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Abstract

Background:Global progress towards reducing tuberculosis (TB) incidence and mortality has consistently lagged
behind the World Health Organization targets leading to a perception that large reductions in TB burden cannot be
achieved. However, several recent and historical trials suggest that intervention efforts that are comprehensive and
intensive can have a substantial epidemiological impact. We aimed to quantify the potential epidemiological
impact of an intensive but realistic, community-wide campaign utilizing existing tools and designed to achieve a
“step change” in the TB burden.

Methods: We developed a compartmental model that resembled TB transmission and epidemiology of a mid-sized
city in India, the country with the greatest absolute TB burden worldwide. We modeled the impact of a one-time,
community-wide screening campaign, with treatment for TB disease and preventive therapy for latent TB infection
(LTBI). This one-time intervention was followed by the strengthening of the tuberculosis-related health system,
potentially facilitated by leveraging the one-time campaign. We estimated the tuberculosis cases and deaths that
could be averted over 10 years using this comprehensive approach and assessed the contributions of individual
components of the intervention.

Results:A campaign that successfully screened 70% of the adult population for active and latent tuberculosis and
subsequently reduced diagnostic and treatment delays and unsuccessful treatment outcomes by 50% was
projected to avert 7800 (95% range 5450–10,200) cases and 1710 (1290–2180) tuberculosis-related deaths per 1
million population over 10 years. Of the total averted deaths, 33.5% (28.2–38.3) were attributable to the inclusion of
preventive therapy and 52.9% (48.4–56.9) to health system strengthening.
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Conclusions:A one-time, community-wide mass campaign, comprehensively designed to detect, treat, and
prevent tuberculosis with currently existing tools can have a meaningful and long-lasting epidemiological impact.
Successful treatment of LTBI is critical to achieving this result. Health system strengthening is essential to any effort
to transform the TB response.

Keywords:Tuberculosis, India, Tuberculosis modeling, Tuberculosis active case finding, Tuberculosis preventive
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Background
Global progress in fighting tuberculosis (TB) has lan-
guished for decades. Currently, TB incidence is falling
by only 2% per year worldwide, far behind the pace ne-
cessary to achieve WHO’s End TB target of a 90% re-
duction in TB incidence between 2015 and 2035 [1, 2].
Of the eight highest-burden countries that account for
two-thirds of new cases, five of them—Indonesia, the
Philippines, Pakistan, Nigeria, and Bangladesh—have ex-
perienced less than 1% annual decline in incidence over
the last decade [1]. The decline exceeded 5% per year
only in South Africa, where this decline has been pre-
dominantly among HIV-positive individuals [1]. It is
likely that progress will continue at this unacceptably
slow pace unless a feasible, actionable strategy can be
developed that holds a reasonable promise of achieving a
“step change” in the TB epidemic, defined for the pur-
poses of this analysis as a significant and sustainable
change in the burden of TB effected over a short period
of time.
Historical and modern evidence clearly demonstrates

that rapid declines in TB burden are possible [3, 4]. For
example, a comprehensive campaign to find TB cases
and treat latent TB infection (LTBI) in the Yukon-
Kuskokwim Delta (Alaska, USA) saw the annual risk of
TB infection fall from 24.6% in 1949–1951 to 1.1% in
1960 [3]. More recently, community-wide screening for
active TB in Cà Mau Province, Vietnam, reduced preva-
lence by 44% over 3 years, with potential reductions in
transmission and TB incidence to be observed over the
coming years [4]. These studies, combined with exam-
ples of successful TB control programs implemented at
the regional and national levels [5, 6], provide evidence
that substantial reductions in TB burden can be
achieved with focused, intensive effort; however, scalable
and sustainable approaches for achieving such reduc-
tions have yet to be developed. Modern tools—including,
for example, highly portable digital X-ray devices with
emerging artificial intelligence (AI)-based interpretation
[7], adoption of novel short-course preventive therapy
with drugs whose price is being cut dramatically [8], and
rapid high-sensitivity molecular testing for TB (and drug
resistance) [9]—could facilitate implementation of inten-
sive, broad-scale efforts to find, treat, and prevent TB
that previously might have been deemed infeasible.

