were remarkably lessened after cessation of lacta-
tion. Moreover, we stratified these 303 women into no
future T2D (1 = 152), short-term T2D (T2D onset at 1-
2 years post-baseline, n = 102) and long-term T2D (T2D
onset >2vyears post-baseline, n = 49) subgroups. In
women with no future T2D, the 3 metabolites stated
above were still found to be differentially expressed be-
tween IBF and IFF/Mixed, whereas no differential me-
tabolites were identified between IBF and IFF/Mixed in
short- and long-term T2D subgroups.

To further determine whether postpartum lactation
has a persistent impact on long-term maternal metabol-
ism, we performed a longitudinal analysis to examine
the dynamic changes of each metabolite within each in-
dividual between IBF and IFF/Mixed groups. A total of
303 women (188 IBF and 115 IFF/Mixed) who had
metabolomics data at both baseline and follow-up were
included in the longitudinal analysis. No metabolites
were significantly changed from baseline to follow-up
between IBF group and IFF/Mixed group (Additional file
1: Figure S2). We further stratified these 303 women
into no T2D (n = 152), short-term T2D (n = 102), and
long-term T2D (n = 49) subgroups and performed longi-
tudinal analysis in each subgroup. No metabolites were
found to be significantly changed over the time period.

Lipid species changes associated with lactation intensity
at baseline

The metabolomics showed that the majority of differential
metabolites were clustered in the lipid class. To further
explore these findings, we utilized lipidomics covering a
wide-spectrum of lipid species (1008 lipid species from 15
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classes along with 296 fatty acids) as previously described
[36] to assess the lipid changes associated with lactation
intensity at baseline among 350 women (216 IBF vs. 134
IFF/Mixed). A total of 818 lipid species were included in
the final bioinformatic analysis. Normality of dataset was
checked (Additional file 1: Figure S3A). PCA and PLS-DA
analyses showed a distinct separation between the two
groups which was not due to a random effect (Additional
file 1: Figure S3B to S3D). Of the 818 lipid species, re-
markably, 581 species were significantly associated with
lactation intensity at baseline (FDR < 0.05), with 183 lipids
upregulated and 398 downregulated in the IBF compared
to IFF/Mixed group (Fig. 3A, B, Additional file 1: Table
S3). These 581 differentially expressed lipids were com-
posed of 431 neutral lipids, 103 phospholipids, and 47
sphingolipids (Fig. 3A). Of the 398 downregulated lipids,
328 were from TAG class while 45 were from diacylglyc-
erol (DAG) class (Fig. 3B). In contrast, of the 183 upregu-
lated lipids, 91 were phospholipids (11 from
lysophosphatidylcholine (LPC) class, 6 from lysophospha-
tidylethanolamine (LPE) class, 39 from phosphatidylcho-
line (PC) class, 22 from phosphatidylethanolamine (PE)
class, 13 from phosphatidylinositol (PI) class), 43 were
sphingolipids (8 from ceramide (CER) class, 7 from dihy-
droceramide (DCER) class, 9 from hexosylceramide
(HCER) class, 10 from lactosylceramide (LCER) class and
9 from sphingomyelin (SM) class), and 49 were neutral
lipids (21 were from cholesterol ester (CE) class, one from
DAG class, 11 from free fatty acid (FFA) class, 2 from
monoacylglycerol (MAG) class, and 14 from TAG class)
(Fig. 3B). Notably, 64% (328 out of 513) of measured
TAGs and 83% (45 out of 54) of measured DAGs were
significantly downregulated in the IBF women, suggesting
women with higher lactation intensity at baseline had
lower levels of circulating TAGs and DAGs than women
who were intensive formula feeding or mixed feeding,
which is consistent with clinical biochemistry measure-
ments [22]. More strictly, we showed the top 150 most
significantly differentially expressed lipid species (Fig.
3C). Among these lipid species, 81 TAGs and 23
DAGs were consistently negatively associated with
lactation intensity at baseline. In contrast, 15 sphingo-
lipids, 20 phospholipids, and 11 CEs were consistently
positively correlated with intensive lactation (Fig. 3C).
We also stratified the cohort according to the glucose
tolerance status at baseline and found that the
changes of lipid profiles observed above were main-
tained in both normal glucose tolerant (NGT) women
and those with impaired glucose metabolism (im-
paired fasting glucose/impaired glucose tolerance,
IFG/IGT) (Additional file 1: Figure S4).