To date, modeling efforts to project the impact of TB-
focused interventions have tended to focus on individual
interventions (e.g., diagnosis with Xpert MTB/RIF [10],
LTBI treatment [11], household contact investigation
[12]) or achievement of specific elimination goals or
other targets [13, 14]. Few studies have attempted to es-
timate the population-level impact of a comprehensive
yet feasible approach to halt TB transmission at the
community level. Such broad-scale efforts are intrinsic-
ally challenging to scale up, but one attractive approach
is a “surge/maintenance” strategy, involving an initial,
time-limited phase of high-intensity intervention
followed by a more sustained phase of health system
strengthening that is facilitated by the initial “surge.”
Here, we aimed to quantify the potential epidemio-

logical impact of an intensive but realistic, community-
wide campaign, designed to achieve a “step change” in
the context of a high-burden urban population. Our ra-
tionale was that, if a realistic campaign could effect sig-
nificant and sustainable change in a short period of time,
it could motivate further innovation, wider adoption,
and greater enthusiasm for funding such an approach on
a broader scale. We conceptualized the model to repre-
sent a medium-sized city in India—the country with the
largest number of TB cases (more than 25% of the global
burden), containing multiple large cities in which TB-
related interventions could be carried out on a city-wide
scale.

Methods
Model conceptualization
We developed a deterministic compartmental model of
the natural history, transmission, and epidemiology of
TB in a medium-sized city in India, represented sche-
matically in Fig. 1. We modeled transitions between six
TB-related states: an uninfected state, two states of LTBI
(early LTBI and late LTBI), two states of active TB dis-
ease (asymptomatic and symptomatic), and a recovered
state. In this conceptualization, individuals who acquire
TB infection have a higher rate of developing active TB
(early progression) during the first years following TB
infection (early LTBI), followed by a lower rate (late pro-
gression) that persists unless LTBI is effectively treated.
Active TB is assumed to start in an asymptomatic form
that can either progress to symptomatic disease or
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resolve spontaneously without treatment. We assumed
symptomatic TB is more infectious on a per-person-
time basis and may result in death, cure through treat-
ment, or spontaneous regression to asymptomatic dis-
ease. Individuals who have late LTBI or have recovered
from previous TB disease can be reinfected but are as-
sumed to have partial immunity from previous exposure.
To capture age-specific differences in TB natural his-

tory and intervention implementation, we divided the

population into two age groups (< 15 and � 15 years
old). To capture heterogeneity in TB risk such as the
greater risk associated with urban slums [15], we as-
sumed that the city contains geographically distinct but
intermixing subpopulations with higher and lower TB
risk, whose differences in risk were modeled as differ-
ences in contact patterns (transmission rates) and in
health care access (diagnosis rates and treatment suc-
cess). For simplicity and interpretability, we assumed a

Fig. 1 Schematic representation of the modeling approach. We use a compartmental modeling framework to incorporateA natural history of
tuberculosis (TB),B age structure, andC risk groups.A Natural history was captured by modeling transition of individuals between six states:
uninfected; two stages of latent TB infection (LTBI), early LTBI and late LTBI; two states of active TB disease, asymptomatic and symptomatic; and a
recovered state. Uninfected individuals develop early LTBI upon acquiring TB infection, which can either stabilize to become late LTBI or progress
early to active TB disease. Individuals with late LTBI can also develop active TB, through a late progression that occurs at a slower rate. Active TB
is assumed to start in an asymptomatic form, which can either progress to a symptomatic form or resolve spontaneously to the recovered state
without treatment. Symptomatic TB can either be diagnosed and treated or regress back to the asymptomatic form. Populations with late LTBI or
who have recovered from previous TB disease can be reinfected (i.e., return to the early LTBI state) but are assumed to have partial immunity.
Births and deaths, including TB-related deaths, are included in the model, but not shown here. Active case finding (followed by successful
treatment) is modeled as a transition from the two active TB disease states to the recovered state; preventive therapy (and successful resolution
of LTBI) is modeled as a transition from the LTBI states to recovered.B The population was subdivided into two groups based on age: children
below 15 years and adults 15 years and above. Populations in the two age groups were modeled to have different TB prevalence (reflecting
differences in natural history) and to be targeted differentially with the intervention.C The population was modeled to be living in either a high-
risk area or other lower-risk areas of the city, with intermixing between the subpopulations, and with different TB transmission and diagnosis rates
resulting in different TB prevalence in the two subpopulations
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almost any other intervention to fight an infectious
disease.
These results underscore that, while case-finding and

treatment of active TB are critical for achieving rapid re-
ductions in TB burden, coupling this with the treatment
of LTBI and health system strengthening is essential for
longer-term impact. In this analysis, more than 70% of
TB deaths and up to 87% of TB cases averted over a 10-
year period after a one-time intervention were attribut-
able to treating LTBI. These findings are consistent with
previous research highlighting the importance of pre-
ventive therapy in achieving long-term success against
TB [42]. Furthermore, the achievable 10-year reduction
in TB deaths more than doubled when the one-time
intervention was coupled with health system strengthen-
ing that improved care delivery over the medium term.
These results should not, however, diminish the import-
ance of finding and treating active TB in the short term.
Not only is ruling out active TB essential for LTBI treat-
ment but the number of (downstream) cases averted by
treatment of a prevalent active TB is 10–30 times
greater than those averted by treating one person with
LTBI (Additional file 1:Fig. S-3). Nevertheless, since the
prevalence of LTBI is nearly 100 times larger than the
prevalence of TB disease (median prevalence of LTBI
39% compared to the median prevalence of TB of 420
per 100,000, Additional file 1:Fig. S-1), treatment of
LTBI plays a major role in reducing TB burden.
Since treatment of LTBI is critical to achieving large