Furthermore, based on the amount of formula and
breastmilk feeding, we categorized the women into four
groups as we reported previously; (i) exclusive BF (no
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formula or other feeds); (ii) mostly BF(< 6 oz of formula  BF #n = 62, mostly BF n = 131, mostly FF/Mixed n = 91,
per 24-h); (iii) mostly FF (>17 oz of formula per 24h), and exclusive FF n = 66) to further examine whether
mixed (7-17 oz of formula per 24 h) or inconsistent feed-  there was a dosage effect of lactation intensity on lipid
ing; and (iv) exclusive FF (formula only) [8]. We com-  profiles. A total of 260 lipid species were significantly
pared the lipid profiles in these four groups (exclusive differentially expressed among the four groups. TAGs/
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DAGs were negatively associated with lactation in- Moreover, there was a dosage effect of lactation in-
tensity, whereas phospholipids/sphingolipids were tensity associated with lipid changes. (Additional file
positively  associated  with lactation intensity. 1: Figure S5).
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Additionally, we performed an extreme analysis by
comparing the exclusive BF group with the exclusive FF
group. A total of 267 lipid species were found to be sig-
nificantly changed between the two groups. Similar to
what we observed in the IBF/IFF or mixed groups, sig-
nificant lower TAGs/DAGs but higher phospholipids/
sphingolipids were detected in the exclusive BF group
compared to exclusive FF group (Additional file 1: Fig-
ure S6).

Characterization of lipid structure and composition
associated with lactation intensity

In addition to lipid species, we also examined number of
carbon atoms and double bonds in lipidomic profiling to
gain insight into whether intensive lactation affected com-
position and configuration of lipids. The TAGs measured
in this study possessed carbon atoms ranging from 35 to
60, and double bonds ranging from 0 to 12. Significantly
downregulated TAGs in IBF women were clustered in the
range of carbon atoms 50-56, especially those with even
carbon atoms (50, 52, 54, and 60) (Fig. 4A). Similarly,
DAGs with an even number of carbon atoms (32, 34, 36,
38, and 40) were significantly negatively associated with
intensive lactation at baseline (Fig. 4A). We did not iden-
tify specific patterns in other lipid classes (Fig. 4A). As for
the total FAs, most long-chain fatty acid (FA 16:0, FA 16:
1, FA 17:0, FA 18:0, FA 18:1, FA 18:2, FA 20:1, and FA 20:
2) were significantly downregulated in IBF women,
whereas most very long-chain fatty acids (FA 22:0, FA 24:
0, FA 24:1, FA 26:0, and FA 26:1) were upregulated. No
changes were observed in medium-chain fatty acids (Fig.
4B and Additional file 1: Table S4).

Metabolic pathways associated with lactation intensity at
baseline

To identify metabolic pathways associated with lacta-
tion intensity at baseline, we performed Kyoto
Encyclopedia of Genes and Genomes (KEGG) path-
way analysis. We observed a significant downregula-
tion of glycerolipid metabolism involving TAG/DAG
biosynthesis in IBF women (p = 0.04) (Fig. 5A and
Additional file 1: Table S5). Conversely, metabolism
of sphingolipids (»p = 0.002) and glycerophospholi-
pids (p = 0.01) was shown to be significantly upreg-
ulated (Fig. 5A and Additional file 1: Table S5).
These three significantly regulated pathways (glycer-
olipid, sphingolipid, and glycerophospholipid metab-
olism) are closely linked as they share common
substrates such as phosphatidate and fatty acyl-CoA,
suggesting a pathway switch and flux of carbon from
TAG and DAG sources towards phospholipids and
sphingolipids (Fig. 5B).
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Genes and master regulons related to the lactation-
associated lipid species

Our findings suggested lactation intensity was associated
with alterations in lipid metabolism. To further examine
this biological change at the gene level, we used Meta-
Bridge to cross-link genes with the differential lipids that
were associated with lactation intensity [39]. iRegulon was
then applied to detect master regulons from the set of
genes and establish a regulatory network [40]. We found
183 upregulated lipids (mainly phospholipids and sphin-
golipids) were linked to 296 genes including ACSL, CERS,
CPT, ELOVL, and G6PC (Additional file 1: Table S6) that
participate in the biosynthesis of fatty acids, phospho-
lipids, and sphingolipids [41-45]. By using iRegulon ana-
lysis, these 296 genes were matched to 21 master regulons
(such as PPARA, SREBF1, FOXO1, SOX9, STAT5A), ma-
jority of which are involved in lipid metabolism (Fig. 6A).
The cluster of targeted genes regulated by the master reg-
ulons involved in lipid metabolism during lactation was
summarized in Fig. 6B. In contrast, 398 downregulated
lipids (mainly TAG and DAG) were linked to only one
gene CEPT1 (Fig. 6A). CEPT1 encodes choline/ethanol-
amine phosphotransferase 1, an enzyme that controls the
formation of PC and PE from DAG [46], suggesting a
close link between glycerolipids and phospholipids. No
master regulon was identified due to only one gene being
linked to the downregulated lipid species.

Effects of lactation on lipid profiling at baseline in future
T2D and no T2D women

Our previous study showed that lactation intensity and
duration were associated with 34-57% lower relative risk
of incidence of T2D within 2 years postpartum [8]. We
further stratified the subset of 350 women with recent
GDM by future T2D status and examined whether in-
tensive lactation affected lipid profiles in each subgroup.
From the 350 women, 171 developed T2D and 179 did
not (no T2D) during the follow-up period (up to 8 years
post-baseline) (Fig. 7A). In the future T2D group, 98
(57.3%) women were categorized as IBF while 73 (42.7%)
women were IFF/Mixed at baseline (Fig. 7A). In the no
T2D group, 118 (65.9%) women were categorized as IBF,
whereas 61 (34.1%) women were IFF/Mixed at baseline
(Fig. 7A). Among the no T2D group, 552 lipid species
were found to be significantly altered between IBF and
IFF/Mixed women (FDR < 0.05) (Fig. 7B-C and Add-
itional file 1: Table S7). A total of 327 differential lipid
species with FDR < 0.001 were summarized and shown
(Fig. 7D). Among these lipids, 185 TAGs and 35 DAGs
were downregulated, whereas 19 CEs, 55 phospholipids,
and 33 sphingolipids were upregulated in the IBF group
compared to IFF/Mixed group (Fig. 7D). In the future
T2D subgroup, we detected similar lipid changes with
lower TAGs/DAGs and higher sphingolipids/
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phospholipids (Additional file 1: Table S8). However, the
amount of significantly differentially expressed lipids in
the future T2D subgroup was much less than those in
women with no T2D. The same trend was also observed
in the metabolomic profiling. A total of 44 phospho-
lipids, 12 sphingolipids, 2 acylcarnitine, 6 biogenic
amines, 10 amino acids, and hexose were found to be
significantly different (FDR < 0.05) between IBF and IFF/
Mixed groups in the no T2D women (Additional file 1:
Table S9), whereas only 1 phospholipid and kynurenine
were found to be significantly differentially expressed

between the two groups in the future T2D women (Add-
itional file 1: Table S10). This indicates that women who
do not respond metabolically to lactation would be very
likely to progress to future T2D after GDM pregnancy.
Furthermore, by comparing the clinical parameters of
women who responded and did not respond metabolically
to lactation, we found that the non-responders showed
higher z-score sum of 3-h 100-g OGTT during pregnancy,
and higher proportion of oral medications/insulin treat-
ment for GDM (Additional file 1: Table S11). Moreover,
at early postpartum, the non-responders exhibited higher
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FPG, fasting insulin, HOMA-IR, and higher proportion of
glucose intolerance compared to responders.

Prediction of future T2D in women with intensive
breastfeeding

To further identify who is more likely to develop future T2D
even with intensive breastfeeding, we established a distinct
predictive model with 10 analytes-1 acylcarnitine, 2 biogenic
amines, 3 amino acids, and 4 lipids (Fig. 8A). Using the 10-
analyte signature through 100 times’ validation (Additional
file 1: Figure S7), we achieved a median AUC value of 0.78
(95% CI 0.65-0.91), which is far superior to FPG (median
AUC 056, 95% CI 0.39-0.73) and 2 h-PG (median AUC 0.62,
95% CI 0.46-0.78) (Fig. 8B-D). Notably, after combining the
clinical variables with the 10-analyte signature, the predictive
performance was slightly improved (median AUC 0.80, 95%
CI 0.67-0.92), suggesting the significance of the metabolic
signature in predicting future T2D in IBF women. We also
showed the prediction of future T2D by our 10-analyte sig-
nature is superior to those “non-invasive” variables and
“standard measurements,” including pre-pregnancy BMIL,
treatment, race, family history of diabetes, total lactation dur-
ation, fasting plasma lipids, lipoproteins, and non-esterified
free fatty acids (Additional file 1: Table S12). These data sug-
gest that the metabolic changes appeared years before the
real onset of T2D in women with intensive breastfeeding,
which allows us to predict T2D in this specific group of

women and further investigate the underlying mechanisms
associated with T2D pathogenesis.