reductions in incidence and mortality, barriers to achiev-
ing high coverage of LTBI treatment also limit the over-
all effectiveness of large-scale TB interventions.
Accounting for existing gaps in the LTBI care cascade—
as done here—is important to inform realistic expecta-
tions for what an intensive one-time intervention can
achieve. Previous studies have highlighted substantial
gaps in the cascade of LTBI care and challenges in the
implementation of LTBI treatment [43]. Thus, not only
does a high-impact TB prevention campaign require ac-
curate LTBI diagnostic tests and high-efficacy preventive
regimens, but it also requires strategies to achieve high
uptake and completion of LTBI treatment. Shorter treat-
ment regimens can improve completion [44]; maximiz-
ing the impact of such regimens will require combining
them with additional innovative approaches to help aug-
ment the cascade of LTBI diagnosis and treatment [45].
The use of tests for LTBI with imperfect specificity (e.g.,
TST) may result in overdiagnosis and treatment of
people without underlying LTBI, which are not captured
in the epidemiological impact studied here, but will have
consequences for resource use and costs.
The high prevalence of TB in many high-burden set-

tings also reflects underlying weaknesses in health care
systems [46, 47]. These weaknesses often manifest as

limited access to care, prolonged delays in diagnosis and
treatment [39], losses to follow-up, and treatment non-
success [41]. Our results underscore the potential impact
of HSS and also highlight the opportunity of leveraging
a one-time campaign to mitigate some of these under-
lying weaknesses in the TB health care system—though
strengthening health systems will have an important im-
pact on TB, even in the absence of a one-time biomedi-
cally focused intervention as modeled here. Specifically,
we found that HSS could more than double the number
of lives saved by a comprehensive, one-time, TB-focused
intervention. Even a modest 20% reduction in diagnostic
delay alone augmented this 10-year impact by 25% (Fig.
6D). Hence, in designing major interventions to find and
treat people with TB (and LTBI), implementers must
recognize the importance of sustained improvement of
TB care over the longer term—potentially by leveraging
those short-term activities without incurring substantial
additional costs.
As an example of the potential for large-scale interven-

tions to be economically viable, reduced TB caseloads
achieved by a one-time intervention could free up re-
sources to enhance control efforts or maintain quality of
care. Data collected as part of the initial intervention
could be used to identify high-risk populations and/or
gaps in the existing system of TB care that could be
closed with targeted interventions. Furthermore, the in-
vestment that would be made during the initial interven-
tion to reach, test, and treat a substantial proportion of
the community could be leveraged to increase general
awareness of TB and TB services in the population im-
prove patient detection and adherence (e.g., by building
comprehensive patient/population database) and im-
prove quality of patient care (e.g., by retaining equip-
ment and staffs trained for the initial intervention). HSS
has the potential to be impactful in high-incidence set-
tings like India, whether combined with a larger-scale
TB-focused biomedical intervention (as modeled here)
or as a stand-alone approach. As such, HSS should be
considered a critical component of any coordinated TB
response, regardless of whether biomedical TB interven-
tions are also being planned. That HSS measures may be
further enabled by an intensive campaign to find and
treat both active and latent TB lends further weight to
the argument for adopting such a combined approach.
As such, high priority should be assigned to implemen-
tation research to identify specific programs that im-
prove the TB care cascade in specific settings (especially
as performed after major case-finding and treatment
campaigns) and to assess the generalizability of such
programs across settings.
These findings are subject to certain limitations. The