Discussion

In the present study, we selected a subset of 350 women
from a large well-characterized prospective cohort
(SWIFT study) of women with recent GDM who were
all systematically tested for newly onset of T2D up to 8
years post-baseline. We showed that high lactation in-
tensity was associated with substantial effects on mater-
nal lipid profiles in women with recent GDM. The most
striking findings were downregulation of glycerol metab-
olism and the upregulation of sphingolipid/phospho-
lipids metabolism appearing in participants with both
normal and impaired glucose tolerance at baseline.
Interestingly, these changes were not observed at follow-
up or in a longitudinal analysis, indicating a convergence
in the metabolome at this point. We further revealed
that women who later progressed to T2D had fewer lipid
changes associated with lactation intensity compared to
no T2D women.

Several prenatal parameters could affect the changes
in lipids observed in IBF women. In our analysis, all pa-
rameters have been considered as potential confounding
factors, including age, pre-pregnancy BMI, race/ethni-
city, Z-score sum of 3-h 100-g OGTT during pregnancy,
and GDM treatment during pregnancy. We found there
was no significant difference in age, race/ethnicity, Z-
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score sum of 3-h 100-g OGTT during pregnancy, and Therefore, in the following statistical analyses, we ad-
GDM treatment between IBF women and IFF/Mixed justed pre-pregnancy BMI. Since baseline measures of
women. However, IBF women had lower average pre- glucose (FPG, 2-h PG, HOMA-IR, HOMA-B, etc.) oc-
pregnancy BMI levels compared to IFF/Mixed women. curred after breastfeeding began, these variables might
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be influenced by breastfeeding in the first 6-9 weeks
postpartum. Therefore, these parameters were not ad-
justed in the analysis.

At baseline, neutral lipids (TAGs/DAGs) were shown
to be negatively associated with lactation intensity.

Remarkably, 64% (328 out of 513) of measured TAGs
and 83% (45 out of 54) of measured DAGs were signifi-
cantly lower in IBF women. Additionally, the pathway of
glycerolipid metabolism was significantly downregulated
in IBF women compared to IFF/Mixed women.
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Decreased TAGs and DAGs in IBF women were de-
tected in both NGT and IFG/IGT subgroups. This was
consistent with previous findings by us and others [23,
47, 48]. During pregnancy, circulating TAGs surge up to
200-300% of prior pregnancy levels [49], indicating the
body’s adaption for supporting fetus growth as well as
preparation for lactation post-delivery. During lactation
however, the maternal body utilizes TAGs and glyco-
gen to meet the increased energy demands for

mammary glands to produce milk, which is achieved
mainly by promoting glycogenolysis and lipolysis [50,
51]. Thus, TAGs/DAGs are largely utilized for milk
production leading to their clearance from circulation,
fitting to our previous clinical biochemical data [22].
It has been previously shown that saturated fatty
acids containing an even number of carbon atoms de-
rive from endogenous sources including de novo lipo-
genesis [52-56].
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We found that significantly downregulated TAGs/
DAGs were clustered in those with backbones of an even
carbon atom number, suggesting lactation may lead to
suppressed endogenous lipogenesis or possibly upregu-
lated catabolism of lipids. We particularly found that
long-chain fatty acids were greatly decreased in IBF
women. This could be due to the fact that long-chain
fatty acids present in milk are directly transferred from
plasma instead of de novo synthesized from glucose in
the mammary glands [57]. The link between intensive
lactation and maternal lipid metabolism was further sup-
ported by the identification of master regulons (PPARA,
SREBF1, FOXO1, SOX9, STAT5A, etc.) via the integra-
tive tools. These master regulons are involved in lipid
metabolism associated with lactation. In particular,
PPARA encodes peroxisome proliferator-activated re-
ceptor alpha (PPAR-a), which is known to regulate
utilization and catabolism of fatty acids [58]. SREBF1 en-
codes the sterol regulatory element-binding transcription
factor 1 (SREBP1), a transcription factor (TF) which is
required for de novo biosynthesis of fatty acids, choles-
terol, and triglycerides [59]. FOXO1 encodes forkhead
box protein O1 (FOXO1), a TF that is involved in regu-
lation of gluconeogenesis and glycogenolysis by insulin
signaling. FOXO1 also promotes SOX9 expression and
suppresses fatty acid oxidation in response to low lipid
levels [60]. STAT5A encodes signal transducer and acti-
vator of transcription 5A (STAT5A), which is a TF that
plays an important role in intensive breastfeeding by ac-
tivating prolactin-induced transcription and regulates
the expression of milk proteins during lactation [61].
Overall, this decrease of TAGs/DAGs along with the
identified master regulons may contribute to the re-
duced risk of metabolic disorders in later life [62]. In
addition to the pathways that we identified from KEGG,
other lactation-associated pathways were reported previ-
ously [63]. Five metabolic pathways, including gluconeo-
genesis, pyruvate metabolism, the tricarboxylic acid
cycle (TCA cycle), glycerolipid metabolism, and aspar-
tate metabolism, were found to be involved in lactation.
Among them, the TCA cycle was the most upregulated
pathway suggesting that lactation is a process with high
energy demand.