impact of these interventions could be higher if targeted
to specific high-risk populations that bear a larger
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burden of TB and contribute disproportionately to trans-
mission. However, identifying such populations and
achieving high coverage therein may present its own
challenges. We included a high-risk population in our
model to capture some of this heterogeneity, but we
found that at high levels of coverage in the overall popu-
lation, targeting the intervention preferentially to this
high-risk population did not substantially increase the
overall impact of the intervention (Additional File 1:Fig.
S-4). Furthermore, the added value of targeting interven-
tions to such high-risk populations depends on the fac-
tors that are setting-specific and difficult to precisely
measure, such as the variation in TB prevalence over
small geographic scales and the degree of mixing and
transmission between subpopulations [48]. With early
trial results suggesting that novel TB vaccines are mod-
erately efficacious in reducing the risk of TB disease
[49], future modeling work could also consider incorpor-
ating vaccination as a part of a comprehensive interven-
tion. The durability and efficacy of vaccine-derived
protection are likely to be critical considerations for such
analyses. For simplicity, we conceptualized a closed
population with no immigration or emigration. The ac-
tual impact of an intervention, when evaluated only in
the population where the intervention was conducted, is
likely to be diminished by such migration. However,
when migration occurs, the intervention’s effect on emi-
grants’ risk of TB will extend the benefits of the inter-
vention beyond the local population. Finally, we adopted
a number of simplifying assumptions and data choices
to broadly represent both an urban population-center in
India and implementation of a comprehensive mass
intervention; the projections created here are therefore
not fully reflective of the impact of any specific interven-
tion as implemented in a specific (and inherently more
complex) epidemiological setting.
We made several modeling choices to represent the

natural history of TB, in which data are either sparse or
open to multiple interpretations. (i) We assumed that
TB infection imparts partial immunity to reinfection (be-
cause individuals with evidence of LTBI are less likely to
develop TB disease after reexposure [18, 19]) and that
this immune protection extends to those who were pre-
viously treated (for both LTBI and TB disease) or those
who spontaneously resolved. The inclusion of protection
for those who had received treatment is consistent with
other TB modeling literature [50, 51], and has little im-
pact on our main results, but it means that our model
relies solely on relapse and geographic risk heterogeneity
to account for the higher risk of recurrence faced after
treatment for TB disease [52]. (ii) Relatedly, we modeled
the rate of late progression of LTBI to be non-zero; re-
cent analyses have argued that remote infections rarely
progress after a few years [53] or may even become

sterilized without antitubercular therapy [54]. The true
risk of progression among individuals with remote TB
infection remains poorly understood [23] but can be
consequential for the impact of these interventions. In
our simulations, we found that the impact in terms of
cases averted was about 30% larger in simulations where
the rates of late progression were in the top decile, com-
pared to the bottom decile (Additional File 1:Fig. S-2).
In addition, if preventive therapy could be targeted to in-
dividuals with recent infection (e.g., if diagnostic assays
for recent infection could be developed), up to 89% of
cumulative 10-year TB mortality could be averted, while
only delivering preventive therapy to one-tenth of the in-
fected population (Additional File 1:S-6). Furthermore, if
the reactivation rates of remote TB reactivation (and
consequently the lifetime benefits of TPT) are substan-
tially lower, it will be important to carefully weigh the
risks and benefits of TPT. Prioritizing populations based
on risks, such as household contacts of known TB cases
and those with underlying risk factors, may be necessary.
(iii) Finally, our model included the potential for TB dis-
ease to resolve without treatment (via regression and
spontaneous resolution); the estimated rates of regres-
sion and resolution varied over a wide range in our cali-
brated models, reflecting not just uncertainties in these
estimates but also a correlation with other parameters
(e.g., late progression rates). Rates of resolution in the
bottom decile, which were closer to estimates in a recent
study [24], yielded estimates of cases averted that were
up to 15% smaller than the median estimate (Additional
File 1:Fig. S-2). However, the estimated number of
deaths averted was more robust to these parameter
choices (Fig. 6).
In this analysis, we focused on the epidemiological

outcomes and did not consider estimates of costs. A nat-
ural next step would be to assess the costs of imple-
menting a comprehensive one-time intervention of this
scale and to estimate the potential benefits in terms of
future costs that could be saved, as well as mortality and
morbidity that could be averted. Furthermore, a compre-
hensive cost-effectiveness analysis of our proposed two-
phased approach would also need to evaluate the feasi-
bility and costs of incorporating health system strength-
ening activities into large case-finding campaigns.

Conclusions
In conclusion, this modeling study suggests that a fo-
cused and intensive intervention to halt TB transmission
in a high-burden setting, leveraged to also strengthen
subsequent TB care by the routine health system, can re-
duce TB incidence by over 40% (7800 cases averted per
million population) and TB mortality by almost two-
thirds (1710 lives saved per million population) over a
10-year period. Such impact would represent a
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substantial acceleration of the currently modest decline
in TB burden seen throughout the world in recent years.
These impacts can be achieved rapidly—with much of
the reductions occurring in the first year—and can be
sustained for decades. The success of such an interven-
tion, however, is closely tied to the ability to effectively
treat LTBI and to strengthen the TB cascade of care
through an initial investment. A rapid and sustained
“step change” in TB burden is therefore achievable, but
only with a comprehensive approach that includes case-
finding and treatment of active TB, treatment of LTBI,
and long-term strengthening of the TB health care
system.
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