Importantly, we are the first to report that a decrease of
TAGs/DAGs was accompanied by large increases in phos-
pholipids and sphingolipids during lactation. These three
lipid classes are intimately intertwined as they share common
substrates such as phosphatidate and fatty acyl-CoA [64].
Therefore, it is possible that the observed downregulation of
glycerolipid metabolism, in particular the suppression of lipo-
genesis, may shift the carbon source flux of substrates from
lipogenesis (TAG/DAG formation) towards formation of
phospholipids and sphingolipids. Additionally, by using
MetaBridge, we identified that the downregulation of TAGs/
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DAGs was associated with the CEPT1 gene, which encodes
choline/ethanolamine phosphotransferase 1, an enzyme that
regulates the formation of phospholipids from DAG [65].
These findings suggest a close relationship between these
three lipid classes. Phospholipids and sphingolipids are
deeply involved in cell signaling and therefore their deficiency
might lead to impaired insulin receptor signaling and insulin
resistance [66-68]. We very recently showed that TAGs/
DAGs were positively correlated with HOMA-IR (insulin re-
sistance) while phospholipids/sphingolipids had a negative
correlation [36]. Therefore, upregulation of sphingolipids and
phospholipids accompanied by downregulation of glyceroli-
pids may lead to reduced insulin resistance [69, 70]. Indeed,
we and others reported lactating women were shown to have
lower HOMA-IR than less or non-lactating women [71, 72].

In addition to lipids, we also showed significantly de-
creased hexose was associated with intensive lactation.
This may be explained by the increased glucose uptake
in mammary glands during lactation. In contrast, periph-
eral glucose uptake in other tissues such as liver and
muscle is reduced during lactation, which has been sug-
gested to occur in order to prioritize the glucose for
milk production [50, 73]. This may lead to reduced/
lower insulin demand, and therefore explain the lowered
circulating insulin observed in IBF women compared to
IFF/Mixed group [71, 74]. Distinct from the significant
changes of lipids, hexose and amino acids were margin-
ally changed between intensively and non-intensively
lactating women, suggesting amino acid metabolism re-
mains more stable while the TAGs/DAGs are largely uti-
lized for milk production.

In our current study using a subset of 350 women
from SWIFT (171 future diabetes vs. 179 non diabetes),
we did not observe a significant difference in women
who developed future diabetes between IBF and IFF/
Mixed groups. This could largely be attributed to the
fact that this study was a secondary analysis based on
a previously selected subset, which has much higher in-
cident T2D case numbers than the general population
(50% vs. 10%). In our previous study, intensive lactation
was associated with low incident diabetes rates [7, 8].
Additionally, expanding the sample size could also help
reveal a difference.

In contrast to the baseline results of the 350 women
examined, we did not observe significant changes in me-
tabolites associated with intensive lactation in the subset
of 303 women during cross-sectional analysis at follow-
up (~ 2 years post-baseline), nor in the longitudinal ana-
lysis. We could not exclude the possibility that signifi-
cant differences in metabolites between IBF and IFF/
Mixed at follow-up may be observed by performing
metabolomics on a larger sample set. Therefore, in fu-
ture studies, we could apply omics on a larger sample
size of the SWIFT study whose fasting plasma samples
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are available at both baseline and follow-up. Further-
more, the longer-term benefits associated with postpar-
tum lactation may also involve other pathways including
inflammatory markers or changes in lipid markers that
we were unable to evaluate at follow-up in this analysis.
Importantly, the changes related to concurrent lactation
intensity, such as modifications at the gene level with a
more long-term and persistent effect compared to meta-
bolic changes, should be investigated.

Very recently, in an analysis of women in the SWIFT
Study, we reported that higher TAGs/DAGs and lower
phospholipids/sphingolipids postpartum were associated
with future T2D after GDM pregnancy [36]. Interest-
ingly, in this study, we observed a remarkable opposing
lipid profile associated with IBF. It is well known that el-
evated TAGs/DAGs are associated with diabetes onset
and other metabolic disorders [19, 20, 36]. Therefore,
these current findings, from a standpoint of metabolism,
support our previous findings that women with intensive
lactation postpartum have reduced risk of developing
diabetes compared to those who do not breast feed in-
tensively [8].

We reported that metabolic dysregulation (including
impaired glucose metabolism) was present at the early
postpartum period in GDM women who would de-
velop T2D in later years [36, 75]. In the SWIFT
study, higher intensity and longer lactation duration
were associated with 50% lower relative risk of T2D
[8], accounting for maternal obesity and metabolic
status. Other studies in women with obesity re-
ported shortened breastfeeding duration, delayed on-
set of lactogenesis and lactation outcomes [76-79].
Clinically, impaired glucose metabolism and insulin
sensitivity may be associated with poor lactation per-
formance and low milk supply in women [80]. These
risk factors may also influence maternal circulating
lipid profiles. Thus, the association between lactation
and metabolic changes could differ by future T2D
status. Therefore, in our case-control subsample, we
stratified according to future diabetes status. We ob-
served that women who went on to develop T2D had
far fewer lipid changes during lactation at early post-
partum compared to those who did not develop T2D.
This indicates that the favorable effects of intensive
lactation which are inversely associated with T2D
may be attributed to significant changes in lipid me-
tabolism during lactation. However, the IBF women
whose lipid profiles were not significantly altered were
more likely to develop future T2D during follow-up.
Further insight is required to address this directly.

Additionally, in women with intensive breastfeeding,
we identified a 10-analyte signature panel to effectively
predict future T2D risk, which is far superior to the pre-
dictive performance of non-invasive clinical parameters
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and standard measurements. This signature panel in-
cluded 4 major metabolite groups, including acylcarni-
tine, amino acid, biogenic amine, and lipid, supporting
the fact that diabetes is a metabolic disorder with dys-
regulation of carbohydrates, lipids, and amino acids.
Three of these analytes (PC aa C30:0, SM (OH) C22:2
and spermidine) were also identified in our previous
study, where we developed a 20-analyte signature to ef-
fectively predict future T2D onset after GDM pregnancy
[75], suggesting the importance of these analytes in pre-
dicting future T2D. Moreover, the predictive perform-
ance of the 10-analyte signature reported here does not
rely on accompanying clinical variables, suggesting the
significance of the metabolic signature to predict future
T2D in this specific group of women with intensive
breastfeeding.

In our current study, we show a significant change
in the lipid profile (lower TAGs and DAGs but
higher sphingolipids and phospholipids) with higher
lactation intensity, which may be the physiology
underlying our previous findings on lactation’s nega-
tive association with future risk of developing meta-
bolic syndrome and T2D in women [8, 71]. Our
current findings further suggested that the favorable
effects of lactation on maternal metabolic health may
be exerted through changes in lipid metabolism.
Longitudinal studies with both lipidomics and meta-
bolomics performed on a larger sample size and in
an independent cohort would further illuminate the
persistent effects of lactation on the metabolic path-
ways related to diabetogenesis. In terms of the ef-
fects of prolonged storage time on the human
plasma metabolome, a study reported only 2% tested
plasma metabolites were found to be altered in the
first 7 years of storage, and up to 26% of metabolites
were changed upon longer storage periods up to 16
years [81]. Therefore, the changes in the metabolites
of the plasma over the storage time should also be
considered. Regardless, our study has advanced our
understanding of lactation-associated biochemical
pathways and their relationship with diabetes risk in
women. These may help to identify specific molecu-
lar targets to improve women’s health.

Conclusions

This study showed that intensive lactation significantly
alters the circulating lipid profile at early postpartum
and that women who do not respond metabolically to
lactation are more likely to develop T2D. We also identi-
fied a metabolic signature that accurately predicts future
onset of T2D in IBF women. Our findings provide novel
insight into how lactation influences maternal metabol-
ism and its link to future diabetes onset.
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